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We consider cumulative merging percolation (CMP), a long-range percolation process describing the
iterative merging of clusters in networks, depending on their mass and mutual distance. For a specific class
of CMP processes, which represents a generalization of degree-ordered percolation, we derive a scaling
solution on uncorrelated complex networks, unveiling the existence of diverse mechanisms leading to the
formation of a percolating cluster. The scaling solution accurately reproduces universal properties of the
transition. This finding is used to infer the critical properties of the susceptible-infected-susceptible model
for epidemics in infinite and finite power-law distributed networks. Here, discrepancies between analytical
approaches and numerical results regarding the finite-size scaling of the epidemic threshold are a crucial
open issue in the literature. We find that the scaling exponent assumes a nontrivial value during a long
preasymptotic regime. We calculate this value, finding good agreement with numerical evidence. We also
show that the crossover to the true asymptotic regime occurs for sizes much beyond currently feasible
simulations. Our findings allow us to rationalize and reconcile all previously published results (both
analytical and numerical), thus ending a long-standing debate.
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I. INTRODUCTION

Percolation and epidemic spreading are among the most
interesting processes unfolding on complex network sub-
strates, and their investigation has attracted a huge interest
in the past 20 years [1–5]. One of the most successful
achievements of this endeavor is the realization that the
properties of one of the fundamental models for epidemics
without a steady state, the susceptible-infected-recovered
(SIR) dynamics [6], can be mapped onto bond percolation
[7–9]. This connection has permitted the application to the
SIR model of the powerful tools devised for percolation,
leading to a full understanding of this epidemic process
[8,10–13]. For the other fundamental class of epidemic
dynamics, allowing for a steady, endemic state, whose
simplest representative is the susceptible-infected-
susceptible (SIS) model [6], no direct mapping to a
percolative framework is available, and theoretical progress
has been slower. In the SIS model, susceptible individuals
acquire the disease at rate β through any edge connected to

an infected individual, while infected individuals sponta-
neously heal with rate μ. The epidemic threshold λc defines
the value of the ratio λ ¼ β=μ separating a healthy
(absorbing) phase from an endemic one with everlasting
activity. Initial work showed that degree heterogeneity
leads to disruptive effects on scale-free networks [14],
namely, a vanishing threshold in networks with power-law
degree distribution PðkÞ ∼ k−γ and γ ≤ 3 [15,16]. Later
efforts have shifted toward less heterogeneous networks,
those with γ > 3 [3].
The quenched mean-field (QMF) theory [17–19] pre-

dicts a vanishing threshold λc → 0 in the infinite network-
size limit for any value of γ [20], due to the existence of
hubs able to sustain the epidemic for long times only by
interacting with their direct neighbors [21]. It was later
pointed out that, at the QMF level, the localization of
activity around these hubs implies the existence, for small
values of λ, of long-lived, but not stationary, states [22,23].
Important progress in this debate is provided in Ref. [24],
where it is shown that a genuine non-mean-field effect,
mutual reinfection among distant hubs, is the key mecha-
nism triggering the appearance of an endemic stationary
state for any λ in networks with γ > 5=2. Numerical
evidence corroborates this picture, showing that the posi-
tion of the effective threshold tends to zero with network
size for any γ. However, the decay observed is slower than
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the one predicted by the QMF theory [24–26] and, more-
over, in contradiction with recent mathematical results
derived by Huang and Durrett [27] and Mountford,
Valesin, and Yao [28]. An additional puzzling question
in this area is the striking disagreement between the exact
mathematical prediction for the singular behavior of the
prevalence (ρ ∼ λ2γ−3, apart from logarithmic corrections)
[28] and numerical simulations exhibiting a much faster
growth. This lack of a precise agreement between analytics
and numerics represents one standing issue in our under-
standing of epidemic processes on complex topologies.
A precise mathematical formulation of the mutual

reinfection process was recently proposed by Ménard
and Singh [29]. They introduce the cumulative merging
percolation (CMP) process, a long-range site percolation
process [30] aimed at describing the geometry of the sets
where SIS epidemics survive for a long time on a network.
The presence of a CMP giant component corresponds to the
existence of an endemic SIS stationary state, so that the
calculation of the CMP threshold allows one to locate also
the position of the SIS epidemic transition [31].
In this paper, we contribute to the current state-of-the-art

in this area in two ways. First, we consider a generalized
version of the CMP process proposed in Ref. [29], and we
present a scaling theory for its nontrivial behavior. This
theory—which provides a clear understanding of compet-
ing physical mechanisms, critical properties, crossover
scales, and finite-size effects—is general and can be related
with other processes. Second, we apply the results of the
first part to SIS dynamics, obtaining in this way for the first
time a full understanding of the critical properties of the
model. In particular, our theory predicts that the asymptotic
behavior in the limit of very large networks (derived exactly
in Refs. [27,28] and reassuringly recovered by our
approach) can be observed only for huge system sizes,
out of reach for present computer resources. We show
instead that, for network sizes that can be currently
simulated, a preasymptotic regime holds, whose nontrivial
properties are determined, providing a prediction for the
finite-size scaling of the SIS epidemic threshold in agree-
ment with (previously unexplained) numerical results. Our
work reconciles in a comprehensive way the different
theories proposed to interpret the behavior of the SIS
model, placing them in the proper context regarding the
network size considered, and thus ends a long debate
between the physics and mathematics communities.
The paper is organized as follows: In Sec. II, we define

the cumulative merging percolation process which is the
subject of our study. Section III presents a scaling solution
of this model, whose behavior in finite networks is
discussed in Sec. IV. A numerical check of the scaling
solution is provided in Sec. V. In Sec. VI, we apply the
results obtained to the SIS epidemic model, backing up our
conclusions by comparison with existing numerical simu-
lations. Finally, in Sec. VII, we summarize our main results

and discuss the interesting perspectives they open. Several
Appendixes provide some detailed analytical calculations
and additional information.

II. CUMULATIVE MERGING
PERCOLATION PROCESS

We consider a generalization of the cumulative merging
process proposed in Ref. [29], defined along the following
lines. In a given network, composed by N nodes, each node
i is active with probability pi. Inactive nodes do not play
any role apart from determining the topological distances
between pairs of active nodes (see below). Each active node
i defines a cluster of size 1, associated with an initial mass

mð0Þ
i . Starting with these initial clusters, an iterative process

takes place whose elementary step is the merging of a pair
of clusters into a single one. Two clusters, α and β, are
merged in a single cluster if there are at least a node iα in α
and a node jβ in β, such that

