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Abstract. The uniaxial loading of an isotropic film-substrate system with a sinusoidal
surface profile and planar interface is considered under plain strain conditions. We for-
mulate the corresponding boundary value problem involving two-dimensional constitutive
equations for bulk materials and one-dimensional equations for membrane-type surface
and interface with the extra elastic constants as well as the residual surface stresses. The
mixed boundary conditions consist of the generalized Young–Laplace equations and rela-
tions describing the continuous of displacements across the surface and interphase regions.
Using the linear perturbation technique combined with the Goursat–Kolosov complex po-
tentials and the superposition principle, the original boundary value problem is reduced
to the analytical solution of the integral equations system.

1 INTRODUCTION

Thin films materials with a layer thickness from hundreds to a few nanometers exhibit
unique physical and mechanical properties that can’t be observed in bulk materials. Im-
proved material properties are referred to significant modifications in the structure during
an atomic growth process and so-called size effect related to surface stresses [1, 2, 3, 4, 5, 6].
At the stage of film deposition and subsequent thermal processing, the film surface evolves
into an undulating profile [7]. Misfit stresses enhanced by a curved surface generate se-
vere stress concentrations which may lead to a nucleation of dislocations and microcracks.
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Analyzing a regular surface patterns in mono- and multilayer film coatings, we have found
that even a slight undulation in surface morphology can result in a substantial increase
of hoop stresses near the bottom of cavities [8, 9]. It has been shown that a stress con-
centration factor depends on the curvature radius and depth of cavities as well as the
thickness and stiffness of film layers. However, the effect of surface elasticity on the stress
state of thin film was neglected in comparison with the effect of macroscopic bulk elastic
behavior. Thus, the aim of the presenting research is to extend the continuum model of
coherently strained thin film deposited on a thick substrate [8] to the case of nanoscale
film thickness incorporating the coupled effect of surface and interface stresses.

2 PROBLEM FORMULATION

Considering an isotropic ultra-thin film coating with a roughened surface profile and
a flat interphase region under plain strain conditions, we arrive at a two-dimensional
boundary value problem formulated in the terms of the complex variable z = x1 + ix2

(i2 = −1 and x1, x2 ∈ R1 are the global Cartesian coordinates) for a strip Ω1 of thickness
h with an undulated external boundary Γ1, bonded to a half-plain Ω2 along a rectilinear
interface Γ2:

Γ1 = {z : z ≡ z1 = x1 + i [h+ εa cos(kax1)]} , Γ2 = {z : z ≡ z2 = x2} , ka =
2π

a
, (1)

Ω1 = {z : 0 < x2 < εa cos(kax1)} , Ω2 = {z : x2 < 0)} . (2)

As follows from the definition of Γ1, the maximum deviation of the surface from the flat
shape x2 = h is equal to aε where a is the wavelength of undulation and ε is a small
parameter, i.e. 0 < ε � 1.

According to the model of surface/interface elasticity proposed by Gurtin and Mur-
doch [10], the surface and interphase domains are assumed to be a negligibly thin layers
adhering to the bulk phases without slipping. Here, we use the simplified constitutive
equations taking into account only tangential components of the surface and the interface
displacements:

σs
tt(zj) = γ0

j + (λs
j + 2µs

j)ε
s
tt(zj), zj ∈ Γj, j = {1, 2}, (3)

where εstt and σs
tt are the nonvanishing components of the surface strain and the Piola–

Kirchhoff surface stress tensors, respectively; λs
j and µs

j are the surface Lamé constants,
and γ0

j is the residual surface stress for surface phase Γj.
Hooke’s law for the bulk materials in the case of plane strain can be written as:

σnn(z) = (λj + 2µj)εnn(z) + λjεtt(z),

(4)

σtt(z) = (λj + 2µj)εtt(z) + λjεnn(z), σnt(z) = 2µjεnt(z), z ∈ Ωj, j = {1, 2},
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where σnn, σtt, σnt and εnn, εtt, εnt are the components of bulk stress and strain tensors,
respectively, defined in the local Cartesian coordinate system n, t; λj and µj are the Lamé
constants for the bulk phase Ωj.

The conditions of mechanical equilibrium on the curved surface Γ1 and planar interface
Γ2 are described in terms of generalized Young–Laplace equation [1, 11]:

σ(z1) = T sσs(x1), z1 ∈ Γ1,

(5)

∆σ(z2) = σ+(z2)− σ−(z2) = i
dτs(x1)

dx1

, z2 ∈ Γ2.

