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Abstract. Within a discrete-element model of a porous permeable elastic-plastic rock, filled 
with a fluid, we have studied the shear strength of a fractured interface zone (a shear band) 
between blocks of a geological medium subject to compression and shear. Under these 
conditions, a fluid pore pressure is controlled by interplay of dilation of the elastic-plastic 
shear band and fluid transport between the blocks and the interface. We have found that the 
shear strength is a unique function of a combination of parameters, which includes viscosity 
of a fluid, permeability of the medium, shear rate and a characteristic size of the system. 
Based on the simulation results we have constructed the generalized binomial dependence of 
the shear strength of samples on the obtained combination of parameters. 
 
1 INTRODUCTION 

Inelastic deformation and stress relaxation in rocks are conditioned with nucleation and 
integration of fractures, accompanied with a dilation of a geological medium [1]. Blocks of a 
geological medium are separated with high-fragmented shear bands, which strength is 
significantly lower than strength of blocks [2]. In the result, deformation of rocks localizes 
predominantly within shear bands. Cracks, pores and voids inside a shear band form an 
interconnected system, which can be filled with a pore fluid in natural conditions. A yield 
stress and shear strength of a shear band depend on the effective stress eff

poreP       , 
where   is an applied external pressure, poreP  – pore fluid pressure, 0 1    – a material 
parameter,   – the Kronecker symbol ( , , ,x y z   ) [3].  

Dilation of a shear band under a plastic shearing leads to increasing of the volume of pores 
and cracks; in the results a fluid pore pressure poreP  decreases. A decrease of fluid pore 
pressure on walls of pores and cracks inhibits the stress relaxation processes, conditioned with 
a generation of new fractures and an integration of existing ones. This leads to an increasing 
of a macroscopic strength of a geological material. The mentioned effect has been called as 
dilatant hardening.  



1193

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/326218357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Andrey V. Dimaki, Evgeny V. Shilko and Sergey G. Psakhie. 

 2 

Evidently, in permeable media a value of pore fluid pressure is controlled both by a pore 
volume change and by a filtration motion of a fluid inside pores and cracks of a material. At 
that a local filtration rate depends on a permeability, a viscosity of a fluid and a gradient of 
pore pressure. Relation between a strain rate and a filtration rate determines a regime of 
deformation of a fluid-saturated material (drained or undrained conditions) [4]. Estimates of 
strength of a porous fluid-saturated material have been obtained by Biot for limiting cases of 
drained and undrained conditions [5][6]. The dependencies of a strength of a fluid-saturated 
materials on a dilation rate, filtration rate and strain rate were studied in detail in further 
works [7]-[10]. Particularly, it has been shown that the relation between rates of dilation 
(more precisely, pore volume increase under inelastic deformation) and filtration determines a 
value of fluid pore pressure in microcracks’ tips, thereby controlling a development of 
faulting [11]-[12].  

Despite the successes achieved in studying of mechanical properties of shear bands 
(including their shear strength), some keystone questions still remain unresolved. For 
instance, there was no a comprehensive study of strength of shear bands under combined 
compression and shear in the transition region between undrained and drained conditions 
(under partially drained conditions). It is clear that features of a shear strength in this region 
are determined not only by a shear rate and a permeability of a shear band itself, but to a large 
extent by a compression of a shear band and surrounding blocks of a material, fluid content, 
saturation and permeability of these blocks, as well as boundary conditions between a 
fragment of material under consideration and a host massif.  

A direct study of deformation and strength of shear bands, appearing in samples under 
triaxial loading, represents a complicated problem. Therefore, a numerical simulation of a 
shear band under compression and shear seems to be a prospective approach to obtaining a 
detailed information about laws which determine strength of a shear band under complex 
loading conditions [13][14]. The goal of this work is to find a functional form of a 
dependence of shear band strength on the ratio of shear strain rate to filtration rate under 
conditions that correspond to rock massifs. The study has been carried out by means of a 
numerical simulation of a fluid-saturated elastic-plastic permeable medium with the Discrete 
Element Method (DEM). 