diα;jβ ≤ minfrðmαÞ; rðmβÞg; ð1Þ

where di;j is the topological distance between nodes i and j
and rðmÞ ≥ 1 is an interaction range associated to a cluster
of massm. The mass of the merged cluster is the sum of the
masses of the original clusters: mαþβ ¼ mα þmβ. The
iteration of this procedure converges to a limiting partition
of the network that does not depend on the order in which
the merging is performed [32]. Notice that if pi ¼ p and
rðmÞ ¼ 1, CMP coincides with random site percolation [1].
It is important to remark that Eq. (1) implies that two
clusters merge only if each one of them is within the
interaction range of the other: An asymmetric situation,
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FIG. 1. Schematic illustration of the CMP process for
rðmÞ ¼ 1þm=2. Filled nodes are active; empty nodes are
inactive. Areas bordered by dashed lines are interaction domains
of active nodes or clusters. Clusters are indicated by solid lines
surrounding a filled area. Notice in (c) and (d) the isolated active
node on the upper right corner, which is within the interaction
range of the large cluster but cannot be merged as it has r < 2.
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with a massive cluster interacting with a far and small
cluster, does not lead to merging. In Fig. 1, we present a
graphical illustration of the mechanism of the CMP
process. We stress again that a cluster is defined as a set
of (only) active nodes resulting from the iteration of
merging events. Nodes in the same cluster must belong
to the same connected component of the underlying net-
work, but they do not need to form a connected component
by themselves, as is clear from Figs. 1(c) and 1(d).
The connection between CMP and the mutual reinfection

of distant hubs in the SIS epidemics is operated by taking as
active nodes the hubs able to independently sustain the
epidemic [29]; see Appendix A for a detailed description.

III. SCALING THEORY FOR CUMULATIVE
MERGING PERCOLATION

Let us focus now on a specific yet broad class of CMP
processes, where nodes are active if their degree is larger
than a threshold value ka: pi ≡ pðkiÞ ¼ Θðki − kaÞ.
In an uncorrelated network with degree distribution PðkÞ ¼
ðγ − 1Þkγ−1mink

−γ in the continuous approximation, where
kmin is the minimum degree, the fraction of active nodes is

Na

N
¼

Z
∞

ka

dkPðkÞ ¼
�

ka
kmin

�
1−γ

: ð2Þ

We are interested in understanding the possible existence of
a CMP giant component as a function of ka, in particular, in
the limit ka → ∞, when only a small fraction of nodes is
active.

A. The case rðmÞ= 1: Degree-ordered percolation

Let us consider first the case rðmÞ ¼ 1, i.e., only nearest
neighbors can form clusters. In this case, the CMP process
defined above coincides with the degree-ordered percola-
tion (DOP) process proposed in Ref. [23] (coinciding with
the limit α → −∞ in Ref. [33]). For a node of degree k, the
probability that a given neighbor is active is

PaðkÞ ¼
Z

∞

ka

dk0Pðk0jkÞ; ð3Þ

where Pðk0jkÞ is the conditional probability that a
neighbor of a node k has degree k0 [34]. For uncorrelated
networks, Pðk0jkÞ ¼ (k0Pðk0Þ=hki) [34]; thus, we have
Pa ¼ ðka=kminÞ2−γ , independent of k. The mean number
of active neighbors of a node of degree k is kPa; therefore,
the inverse of Pa,

kc ¼
�
kmin

ka

�
2−γ

; ð4Þ

defines a degree scale separating nodes likely to have many
active neighbors k=kc ≫ 1 from those likely to be isolated,

i.e., not in direct contact with any active node. The average
number of active neighbors for each active node is

N
Na

Z
∞

ka

dkPðkÞkPa ¼
γ − 1

γ − 2
kaPa ∼ k3−γa : ð5Þ

For γ < 3, this quantity diverges as ka grows: Each active
node has a very large number of active neighbors, so that all
of them belong to a connected giant component for any ka
[23,33], and the relative size S of the giant component is
simply given by the fraction of active nodes

SDOP ¼
Na

N
¼

�
ka
kmin

�
1−γ

: ð6Þ

For γ > 3, instead, the average number of active neigh-
bors of an active node decreases with ka and tends to zero in
the limit ka → ∞. This result indicates that a degree-
ordered percolation giant component (DOPGC) can exist
only up to a finite threshold value, in agreement with
Refs. [23,33]. It is useful to discuss the behavior of the
order parameter SDOP as a function of ka in this case. For
ka ¼ kmin, kc ¼ 1. Hence, even for γ > 3, there is an
interval of ka values such that ka=kc > 1. This regime
occurs up to a value ka ¼ k�0 determined by the condition
kcðk�0Þ ¼ k�0, yielding

k�0 ¼ kðγ−2Þ=ðγ−3Þmin : ð7Þ

Notice that, for γ ¼ 3.2 and kmin ¼ 3, k�0 ¼ 729, a quite
large value, while it decays quickly for increasing γ: For
γ ¼ 3.5, it is already k�0 ¼ 27. In this regime, the situation is
similar to the case γ < 3, with practically all active nodes
belonging to the DOPGC and SDOP ≈ Na=N ∼ k1−γa .
However, one must notice that, even if ka=kc > 1, this
ratio is not very large, as its maximum value is kmin,
corresponding to ka ¼ kmin. Therefore, one never observes
the scaling predicted by Eq. (6); as soon as ka is increased,
one immediately starts to see the transition to a different
regime, where ka=kc < 1. In this second regime, a giant
component still exists, but some active nodes are isolated
(not directly connected to other active nodes) and others are
nonisolated but form small clusters. The set of all active
nodes is therefore composed by three classes:
(1) nonisolated nodes belonging to the DOPGC;
(2) nonisolated nodes belonging to small clusters; and
(3) isolated nodes, which necessarily do not belong to

the DOPGC.
As ka increases, a growing fraction of active nodes

passes from the first category to the other two, and the order
parameter SDOP ¼ NGC=N decreases faster than the frac-
tion of active nodesNa=N (see Fig. 2). At the threshold, the
fraction of nonisolated nodes belonging to the DOPGC
vanishes.
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The calculation of the behavior of SDOP in this regime
and of the transition point is a nontrivial task. It is important
to observe that NNI, the number of nonisolated nodes,
which upper bounds the numberNGC of nodes belonging to
the giant component, keeps decaying with the same
exponent even well above the DOP transition (see Fig. 2).

B. The case of growing rðmÞ for γ < 3

Let us turn now to the more generic case where rðmÞ
grows as a function of m. The range of interaction grows
with its mass, so that, if rðmÞ ≥ 2, clusters of nodes can
merge even if not in direct contact. In this case, it is clear
that, for a given value of ka, the giant component of the
DOP process is a subset of the giant component of the full
CMP process (CMPGC). Thus, for γ < 3, the CMPGC is
again given by the whole set of active nodes and has,
therefore, a relative size

S ¼ Na

N
¼

�
ka
kmin

�
1−γ

: ð8Þ

C. The case of growing rðmÞ for γ > 3

In this case, for large ka, the DOPGC vanishes asymp-
totically and nonisolated active nodes form DOP clusters of
a small size. Still, an extensive CMPGC could be induced
by long-range merging of clusters or nodes which cannot be
joined in a DOP process, as they are separated by distances
larger than 1. Whether these long-range mergings take
place or not depends, of course, on the particular choice of
the mass m and of the form of the interaction range.
Inspired by Ref. [29], here we focus on the case of initial

masses equal to node degrees mð0Þ
i ¼ ki (so that the total

mass of a cluster is the sum of the degrees of the active
nodes forming it) and of an interaction range of the form
rðmÞ ¼ m=ka. This case is a particular case of a generic
CMP process with rðmÞ ¼ fðm=kaÞ, where fðzÞ ¼ zα,
with α > 0, so that active nodes with the smallest degree
have a range exactly equal to 1. We defer to a future work a
comprehensive analysis of this model for α ≠ 1.
In the present setting, we identify two competing

mechanisms leading to the formation of a CMP giant
component. The first is an extension of DOP percolation,
based on the merging of DOP clusters separated by
distances larger than 1. The second involves the buildup
of CMP clusters formed by isolated nodes interacting at a
large distance. We now discuss the two mechanisms in
detail.