Here and below, we use the following notations σs(x1) ≡ σs
tt(z1), τs(x1) ≡ σs

tt(z2),

T s(·) = κ(x1)(·)− i
1

h(x1)

d(·)
dx1

, σ = σnn+ iσnt, σ
±(z2) = lim

z→z2±i0
σ(z), κ and h are the local

principal curvature and the metric coefficient, accordingly.
Since we assumed that the surface phases and the bulk materials are coherent, the

inseparability conditions can be defined as it follows:

εstt(z1) = εtt(z1), ∆u(z2) = u+(z2)− u−(z2) = 0, z1 ∈ Γ1, z2 ∈ Γ2, (6)

where u±(z2) = lim
z→z2±i0

u(z), u = u1 + iu2; u1 and u2 are the displacements along the

corresponding coordinate axes x1 and x2.
At infinity, the stresses σjk (j, k = {1, 2}) in coordinates x1, x2 and the rotation angle

ω are specified as:

lim
x2→−∞

(σ22 − iσ12) = lim
x2→−∞

ω = 0, lim
x2→−∞

σ11 = T2. (7)

A common reason for the appearance of longitudinal stress T2 is a mismatch between the
crystal lattice parameters of a film layer and a substrate.

3 BOUNDARY EQUATIONS

Following the superposition principle [7, 9, 8, 12], the solution of the boundary value
problem (1)–(7), specifically the bulk stress vector σ(z) = σnn(z) + iσnt(z) and the dis-
placement vector u(z) = u1(z) + iu2(z), is presented as a sum of two auxiliary prob-
lems. In the first problem, we suppose that the unknown self-balanced load p and sur-
face stress ϑ are applied to the curvilinear boundary Γ1 of the homogeneous half-plane
D1

1 = {z : x2 < h+ εa cos(kx1)} with the elastic properties of the film. So, the boundary
condition in the terms of the stress vector σ1 related to this problem can be written as:

σ1(z1) = p(z1) + T sϑ(z1),

+∞∫

−∞

p(ζ)dζ = 0, z1 ∈ Γ1. (8)
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The stresses σ1
jk (j, k = {1, 2}) and the rotation angle ω1 at infinity are equal to zero:

lim
x2→−∞

(σ22 − iσ12) = lim
x2→−∞

σ11 = lim
x2→−∞

ω = 0. (9)

The second problem describes a coupled deformation of two joint half-planes D2
1 = {z :

x2 > 0} and D2
2 = {z : x2 < 0} with the elastic properties of the film and the substrate,

accordingly, caused by the unknown jumps of stresses ∆σ2 and displacements ∆u2 along
the rectilinear interface and the longitudinal stresses Tj acting in D2

j (j = {1, 2}):
∆σ2(z2) = σ2+(z2)− σ2−(z2), ∆u2(z2) = u2+(z2)− u2−(z2), z2 ∈ Γ1, (10)

lim
x2→±∞

(
σ2
22 − iσ2

12

)
= lim

x2→±∞
ω2 = 0, lim

x2→+∞
σ2
11 = T1, lim

x2→−∞
σ2
11 = T2, (11)

where u2±(z2) = lim
z→z2±i0

u2(z), σ2±(z2) = lim
z→z2±i0

σ2(z), T1 =
µ1(κ2 + 1)

µ2(κ1 + 1)
T2.

The superposition principle can be expressed as:

G(z, ηj) = G1
1(z, η1)δj1 +G2

j(z, ηj), z ∈ Ωj. (12)

In Eq. (12), the functions G(z, ηj), G
1
1(z, η1), G

2
j(z, ηj) are equal, respectively, to σ(z),

σ1(z), σ2(z) when ηj = 1 and −2µjv(z), −2µ1v
1(z), −2µjv

2(z) when ηj = −κj; κj =
3−4νj where νj is Poisson’s ratio of the phase Ωj; v(z) = du/dz, vj(z) = duj/dz where the
derivative is taken in the direction of the axis t; δj1 is the Kronecker delta and j = {1, 2}.