2 DESCRIPTION OF A MODEL 
During simulation of an elastic-plastic permeable medium, we use a decomposition of the 

considered problem into two ones: 1) a description of a mechanical behavior of a solid 
skeleton and 2) a simulation of a mass transfer of a fluid within a filtration volume (which 
represents a system of interconnected channels, pores, cracks etc.). Following the ideas of 
Biot [5][6], we assume that stress-strain state of a discrete element is directly connected with 
a change of volume of pores and pore pressure of a fluid in the "micropores" inside the 
element.  

For simulation of a mechanical response of a material we have implemented the model of 
rock plasticity with non-associated flow law and von Mises yield criterion (the so-called 
Nikolaevsky model [15]). This model adequately describes a mechanical response of a wide 
class of brittle materials (geological materials, ceramics etc.) at different scales with taking 
into account of influence of lower-scale fractured structure. The Nikolaevsky model 
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postulates a linear relationship between volume and shear deformation rates of plastic 
deformation with coefficient  named the dilation coefficient. We have adopted the 
Nikolaevsky model to the DEM with use of so called Wilkins algorithm [16]. In the 
framework of this algorithm a solution of elastic-plastic problem is reduced to a solution of an 
elastic problem in increments and following correction of potential forces between particles 
(discrete elements) in accordance with the requirements of Nikolaevsky model, applied to 
values of local pressure and stress deviator [16].  

In the framework of the proposed approach a solution of an elastic problem represents a 
calculation of normal and tangential forces acting from discrete element i as a result of 
interaction with a discrete element j. The corresponding equations are formulated based on a 
generalized Hooke’s law in hypoelastic form [17]: 

     

     
tang

22 1

2

centr meani
ij i ii j i j i j

i

ij ii j i j i j

GF S G
K

F S G

  
         

 
    

    (1) 

where symbol  indicates an increment of corresponding parameter during a time step t of 
numerical scheme; i(j) and  i(j) – are specific values of pair-wise central  

centr
i jF  and tangential 

 
tan g

i jF  components of reaction force of i-th discrete element to j-th neighbour; Sij – a contact 

square; Gi and Ki – shear and bulk moduli, correspondingly; ( )i j  and ( )i j  – increments of 

normal and shear strain of element i in pair i-j; mean
i  – average volume stress in element i 

[17],[18].  
A stress state of a porous solid skeleton, containing a system of interconnected pores, 

channels and cracks depends both on a porosity and geometry of pores and cracks and their 
spatial distribution [19]. In the absence of a pronounced orientation of cracks in a solid 
skeleton, the fluid pressure in a pore volume contributes only into a hydrostatic pressure in a 
solid skeleton (namely, into a hydrostatic tension). In this approximation the influence of a 
fluid in “micropores” can be taken into consideration by means of including of fluid pore 
pressure into a relation for a central force: 

     
22 1

fluid
centr meani i

ij i ii j i j i j
i i

P GF S G
K K

   
           

   
   (2) 

where fluid
iP  – contribution of a fluid pore pressure (in “micropores”) into a mean stress in a 

volume of discrete element i. Note that the equation (2) is equal to the Hooke’s law in a model 
of linear poroelasticity. The value of fluid

iP  is linearly related with average pore pressure pore
iP  

of a fluid in micropores of discrete element i: 
fluid pore

i i iP a P       (3) 

where ,1 /i i s ia K K  . Here ,s iK  is a bulk modulus of non-porous grains of a solid skeleton 
of a discrete element i. After solution of the elastic problem for an element i at current time 
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step, an achievement of the Mises–Schleicher yield criterion is checked, with explicit taking 
into account of a fluid pore pressure: 