1. First mechanism: Extended DOP mechanism

For very small ka close to kmin, CMP is clearly equivalent
to the first regime for DOP with S ≈ Na=N. Upon increas-
ing ka, above the crossover scale k�0, DOP enters the second
regime with an increasing presence of isolated nodes and
nodes belonging to small DOP clusters. CMP and DOP
behaviors start to diverge at this point, because some nodes,
even if they are not directly connected to the DOPGC, are at
distance 2 from it and, thus, can join the CMPGC if their
interaction range is at least 2. In particular, this situation
occurs for all small DOP clusters: As their aggregate degree
is kagg ≥ 2ka, they necessarily have a range of interaction
r ≥ 2. For this reason, in this regime all NNI nonisolated
nodes belong to the CMPGC. This result is clearly verified
in Fig. 2. Notice that NNI=N is finite even well beyond the
DOP threshold. In this limit, the formation of the CMPGC
is still triggered by the largest DOP cluster (that does not
percolate). For any value of γ, there are always nodes in the
network with k > kc ≫ ka. They form local clusters with a
large interaction range that progressively incorporate other
small clusters giving rise to a CMPGC, even if no DOPGC
is present. To calculate NNI, we consider the probability
that an active node of degree k has at least one neighboring
active node:

PNIðkÞ ¼ 1 − ð1 − PaÞk ≈ 1 − e−k=kc : ð9Þ

(a)

(b)

FIG. 2. Dependence on ka of the number Na of active nodes,
the number NGC of nodes in the DOP giant component, the
number NNI of nonisolated nodes, the number Nr≥2 of isolated
nodes with range r ≥ 2, and the number NCMP of nodes in the
CMP giant component. Results are for power-law networks with
γ ¼ 3.5, kmin ¼ 3, and size N ¼ 107 (a) and N ¼ 106 (b),
generated using the uncorrelated configuration model
(UCM) [35].
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The total fraction NNI=N of nonisolated active nodes in a
power-law distributed network is then

NNI

N
¼

Z
∞

ka

dk0Pðk0ÞPNIðk0Þ

¼ ðγ − 1Þkγ−1min

�
k1−γa

γ − 1
− k1−γc Γ

�
1 − γ;

ka
kc

��
; ð10Þ

where Γða; zÞ is the incomplete Gamma function [36].
In this second regime, not only small DOP clusters, but

also isolated active nodes can join the CMPGC, provided
they have degree k ≥ 2ka so that their range is r ≥ 2. We
denote their number as Nr≥2. The total fraction of isolated
nodes with range r ≥ 2 is

Nr≥2

N
¼

Z
∞

2ka

dk0Pðk0Þ½1 − PNIðk0Þ� ð11Þ

¼ðγ − 1Þkγ−1mink
1−γ
c Γ

�
1 − γ;

2ka
kc

�
: ð12Þ

Overall, the CMP order parameter in this regime is,
therefore,

S1 ≈
NNI

N
þ Nr≥2

N
: ð13Þ

For ka → kmin, one has ka > kc, and the first contribution
in Eq. (13) is larger than the second, for any γ. For large ka,
instead, one can expand the Γ functions for small ka=kc,
finding

NNI

N
¼

�
ka
kmin

�
1−γ

�
γ − 1

γ − 2

ka
kc

�
∼ k2ð2−γÞa ð14Þ

and

Nr≥2

N
¼

�
2ka
kmin

�
1−γ

�
1 −

γ − 1

γ − 2

2ka
kc

�
∼ k1−γa : ð15Þ

The exponent of NNI is, in absolute value, larger than the
one of Nr≥2; hence, the first contribution dominates up to a
crossover scale

k�1 ¼
�ðγ − 2Þ
ðγ − 1Þ

2ð1−γÞ

ð1þ 22−γÞ k
ð2−γÞ
min

�
1=ð3−γÞ

: ð16Þ

The conclusion of this line of reasoning is that for ka ≪
k�1 the size of the CMPGC decays as

S1 ≈
NNI

N
∼ k2ð2−γÞa ð17Þ

followed by a crossover to S1 ≈ ðNr≥2=NÞ ∼ k1−γa . The
crossover scale k�1 decreases rapidly with γ, but, since the

maximum degree in a network grows as N1=ðγ−1Þ, the
minimum network size necessary to have a sufficiently
large maximum degree kmax ¼ k�1 is always larger than N ≈
4.2 × 105 (the minimum occurring for γ ≈ 5 for kmin ¼ 3).
Hence, it should be possible to observe the crossover on
large networks (although kmax grows very slowly with N;
hence, one needs networks of a size much larger than 105

nodes to have a still limited range of ka values). As a matter
of fact, we do not observe such a crossover.
This result happens because, as ka grows, the extended

DOP mechanism becomes less and less effective. DOP
clusters become smaller and smaller, and the distances
among them (and between isolated active nodes and them)
increase: It is no longer sufficient to have r ¼ 2 to join the
CMP giant component. For even larger ka, it is not even
sufficient to have r ¼ 3 or r ¼ 4 and so on. This effect
suppresses both terms in Eq. (13), but the second term is
most affected, as can be seen in Fig. 3, where we compare
the ratio of the first and second terms in Eq. (13) (which
becomes 1 at the crossover scale k�1) and the same ratio
restricted to nodes belonging to the CMPGC. We observe
that the latter is always larger than the former and does not
seem to go to 1 for large ka. This result implies that, in
practice, S1 behaves as predicted by Eq. (17) even for
values of ka larger than the crossover scale k�1 estimated
in Eq. (16).
A more important consequence of the asymptotic inef-

fectiveness of the extended DOP mechanism is that it
cannot work for arbitrarily large ka. A different mechanism
governs the formation of the CMPGC in the limit ka → ∞.