  3mean pore eq
i i i i i i ib P Y          (4) 

where Yi is a shear yield stress of a material of element i, i is a coefficient of internal friction, 
eq
i  – von Mises stress, averaged over a volume of a discrete element i, bi – dimensionless 

coefficient. A value of the coefficient bi is determined by geometry of pores, channels and 
cracks in a solid skeleton. When a configuration of a pore volume allows formation of a 
uniform distribution of a hydrostatic pressure in a local volume of a solid skeleton, the value 
of bi is suggested to be equal to unity [1],[2]. At that, new cracks are assumed to appear from 
existing micropores or cracks. In the opposite case, when microscopic structure of a solid 
skeleton provides a more complicated interconnection between a pore pressure and fracture 
generation, the value of bi is usually less than unity and depends on a porosity and pore 
pressure. The lower boundary of bi usually equals to initial porosity 0  of non-deformed 
material [1]. 

When the yield condition (4) is satisfied, the reduction of components of stress tensor in a 
volume of discrete element i to a yield surface is performed. In accordance with [17], the 
mentioned reduction can be performed by means of the following correction of specific 
normal and tangential forces of interaction between i-th element and j-th neighbor: 

    
   

( )mean mean
i i i ii j i j

ii j i j

M N

M

       

  

    (5) 

where     ,i j i j    – are reduced values of specific reaction forces; 

      int1 3 3 3i i i i i i i i iM G Y K G         – coefficient of reduction of stress deviator; 

   i i i i i i i i iN K Y K G       – correction to a local mean stress, calculated after solving 
an elastic problem; i – dilation coefficient of material of element i. 

A volume of a solid skeleton and, correspondingly, a pore volume change under the 
influence of internal and external stresses. At that, a specific volume of pores ϕ (or so called 
“microscopic” porosity) can be defined as follows: 

 elast plast
pore pore elemV V V        (6) 

where elast
poreV  is a part of pore volume, which develops due to elastic deformations of material; 

and plast
poreV  is a part of pore volume, that appears as a result of “quasi-plastic” deformation of a 

material, namely as a result of opening of microscopic pores, cracks and other defects because 
of dilation of a material. Note that in the framework of the developed model we don’t take 
into account a compaction of pores, which is valid for low-porous materials. Elastic change of 
pore volume is determined by the relation of bulk moduli of porous solid skeleton K  and of 
non-porous monolithic grains that constitute the solid skeleton sK :  
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0
1 1 1 13 3elast init pore

pore elem mean
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V V P
K K K K

     
          

    
   (7) 

In turn, “inelastic” change of pore volume due to dilation of a material is given by the 
following relation: 

plast init
pore elem plastV V        (8) 

where elast
i  and plast

i  represent elastic and inelastic parts of volume deformation of a 
discrete element, that are formally determined as follows: 

 
 
3elast mean fluid

i i i i

plast xx yy zz elast
i i i i i

P K   

       

    (9) 

Here i
  are diagonal components of strain tensor in a volume of a discrete element i 

[17][18]. We use the modified fracture criterion of Drucker-Prager that takes into account a 
contribution of a local pore pressure of a fluid in the following way: 

    0.5 1 1.5 1 mean pore
DP eq cbP             (10) 

where c t     is the relation between compressive (c) and tensile (t) strengths of a 
material, the coefficient b is the same as in equation (4).  

In the framework of the developed model of a fluid filtration we use the following 
assumptions: 1) a fluid may occupy a pore volume completely or partially; 2) a fluid is 
compressible; 3) an adsorption of a fluid on internal walls of pores, capillary effects and the 
effect of adsorption reduction of strength (Rehbinder effect) are not taken into account; and 
4) a statistical distribution of sizes of micropores is not taken into account. In the framework 
of the latter assumption the pore volume is completely described by the following two 
parameters: a value of open “microscopic” porosity ϕ and a characteristic diameter of 
filtration channel dch, which controls the rate of fluid filtration through a solid porous 
skeleton. An adequate choice of the value of dch allows correct description of a mass transfer 
of a fluid, despite simplicity of the assumptions given above. 