2. Second mechanism: Merging of distant isolated nodes

Nodes with degree ka ≤ k ≪ kc have on average a
very small number of active nearest neighbors, as

FIG. 3. Ratio NNI=Nr≥2 between the two terms in Eq. (13)
evaluated on UCM networks with γ ¼ 4, kmin ¼ 3, and size
N ¼ 107, computed over all nodes, and restricted to nodes
belonging to the CMPGC.
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kPa ¼ k=kc ≪ 1. Hence, they are typically isolated.
However, if k is large enough, they may still have a large
interaction range and may merge with other distant nodes.
To analyze this process in detail, let us denote as dðkÞ the
mean distance between a node of degree k and the closest
node of degree at least k. In the limit of a large network
size, this distance is (see Appendix B for an analytical
derivation)

dðkÞ ≈ 1þ γ − 3

lnðκÞ ln
�

k
kmin

�
; ð18Þ

where κ ¼ hk2i=hki − 1 is the network branching factor.
Since the interaction range of a node grows linearly with its
degree k, it grows faster than the distance to its closest peer.
Hence, there exists a degree kx such that

rðkxÞ ¼ dðkxÞ ð19Þ

and, for any k > kx, rðkÞ > dðkÞ. As a consequence, nodes
with k > kx have an interaction range larger (on average)
than their mutual topological distance. They can thus merge
in pairs with an even larger interaction range, and the
process repeats itself, leading to the formation of a
CMPGC, comprising all nodes with a degree larger than
kx. If we write kx in the form kx ¼ ωka, the condition (19)
implies ω ¼ dðωkaÞ, which, inserting the explicit expres-
sion of dðkÞ, becomes

ω ≈ 1þ γ − 3

lnðκÞ ln
�
ωka
kmin

�
: ð20Þ

Neglecting constants and terms of the order of ln½lnðkaÞ�,
the size of the giant component according to this mecha-
nism scales then as

S2 ≈
�

kx
kmin

�
1−γ

¼ ω1−γ
�

ka
kmin

�
1−γ

ð21Þ

¼
�
γ − 3

lnðκÞ ln
�

ka
kmin

��ð1−γÞ� ka
kmin

�
1−γ

; ð22Þ

showing, thus, a power-law decay times a logarithmic
correction.
In absolute value, the leading exponent in S2 is smaller

than the exponent in S1. Therefore, we expect this second
mechanism to dominate asymptotically, but after a cross-
over preceded by a scaling regime where the size of the
CMPGC is given by Eq. (17). The position k�2 of the
crossover is estimated by numerically solving the equa-
tion S1ðk�2Þ ¼ S2ðk�2Þ. Figure 4 shows how this quantity
decreases with the exponent γ. However, in order to
observe such a crossover, one must consider networks

much larger than N�
2 ¼ k�ðγ−1Þ2 . These values are huge for

any γ (much larger than 109 nodes in the best case), leading

to the conclusion that only the first regime can be observed
in currently feasible simulations.
The present analysis can be extended also to the case of

networks with a stretched exponential degree distribution,
predicting an asymptotic stretched exponential dependence
of S on ka. See Appendix C for details.

IV. FINITE-SIZE EFFECTS

So far, we consider infinitely large networks, thus
assuming that all degree classes, up to infinity, exist.
When the network size is finite, only degrees up to the
maximum value kmaxðNÞ, growing as N1=ðγ−1Þ, are present
[37]. The CMP behavior for the infinite network (i.e., there
is a CMPGC for any ka) holds as long as kmax is larger than
the degree scale involved in the formation of the CMPGC.
For γ < 3, it is sufficient to have active nodes for

observing an extensive CMPGC. Hence, the only finite-
size effect trivially appears for ka > kmaxðNÞ: In such a
case, there are no more active nodes in the system and
S ≈ 0. The finite-size effective threshold is kca ¼ kmaxðNÞ.
On the contrary, for γ > 3, finite-size effects are less

trivial. The presence of active nodes is not sufficient to give
rise to a CMPGC. One needs the presence of nodes with
k > kc (first mechanism) or k > kx (second mechanism).
Notice that, since kc grows as a power of ka with an
exponent larger than 1, while kx grows logarithmically,
asymptotically kc ≫ kx. Different scalings of the finite-size
effective threshold are possible, depending on whether the
maximum degree kmaxðNÞ is larger or smaller than the
crossover degree k�2.
If kmaxðNÞ > k�2, finite-size effects appear during the

regime where the formation of the CMPGC is governed by
the second mechanism. In this case, the asymptotic
behavior S ≈ S2 ends (i.e., S ≈ 0) when the relevant degree

FIG. 4. Values of the crossover degree k�2 and the minimal

network size N�
2 ¼ k�ðγ−1Þ2 as a function of γ. In order to observe

the crossover, networks of size N ≫ N�
2 should be considered.
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scale kx (growing with ka) becomes larger than kmaxðNÞ. In
such a case, there are active nodes in the system, but neither
of the two mechanisms for the formation of the giant
component is at work. The effective threshold in this case
is given by the condition kx ¼ kmaxðNÞ, implying asymp-
totically

kca ∼
lnðκÞ
γ − 3

kmaxðNÞ
ln½kmaxðNÞ� : ð23Þ

If, instead, kmaxðNÞ < k�2, finite-size effects start to
appear already during the preasymptotic regime where
the first mechanism rules. As soon as kc > kmaxðNÞ, the
behavior S ≈ S1 ends. The effective threshold is thus given
by the condition kc ¼ kmaxðNÞ, implying

kca ¼ kmink
1=ðγ−2Þ
max : ð24Þ

Notice that after this effective threshold the order parameter
does not go to S ≈ 0, as there is still an interval of ka values
such that kx < kmaxðNÞ < kc. In this regime, the first
mechanism is no longer operative; still, the second is at
work, but since N < N�

2, it cannot lead to a macroscopic
giant component.

V. NUMERICAL TEST

We test the correctness of the scaling analysis performed
in the previous sections by means of numerical simulations
of the CMP process with rðmÞ ¼ m=ka. In Figs. 5(a)
and 5(b), we report, as a function of ka, the fraction S
of nodes in the largest CMP cluster for γ < 3 on uncorre-
lated configuration model networks (UCM) [35] of various
sizes. The plot shows the presence of a CMPGC, including
a fraction of active nodes independent of the system size N.
The scaling of S with ka is in excellent agreement with the
prediction of Eq. (8). Finite-size effects are also apparent
and perfectly agree with the prediction formulated above:
The effective threshold occurs for ka ¼ kmaxðNÞ ¼ N1=2.
Increasing the network size, the effective threshold
diverges: Asymptotically, there is a giant component for
any ka > 0.
For γ > 3, we consider a hard cutoff M ¼ N1=ðγ−1Þ for

the degree sequence generated in the UCM model, in order
to avoid the possible appearance of outliers having a degree
much larger than the average kmax [38]. Figures 5(c)
and 5(d) show that also in this case the fraction of active
nodes in the CMPGC is extensive, and its dependence on ka
is well described by Eq. (17). This result confirms the
depicted scenario about the formation of an extensive
CMPGC and points out that for the sizes considered only
the preasymptotic scaling regime S1 is observed, while, as
expected, we do not see any trace of the asymptotic
behavior (for an infinite network) S ¼ S2 ≈ k1−γa .

Concerning finite-size effects, for γ > 3 as only the first
scaling regime is observed, the condition setting the
effective threshold is Eq. (24). A direct numerical verifi-
cation of it for CMP is very hard, as practically all
nonisolated nodes are part of the CMPGC, and finite
clusters (upon which methods to determine the position
of the threshold are based) are extremely rare. An indirect
numerical verification is provided below in the application
to the SIS model. The observation of the effective threshold
associated to the second mechanism [Eq. (23)] is impos-
sible in practice, as it requires huge networks of a size
larger than N�

2.
The conclusion of our analysis is that, in different

manners depending on whether γ < 3 or γ > 3, a CMP
giant component is present in infinite networks for any
value of ka. The threshold for this class of CMP processes
is infinite for any value of γ.

VI. APPLICATION TO SIS EPIDEMIC SPREADING

The theoretical picture presented in the previous sections
can be applied to the CMP process associated to SIS
dynamics, which is an instance of this class with
ka ¼ a=λ2 lnð1=λÞ, initial mass equal to the degree, and
rðmÞ ¼ m=ka; see Appendix A. This application has
mainly the goal of investigating the properties of the SIS
epidemic transition for γ > 3. We notice that the relation
between CMP and SIS depends on the parameter a relating
ka with λ, whose value, either a ¼ 1 or a ¼ 4, is not
theoretically determined. In our application of CMP to SIS,
we choose to compare with both values.

(a) (b)

(c) (d)

FIG. 5. Fraction S of nodes in the largest CMP component as a
function of ka for various γ values: γ ¼ 2.2 (a), γ ¼ 2.7 (b), γ ¼
3.2 (c), and γ ¼ 3.5 (d). In all cases, kmin ¼ 3. Symbols represent
numerical results for various network sizes. Dashed lines are
theoretical predictions from Eqs. (8) [(a),(b)] and (17) [(c),(d)].

CUMULATIVE MERGING PERCOLATION AND THE EPIDEMIC … PHYS. REV. X 10, 011070 (2020)

011070-7



A. Scaling of the CMP giant component

The scaling of S with λ for γ < 3 is obtained by inserting
the expression for ka as a function of λ into Eq. (8),
obtaining

S ¼ Na

N
∼ k1−γa ∼ λ2ðγ−1Þ ln1−γ

�
1

λ

�
: ð25Þ

Thus, the approach predicts the existence of a CMPGC for
any value of λ > 0. Notice, however, that, while it is
possible to define a CMP process associated to SIS
dynamics for any value of γ, the SIS epidemic transition
for γ < 5=2 is due to a mechanism different from the
mutual reinfection of distant hubs [21]: Hence, SIS critical
properties have nothing to do with those of CMP in this
case. Moreover, the connection between the scaling of S
and the scaling of the SIS prevalence is not trivial in this
case; hence, we cannot derive from CMP any prediction on
the latter even for 5=2 < γ < 3.
For γ > 3, the fraction of active nodes in the CMPGC is

extensive, and its preasymptotic dependence on λ is
obtained by plugging the expression for ka into Eq. (17):

S1 ¼
NNI

N
∼ k2ð2−γÞa ∼ λ4ðγ−2Þln2ð2−γÞ

�
1

λ

�
: ð26Þ

We can also calculate the asymptotic scaling of the
CMPGC, by plugging the expression for ka into the
expression of the scaling of the CMP giant component
in the second regime, Eq. (22), obtaining

S2 ∼ ln1−γðkaÞk1−γa ∼ λ2ðγ−1Þln2ð1−γÞ
�
1

λ

�
: ð27Þ

We recall, however, that this scaling occurs only for
exceedingly large values of ka (i.e., values of λ exceedingly
small), so that it cannot be observed in present simulations.

B. Finite-size epidemic threshold

For γ > 3, as only the first scaling regime is observed,
the condition setting the effective threshold is
kmaxðNÞ ¼ kcðλÞ, i.e.,

a
λ2c

ln

�
1

λ2c

�
¼ kmink

1=ðγ−2Þ
max : ð28Þ

This result translates (apart from logarithmic corrections)
into

λcðNÞ ¼ ða=kminÞ1=2k−1=½2ðγ−2Þ�max : ð29Þ

For k−1=2max < λ < λcðNÞ, there are active hubs in the system,
but they do not give rise to a CMPGC. Hence, λcðNÞ can be
identified with the effective size-dependent epidemic

threshold. Equation (29) is very interesting, as it shows
that the effective threshold does not vanish as k−1=2max , as
predicted by the QMF theory, but more slowly, with an
exponent that is reduced as γ is increased. The prediction of
Eq. (28) is compared in Fig. 6 with SIS numerical results of
Ref. [24], displaying a good agreement and thus clarifying
a long-standing open issue. For reference, we also report
the scaling predicted by the QMF theory, which patently
disagrees with numerical results.
Notice, however, that this result is not the final asymp-

totic behavior of λcðNÞ. For much larger networks, it could
be possible (at least in principle) to reach values of ka larger
than the crossover value k�2. In such a case, the decay of the
effective threshold would be given by the condition
kx ¼ kmaxðNÞ, that, from Eq. (20), leads to

λcðNÞ ¼ ω1=2k−1=2max ∼ lnðkmaxÞk−1=2max : ð30Þ

In this way, we recover the asymptotic scaling of the
effective threshold recently derived by Huang and
Durrett [27].
In Appendix D, we show that the CMP approach

provides the correct effective finite-size threshold also in
the case of stretched exponential degree distributions.

C. SIS prevalence as a function of λ

Above the size-dependent effective threshold, there is a
backbone of active nodes which sustain an endemic state by
reinfecting each other. In an infinite network, when the
CMP giant component is formed by distant, mutually

FIG. 6. Comparison between the theoretical finite-size thresh-
old (for two different values of a) (hollow symbols) and direct
numerical simulations (full symbols) of the SIS process in UCM
networks with degree exponent γ ¼ 3.5 (kmin ¼ 3) and γ ¼ 4
(kmin ¼ 2) [24]. The epidemic threshold is determined by means
of the lifespan method [24]. The dashed red line is proportional to
the prediction 1=

ffiffiffiffiffiffiffiffiffi
kmax

p
of the QMF theory. The values of kmax

correspond to sizes ranging from N ¼ 104 to N ¼ 108 for γ ¼
3.5 and from N ¼ 104 to N ¼ 107 for γ ¼ 4.

CASTELLANO and PASTOR-SATORRAS PHYS. REV. X 10, 011070 (2020)

011070-8



interacting hubs (second regime), we can estimate the value
of the prevalence (average density of infected nodes) for
small λ using the following argument. All actives nodes
with a degree larger than kx ¼ ωka participate in the
CMPGC. Each one of these active nodes of degree k
infects a number of other nodes of order λk. Since hubs are
distant, these clusters of infected nodesdonot overlap; hence,
the total prevalence in the system is expected to be [23]

ρ ∼
Z

∞

kx

dkλkPðkÞ ∼ λðωkaÞ2−γ: ð31Þ

Substituting the values of ω and ka into Eq. (31) leads to

ρðλÞ ∼ λ2γ−3½lnð1=λÞ�2ð2−γÞ; ð32Þ

in agreement with the exact mathematical results of
Mountford, Valesin, and Yao [28]. As discussed above, this
prediction is, however, impossible to verify numerically,
because the onset of the asymptotic regime could be seen
only for exceedingly large networks, which explains the
mismatch between the theory of Mountford, Valesin, and
Yao and numerical results. In doable simulations of the SIS
model, the small λ regime that can be observed is the
preasymptotic regime S1 for the corresponding CMP proc-
ess. In such a regime, since hubs are not well separated, it is
not possible to assume that each of them independently
infects a number of neighbors of the order of λk. The
derivation of the exponent characterizing the SIS prevalence
singularity in this preasymptotic (but long) regime remains
an interesting open question for future research.