A state of a compressible liquid in pores can be described by the following equation [20]: 

  0 0( ) 1 / flP P P K          (11) 

where  and P are the current values of fluid density and pressure, 0  and 0P  are the values 
of the density and pressure under atmospheric conditions, Kfl – bulk modulus of a fluid. When 
the fluid occupies a pore volume only partially, we assume the fluid pressure equals to the 
atmospheric pressure 0P . Neglecting the influence of gravity, the equation of filtration transfer 
of a fluid can be written in the following form [20]: 

fl
kK

t
 

      
      (12) 
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where η – fluid viscosity, k – coefficient of permeability of a solid skeleton that can be 
estimated as follows [20]:  

2
chk d  .      (13) 

Note that, in the framework of the used assumptions, there is no mass transfer between 
elements with fluid pressure ≤0.  

3 SIMULATION OF A SHEAR LOADING IN FLUID-SATURATED MEDIUM 
We have considered a shear loading of an infinitely long sample with periodic boundary 

conditions in lateral direction (see fig. 1a). The sample consists of two linearly elastic blocks 
separated by an elastic-plastic shear band (interface). Pore volumes of permeable elastic 
blocks and elastic-plastic interface have been saturated with water under initial atmospheric 
pressure. The diagrams of uni-axial loading of materials of the blocks and the interface are 
given in fig. 1b. The considered sample was mounted between thin impermeable layers of 
material, to which an external loading was applied.  

 
Figure 1: Scheme of loading (a); Diagrams of uni-axial loading of materials of the blocks and the interface (b). 

The values of physical-mechanical parameters of the material are given in the table 1. The 
values of compressible and tensile strengths are given for the elastic-plastic interface, the 
elastic blocks are considered as indestructible. The total height of the sample was 0.3L   m, 
the height of the interface was 0 0.03L   m. 

The loading was performed in two stages. At the first stage an initial pre-loading with 
compression normal force NF  was performed. After that, we fixed the loading until fading of 
elastic waves in the sample. At the second stage a shear loading in lateral direction with the 
constant velocity xV  was applied until the sample fractures. At that, top and bottom layers 
were fixed in vertical direction. 

We have found that under relatively small values of the normal pre-loading the fracture of 
the elastic-plastic interface occurs before a plastic deformation of the interface begins. At 
certain value of the normal pre-loading, the fracture of the interface goes after a plastic 
deformation begins and takes place at relatively high values of plastic deformations (see 

1198



Andrey V. Dimaki, Evgeny V. Shilko and Sergey G. Psakhie. 

 7 

fig. 2). The latter demonstrates a “brittle-to-ductile” transition which occurs in real materials, 
in particular, in geological media. 

Table 1: Physical-mechanical parameters of the solid skeleton 

Parameter name Value Parameter name  Value 
Open porosity of a skeleton   0.1 Compressive strength c   70 MPa 

Bulk modulus of a porous skeleton K   37.5 MPa Tensile strength t   23.3 MPa 

Bulk modulus of monolithic grains sK  107.5 MPa Dilation coefficient    0.36 

Density of a porous skeleton 2000 kg/m3 Internal friction coefficient    0.57 
Poisson ratio of a porous skeleton 0.3 Parameter b   0.1 
 
The results, presented below, have been obtained in the “ductile” regime of fracture, i.e. 

when fracture occurs significantly after reaching a yield point. At that, the dependence of the 
shear strength on the normal confining pressure can be approximated with the following 
equation: 

 0.45

,0 /c c N y           (14) 

where ,0c  – is a scale factor, having the dimension of stress, and y  – is the yield strength. 