VII. DISCUSSION

In this paper, we consider a long-range percolation
process, the cumulative merging percolation, exhibiting a
rich phenomenology that we have uncovered developing an
appropriate scaling theory. While we mainly focus on
particular forms of the model inspired by the analysis of
SIS process [29], more complex scenarios can be obtained
by changing the functional form of the interaction
range rðmÞ or the activation probability pi and by consid-
ering a more complicated mass merging function mαþβ ¼
gðmα;mβÞ. In this sense, we expect other types of perco-
lation transitions to arise as these features are changed. For
example, if rðmÞ saturates to a finite value when m
diverges, the arguments presented above imply the pres-
ence of a finite threshold for γ > 3 as for the DOP process.
The investigation of the general phenomenology of the
CMP process and of its connections with other models is a
promising avenue for future research.
Concerning the application of CMP to SIS dynamics, our

results clarify how the mutual reinfection mechanism
among distant hubs, underlying the epidemic transition
for γ > 3 [24], takes place. This clarification closes the last
gap in our understanding of the SIS dynamics and leads to a

complete and consistent physical picture that we sketch
here.
The original heterogeneous-mean-field theory (HMF)

[15,16], based on an annealed network approximation [2],
predicts an epidemic threshold given λHMF

c ¼ hki=hk2i and
thus finite in the limit of infinite-size networks for γ > 3

(see Fig. 7). Below λHMF
c , this theory predicts a density of

infected individuals ρðtÞ decaying exponentially to zero.
For λ > λHMF

c , the HMF predicts a finite ρ in the steady
state.
The quenched-mean-field theory (QMF or NIMFA)

[17–19] predicts the same scenario, a transition separating
an active steady state with finite prevalence from an
absorbing phase where the prevalence decays exponentially
to zero. The difference with respect to the HMF is in the
value of the threshold, λQMF

c ¼ 1=ΛM, where ΛM is the
largest eigenvalue of the adjacency matrix, which vanishes
as N diverges, for any γ. The value of the QMF threshold is
the minimum value of λ such that the star graph composed
by the largest hub and its direct neighbors is able to
independently sustain long-lasting activity [21]. Cor-
respondingly, the principal eigenvector for γ > 5=2 is
localized around the largest hub [22]. Also, the other
leading eigenvalues of the adjacency matrix are associated
to eigenvectors localized on each of the hubs of the
network. In the thermodynamic limit, for any given value
of λ, each large hub with degree k > 1=λ2 sustains long-
lasting activity together with its direct neighbors, yielding
an overall finite density of infected individuals that can be
estimated [23] as ρ ∼ λ2γ−3.
However, as pointed out in Refs. [22,23], this scenario

cannot really hold for SIS dynamics. In the QMF theory,
there are no stochastic fluctuations, and activity in a star
graph composed by kþ 1 nodes persists forever if
λ > 1=

ffiffiffi
k

p
. In SIS dynamics, instead, activity survives, in

a star graph made of kþ 1 nodes, only for a time of the
order of expðλ2k=aÞ. Hence, if star graphs are independent,
the overall activity does not survive for a time scaling
exponentially with the system size N. In other words, there
is some activity surviving for some time but not a truly
steady active state. In the interval λQMF

c < λ < λHMF
c , one

FIG. 7. Behavior of SIS prevalence ρ according to the different
approaches. QMF* stands for the QMF theory as reinterpreted in
Refs. [22,23].
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should expect a Griffiths-like phase, with a slow decay of
ρðtÞ [23], due to the convolution of contributions from a
decreasing number of still active individual hubs. Only
above a finite threshold, approximately equal to λHMF

c ,
corresponding to the inverse of the first eigenvalue asso-
ciated to a delocalized eigenvector [22], is a truly active
steady state expected (see Fig. 7). This scenario is consistent,
but at odds with numerical simulations [24] and exact
mathematical results [39,40], which find an active steady
state for any value of λ > 0 in the thermodynamic limit.
One possible way to reconcile these findings was

explored by Lee, Shim, and Noh [23]. If large hubs are
in mutual direct contact (i.e., they form an extensive
connected cluster), should activity spontaneously disappear
in one of them, neighboring hubswould be able to reinfect it;
these mutual reinfections would lead to a survival time
exponential in N, i.e., a truly active steady state. Unfor-
tunately, the study of degree-ordered-percolation reveals that
such an extensive cluster of large hubs always exists only for
γ < 3. For γ > 3, the DOP threshold is finite: The largest
hubs are separated and do not form an extensive cluster [23].
Our results go beyond those of Lee, Shim, and Noh and

clarify what is missing in previous approaches: The activity
triggered by hubs extends beyond nearest neighbors, up to a
scale that grows with λ, so that hubs can interact even if
they are not in direct contact. This long-range interaction
gives rise, above a critical value λcðNÞ, to an extensive
CMP percolating cluster of active nodes able to reinfect
each other at distance and, thus, giving a veritable steady
state with finite prevalence ρ. The threshold λcðNÞ is
intermediate between λQMF

c and λHMF
c and vanishes as a

function of N (at odds with λHMF
c ) but more slowly than

λQMF
c . Considering finite networks, while for λcðNÞ < λ <
λHMF
c a CMP percolating cluster exists and prevalence is
finite, for λQMF

c < λ < λc only small nonpercolating CMP
clusters are present. In this case, each of them decays
independently, and, thus, a Griffiths-like phase, character-
ized by ρðtÞ slowly decaying to zero, is expected (Fig. 7). A
numerical validation of this prediction, which is difficult as
both interval bounds vanish with the system size, remains a
challenge for future numerical studies.
The consideration of long-range effects is the crucial

ingredient in our analysis that makes a qualitative differ-
ence with previous approaches. While the QMF theory
neglects correlations among the dynamical state of neigh-
bors, other theories [41–43] take some correlations into
account, but, since they consider only neighbors in a short
range, they cannot capture the long-range percolative
nature of the SIS epidemic transition for γ > 3.
Our work puts in proper place the different theories

presented in recent years to explain the behavior of the SIS
model in heterogeneous networks, showing, in particular,
the limit in which exact mathematical results are expected
to be observed, putting thus an end to the long debate on
this subject. On the other hand, it opens new perspectives,

as it proposes the cumulative merging of distant clusters as
a very generic phenomenon which may originate nontrivial
types of percolation phenomena in networks.
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APPENDIX A: CONNECTION BETWEEN
CMP AND SIS

The SIS model, often called the contact process in the
community of applied probabilists, is defined as follows:
Individuals can be in one of two states, either susceptible or
infected. Susceptible individuals become infected by con-
tact with infected individuals, at a rate equal to the number
of infected contacts times a given spreading rate β. Infected
individuals, on the other hand, become spontaneously
healthy again at a rate μ. The ratio λ ¼ β=μ is the control
parameter for the model, which experiences a transition
between a healthy and an endemic (infected) steady state
when λ crosses an epidemic threshold λc. In power-law
distributed networks, for γ > 5=2 the epidemic transition is
triggered by nodes with a large number k of neighbors
(hubs). Each of these hubs together with its direct neigh-
bors (leaves) forms a star graph, which in isolation is able to
sustain the survival of the epidemic for a long time, τðkÞ ∼
expðλ2k=4Þ [24], provided λ is larger than λcðkÞ ¼ 1=

ffiffiffi
k

p
.