 
Figure 2: Shear strength of a non-permeable sample vs. different normal loads 

The results of a parametric analysis of the problem have allowed us to obtain the governing 
combination of the parameters, which uniquely determines a value of the shear strength of the 
interface for a given value of the confining pressure: 
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2

4xy xy
LA

k


    . (15) 

The combination (15) includes viscosity of a fluid, porosity and permeability of the 
medium, shear rate and a height of the sample.  

The dependency of the shear strength on the permeability of the material demonstrates an 
exponential decrease and further growth with an increase of the value of the permeability (see 
fig. 3). The dependencies of shear strength on permeability, obtained for different values of 
shear rate, viscosity, or height of the interface, can be reduced to a single dependence of shear 
strength on a unique controlling parameter (15). Note that the increase of the permeability 
corresponds to the decrease of the value of xyA  and vice versa. 

The mentioned nonmonotonicity of the dependencies ( )c xyA  has the following 
explanation. At relatively small values of permeability a liquid pressure in elastic-plastic 
interface rapidly decreases down to zero due to increase of the pore volume under dilation of 
elastic-plastic material. An outflow of the liquid from the regions, surrounding the interface, 
leads to slight decrease of the degree of constraint of the interface. In the result, the strength 
of the interface exponentially decreases with the increase of the permeability due to reduction 
of the mean stress in the interface. 

 
Figure 3: Normalized shear strength of a permeable sample for different shear rates and normal loads 

At relatively high values of permeability a fluid pressure in the interface remains non-zero 
due to a rapid inflow of a fluid from the pore volume of the elastic blocks. The non-zero fluid 
pressure results in the decrease of the yield criterion in the accordance with the Mises-
Schleicher criterion (4), at that, the dilation rate increases. This results in the increase of the 
degree of constraint and in the corresponding increase of the shear strength of the interface. 
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A competition of the processes, mentioned above, results in the occurrence of a minimal 
value of shear strength, where a rate of filtration is still not enough to provide a non-zero fluid 
pressure in the whole cross-section of elastic-plastic interface and, at the same time, it is 
enough to significantly decrease a pore pressure in the elastic blocks.  

4 DISCUSSION AND CONCLUSIONS 
Basing on the results shown above, we can conclude that shear strength of the interface 

depends on an interplay of the following processes: 1) increase of a mean stress in a medium 
under shear due to dilation of elastic-plastic shear band after reaching a yield point; 2) mass 
transfer of a fluid in a pore volume of the interface and the elastic blocks and 3) redistribution 
of the fluid in the sample due to the pressure gradient.  

The observed effects together with the results of numerical simulations allowed us to 
suggest a generalized dependence of shear strength of an elastic-plastic interface on 
permeability and shear rate for a given normal load N : 

  
 

2
0 1 1

2

exp
1

с xy p

xy

c A
c A




     


  (16) 

where the value 0 1( )   corresponds to the strength of impermeable water-filled sample 
(under “undrained” conditions) and the value 0 2( )   represents the strength of a “dry” 
sample. Parameters 1c  and 2c  characterize the rate of change of exponential and sigmoidal 
branches of the dependence (16) with a change of permeability. Note that the values of 0 , 

1  and 2  are not constant but depend on a thickness of elastic-plastic interface, physical-
mechanical parameters of a material and boundary conditions.  

The first term of the dependence (16) describes the exponential decrease of strength of the 
interface due to the local decrease of the mean stress in the elastic blocks under outflow of a 
fluid into an excess pore volume in the interface. The second term characterizes the influence 
of filtration on the decrease of the yield criterion of the interface due to the growth of fluid 
pressure. This, in turn, leads to the increase of the degree of constraint of the interface.  

The parameters of the obtained dependence (16) represent the combinations of the values 
of loading, width of the interface, physical-mechanical properties of the sample, including 
permeability, and physical mechanical properties of a fluid. A more detailed analysis of this 
dependence, including obtaining estimations for its unknown parameters is a subject of further 
research. 
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