During this long time interval, even if the hub recovers
from the infection, it is promptly reinfected by one of its
neighbors and can in its turn reinfect other leaves when they
recover. After a typical time τ, a fluctuation takes the star
graph formed by a hub and its nearest neighbors to the
absorbing state.
Since the star graph is not isolated in the network, it can

propagate activity to other nodes. It is possible to estimate
[24] the average time it takes for an infected node to infect
for the first time a node at distance r in the limit of small λ:

TðrÞ ∼ er lnð1=λÞ: ðA1Þ

By equating τ and TðrÞ, it is possible to estimate the “range
of interaction” of a hub of degree k, i.e., the maximum
distance at which a star surrounding an active hub is able to
propagate the infection before spontaneously recovering:

rðkÞ ¼ λ2k
4 lnð1=λÞ ¼

k
ka

; ðA2Þ

where we define
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ka ¼ 4
1

λ2
ln

�
1

λ

�
: ðA3Þ

Consider now another hub, of degree k0 at a distance r0
from the first. If r0 < rðkÞ, the second hub is infected by
the first and it is able to stay infected (together with its
direct neighbors) for a time τðk0Þ. During this time interval,
it spreads the infection up to a distance rðk0Þ. If r0 > rðk0Þ,
this means that the second hub is not able to reinfect the
first, should it fall into the absorbing state. Conversely, if
r0 < rðk0Þ, even if the first hub recovers, it is reinfected by
the second. In this way, the two distant hubs form a coupled
system such that if one hub recovers, the other is able to
reinfect it before recovering in its turn. For the infection to
die out in the system of the two hubs, they must recover
almost simultaneously [29]. These concurrent recoveries
happen after a time of the order of τðkÞτðk0Þ∼
exp½λ2ðkþ k0Þ�; see Fig. 8.
Hence, the combined set of hubs are able to infect nodes

at an increased range of interaction rðkþ k0Þ. It is then clear
that SIS dynamics can be seen as an instance of the
cumulative merging process, with active nodes those with
k ≥ ka ¼ 4=λ2 lnð1=λÞ, initial masses equal to node degrees

mð0Þ
i ¼ ki, and range of interaction given by rðmÞ ¼ m=ka.

Notice that the factor of 4 in the expression for ka is the
consequence of the choice τðkÞ ∼ expðλ2k=4Þ. Alternative
treatments [27,44] give that star graphs are active for
k > ka ¼ 1=λ2 lnð1=λÞ. In the comparison of the CMP
approach to SIS with numerical simulations, we consider
both expressions.

APPENDIX B: AVERAGE DISTANCE BETWEEN
A NODE OF DEGREE k AND THE CLOSEST

NODE OF DEGREE AT LEAST k

We can estimate the average distance dðkÞ between a
node of degree k and the nearest node of degree larger than
or equal to k within a treelike approximation [2]. For
random uncorrelated networks, the probability that a link
points to a node of degree k0 is k0Pðk0Þ=hki. Arriving at this
node, there are k0 − 1 possible outgoing edges (excluding
the one used to arrive to node k0). The average number of
outgoing edges (the so-called branching factor) is, thus,

κ ¼
Z

∞

kmin

ðk0 − 1Þ k
0Pðk0Þ
hki dk0 ¼ hk2i

hki − 1; ðB1Þ

that is, a finite number for power-law networks with γ > 3.
From this branching ratio, we estimate the average number
of nodes at distance n as Nn ¼ kκn−1, assuming the tree
approximation.
A node of degree k has k neighbors. It is connected at

distance d ¼ 1 to a node of degree not less than k if at least
one of these neighbors has a degree larger than or equal to
k. The probability of this event is

P>ðkÞ ¼
Z

∞

k

k0Pðk0Þ
hki dk0 ¼

�
k

kmin

�
2−γ

: ðB2Þ

Therefore, the probability that the distance at the nearest
neighbors with a degree larger than or equal to k is equal to
d ¼ 1 is

Pðd ¼ 1Þ ¼ 1 − ½1 − P>ðkÞ�k ¼ 1 − ½P<ðkÞ�k; ðB3Þ

where P<ðkÞ ¼ 1 − P>ðkÞ is the probability that a nearest
neighbor of a node has a degree smaller than k.
The nearest neighbor with a degree not less than k is at

distance d ¼ 2 if there are no such neighbors at distance
d ¼ 1, and at least one of the neighbors at distance d ¼ 2,
in number kκ, has a degree not less than k, which happens
with probability

Pðd ¼ 2Þ ¼ ½P<ðkÞ�kf1 − ½P<ðkÞ�kκg: ðB4Þ

By induction, we can see that the nearest neighbor of a
degree not less that k is at distance d ¼ n corresponds to
not observing one at any distance smaller than n and having
at least one at a distance equal to n, which happens with
probability

FIG. 8. Average survival time τ of a SIS epidemic on two star
graphs of size k1 ¼ k2 ¼ k, connected by a line of r − 1
intermediate nodes, starting with only the hub of one of them
in the infected state. We compare with the result for single stars of
size k and 2k. As we can see, for sufficiently small values of r
(distance between the hubs), the survival time of the connected
stars of size k scales with λ2 as a single star of size 2k.
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Pðd ¼ nÞ ¼ ½P<ðkÞ�k½P<ðkÞ�kκ½P<ðkÞ�kκ2…½P<ðkÞ�kκn−2f1 − ½P<ðkÞ�kκn−1g
¼ ½P<ðkÞ�

P
n−2
r¼0

kκr − ½P<ðkÞ�
P

n−1
r¼0

kκr

¼ ½P<ðkÞ�kðκn−1−1Þ=ðκ−1Þ − ½P<ðkÞ�kðκn−1Þ=ðκ−1Þ

¼ ½P<ðkÞ�kκn−1=ðκ−1Þ − ½P<ðkÞ�kκn=ðκ−1Þ
½P<ðkÞ�k=ðκ−1Þ

≡ Cκn−1 − Cκn

C
; ðB5Þ

where for simplicity we set C ¼ ½P<ðkÞ�k=ðκ−1Þ.
The average distance dðkÞ can be evaluated as

dðkÞ ¼
X∞
n¼1

nPðd ¼ nÞ ¼
X∞
n¼1

n
Cκn−1 − Cκn

C

¼
X∞
n¼0

Cκn

C
: ðB6Þ

The summation in Eq. (B6) cannot be performed
directly. We can approximate its behavior for large k by
transforming it into an integral:

dðkÞ ≃ 1

C

Z
∞

0

Cκxdx ¼ 1

C lnðκÞ
Z

∞

1

Cz

z
dz

¼ Γ½0;− lnðCÞ�
C lnðκÞ ; ðB7Þ

where Γða; zÞ is the incomplete Gamma function [36] and
we apply the change of variables κx ¼ z. For large k, C ¼

½1 − ðk=kminÞ2−γ�k=ðκ−1Þ tends to 1, so we can expand the
incomplete Gamma function in Eq. (B8) for small argu-
ments, Γð0; zÞ ∼ − lnðzÞ [36], to obtain the asymptotic
behavior

dðkÞ ∼ − ln½− lnðCÞ�
C lnðκÞ ∼

ln ½ð k
kmin

Þγ−3 κ−1
kmin

�
lnðκÞ ; ðB8Þ

where we expand C for large k. We therefore observe the
asymptotic behavior for large k in infinite networks as

dðkÞ ∼ 1þ γ − 3

lnðκÞ ln
�

k
kmin

�
; ðB9Þ

where the term 1 accounts for the minimum possible
distance between nodes.
This calculation, performed in the tree approximation,

captures nevertheless the behavior in real uncorrelated
power-law networks generated with the UCM [35]. In
Fig. 9, we present the result of numerical simulations,
together with the numerical evaluation of the summation in
Eq. (B6), performed using a discrete power-law degree
distribution PðkÞ ¼ k−γ=½ζðγ; kminÞ − ζðγ; kmaxÞ�, where
ζðs; aÞ is the Hurwitz zeta function [36]. The dashed line
represents the result for an infinite network (kmax ¼ ∞),
while the dot-dashed lines mark the value for networks with
maximum degree kmax ¼ N1=ðγ−1Þ [37]. The dotted line
shows the asymptotic behavior obtained in Eq. (B9).

APPENDIX C: CUMULATIVE MERGING
PERCOLATION ON STRETCHED

EXPONENTIAL NETWORKS

Let us consider the example of a network with cumu-
lative degree distribution [27]

PcðkÞ ¼ e−k
βþkβmin ; ðC1Þ

corresponding to a stretched exponential degree distribution

PðkÞ ¼ −
dPkðkÞ
dk

¼ βkβ−1ek
β
min−k

β
: ðC2Þ

Applying the extreme value theory, for a finite network of
size N we have

FIG. 9. Average distance between a node of degree k and the
closest node of a degree at least k in power-law networks with
degree exponent γ ¼ 3.2. Symbols represent numerical simula-
tions over networks of different sizes, averaged over 104

independent network samples. The dashed line represents the
numerical evaluation of the summation Eq. (B6) in the infinite
network limit. Dot-dashed lines represent results of the summa-
tion for finite networks of the corresponding size N. The dotted
line corresponds to the asymptotic expression Eq. (B9).
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kmax ∼ ½lnðNÞ�1=β: ðC3Þ

The other relevant quantities for CMP are

Na

N
¼

Z
∞

ka

dkPðkÞ ¼ ek
β
min−k

β
a ðC4Þ

and

Pa ¼
1

kc
¼

Z
∞

ka

dk
kPðkÞ
hki ¼

Γð1þ 1
β ; k

β
aÞ

Γð1þ 1
β ; k

β
minÞ

ðC5Þ

≃
e−k

β
aka

Γð1þ 1
β ; k

β
minÞ

; ðC6Þ

where we develop the numerator in the limit of large ka.
The average number of active neighbors for each active
node is

N
Na

Z
∞

ka

dkkPðkÞPa ¼
ek

β
aΓð1þ 1

β ; k
β
aÞ2

Γð1þ 1
β ; k

β
minÞ

∼
e−k

β
ak2a

Γð1þ 1
β ; k

β
minÞ

; ðC7Þ

where we expand the last expression in the limit of large ka.
Therefore, the average number of active neighbors of an
active node vanishes exponentially. This result implies that
the size of the DOPGC decays exponentially fast and the
extended DOPmechanism is not at work: Small clusters are
at a distance much larger than 2 from the DOPGC.
The only mechanism leading to the formation of the

CMPGC is the second one, based on the interaction at a
distance among isolated nodes. This interaction involves a
scale kx ¼ ωka, such that rðkxÞ ¼ dðkxÞ, to ensure that all
nodes with k > kx see each other and can merge in the same
cluster. To compute dðkÞ, from Appendix B we must
evaluate, in the limit of large k,

dðkÞ ∼ − ln ½− lnðCÞ�
C lnðκÞ ; ðC8Þ

with C ¼ ½P<ðkÞ�k=ðκ−1Þ and κ the branching factor. In this
case,

P<ðkÞ ¼ 1 − PcðkÞ ¼ 1 − ek
β
min−k

β
: ðC9Þ

For large k,

− lnðCÞ ≃ k
κ − 1

ek
β
min−k

β
; ðC10Þ

and

− ln ½− lnðCÞ� ≃ kβ − kβmin − ln

�
k

κ − 1

�
: ðC11Þ

Therefore, for large k,

dðkÞ ≃ kβ

lnðκÞ ; ðC12Þ

where we disregard constant and logarithmic terms. For
rðkÞ ¼ k=ka, from dðkxÞ ¼ rðkxÞ, we obtain

ω ¼ ωβkβa
lnðκÞ ; ðC13Þ

leading to

ω ¼
�

kβa
lnðκÞ

�1=ð1−βÞ
: ðC14Þ

So, we have

kx ¼ kaω ¼
�

ka
lnðκÞ

�
1=ð1−βÞ

: ðC15Þ

As a consequence,

S2 ¼
Z

∞

kx

dkPðkÞ ¼ ek
β
min−k

β
x ðC16Þ

≈ek
β
min−½ka= lnðκÞ�β=ð1−βÞ : ðC17Þ

APPENDIX D: APPLICATION TO SIS ON
STRETCHED EXPONENTIAL NETWORKS

Since the asymptotic behavior of the order parameter for
the CMP transition is given by S2, the effective finite-size
threshold is given by the condition kx ≃ kmax, that is,

ka ≃ lnðκÞk1−βmax: ðD1Þ

Using ka ¼ að1=λÞ2 lnð1=λÞ, this equation implies

að1=λcÞ2 lnð1=λcÞ ≃ lnðκÞk1−βmax: ðD2Þ

Disregarding logarithmic factors, this expression can be
inverted, leading, in the limit of large kmax, to

λc ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1 − βÞ
2 lnðκÞ

s
½kβ−1max lnðkmaxÞ�1=2: ðD3Þ

For a stretched exponential degree distribution, kmax ≃
½lnðNÞ�1=β, so we finally have
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λc ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1 − βÞ
2β lnðκÞ

s
½lnðNÞ�ðβ−1Þ=ð2βÞfln½lnðNÞ�g1=2: ðD4Þ

In this way, we recover the exact logarithmic dependence of
the effective threshold on N for the stretched exponential
case, recently found in Ref. [27].
In the limit of a pure exponential distribution, β ¼ 1, the

previous arguments cannot be applied. However, recent
results in Ref. [45] show that the threshold in this case is
finite.
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