Taking into account Eq. (12), boundary conditions (5)–(6) and constitutive equations
(3)–(4) lead to the system of the boundary equations for the unknown functions p, ϑ, σs

and τs:

σ1(z1) = p(z1) + T sϑ(z1), (13)

∆σ2(z2) = iτ ′s(z2)− σ1(z2), ∆u2(z2) = −u1(z2), (14)

σ1(z1) + σ2(z1) = T sσs(z1), (15)

ϑ(z1) = γ1
0 + (λs

1 + 2µs
1) ε

1
tt(z1), (16)

σs(z1) = γ1
0 + (λs

1 + 2µs
1)
[
ε1tt(z1) + ε2tt(z1)

]
, (17)

τs(z2) = γ2
0 + (λs

2 + 2µs
2) ε

2
tt(z2). (18)

Thus, the solution of the general boundary value problem (1)–(7) is reduced to the
solution of the system (13)–(18). To solve it, the functions σk and uk (k = {1, 2}) are
presented in the terms of the Goursat-Kolosov complex potentials and the Muskhelishvili
representation [13]. Unfortunately, it’s impossible to find the exact solution of the first
problem due to the curvature of the external boundary Γ1. However, we can use the
boundary perturbation method as in [1, 5, 9, 8, 12] and obtain the explicit expressions
for the first-order approximation.
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4 A FIRST-ORDER BOUNDARY PERTURBATION METHOD

The stress σk and the displacement uk vectors are related to the Goursat-Kolosov
complex potentials Φk

j and Υk
j by the following equality:

Gk
j (z, ηj) = ηjΦ

k
j (wj) + Φk

j (wj)−
(
Υk

j (wj) + Φk
j (wj)− (wj − wj) Φk′

j (wj)
)
e−2iα, (19)

where w1 = z − ih and w2 = z, α is the angle between t-axis of the local coordinates
n, t and x1-axis, the prime denotes differentiation with respect to the argument, the bar
over a quantity denotes complex conjugation, Φ1

1 and Υ1
1 are the functions holomorphic,

respectively, in D1
1 and D̃1

1 = {z : x2 > h − εa cos(kax1)}; the functions Φ2
j and Υ2

j are
holomorphic in D2

j and D2
k (j, k = {1, 2}, j �= k). Assuming α = 0 and π/2 in Eq. (19)

and taking the conditions at infinity (9) and (11) into account, one can write:

lim
x2→−∞

Φ1
1(z) = lim

x2→−∞
Υ1

1(z) = 0, lim
|x2|→∞

Φj
2(z) = lim

|x2|→∞
Υj

2(z) = Tj/4. (20)

In accordance with the first-order boundary perturbation method [5], we seek the
unknown functions Φk

j , Υ
k
j , p and ϑ in the following form:

Ψ(z) = Ψ0(z) + εΨ1(z), (21)

where Ψ could be any of the listed functions.
The boundary values of the functions Ψn can be presented by the linear Taylor poly-

nomial in the vicinity of the line x2 = 0, treating the real variable x1 as a parameter:

Ψn(z1) = Ψn(x1) + iεf(x1)Ψ
′
n(x1), f(x1) = a cos(kax1). (22)

Also, it is possible to write the linearization in the space of the parameter ε for the
subsequent functions [1, 5]:

e−2iα = 1− 2iεf ′(x1), κ(x1) = εf ′′(x1), h−1(x1) = 1. (23)

Substituting Eqs. (21)–(23) into Eq. (19) when k = 1, z → z1, η1 = 1 and α = α1, and
equating the coeficients of ε, we obtain the first-order approximation of function σ1(z1):

σ1(z1) = σ1
0(z1) + ε

[
σ1d
1 (z1) + σ1u

1 (z1)
]
, (24)

where

σ1
m(z1) = Φ1

1m(ξ
1
1)−Υ1

1m(ξ
1
1), m = {0, 1}, ξ11 = w1(z1),

(25)

σ1d
1 (z1) = if(x1)

[
Φ1′

1 0(x1) + Υ1′
1 0(x1) + Φ1′′

1 0(x1)
]
+ 2if ′(x1)

[
Υ0(x1) + Φ0(x1)

]
.

Introducing the piecewise function Θm holomorphic outside the line Imw1 = 0

5
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Θm(w1) =





Υ1
1m(w1), Imw1 > 0,

Φ1
1m(w1), Imw1 < 0,

(26)

we reduce the boundary equation (13) to the sequence of the Riemann–Hilbert problems
which solution can be written in the terms of the Cauchy-type integrals [13]:

Θm(z) =
1

2πi

+∞∫

−∞

iϑ′
m(ζ)

ζ − z
dt− 1

2πi

+∞∫

−∞

pm(ζ)

ζ − z
dζ +

1

2πi

+∞∫

−∞

σ1d
m (ζ)

ζ − z
dζ. (27)

5 SYSTEM OF INTEGRAL EQUATIONS

To solve the second problem, we pass to the limit in Eq. (19) as z → z2 when k = 2,
α = 0. Taking into account the boundary conditions (14) and the auxiliary functions Σ
and V which are holomorphic otside the line Im z = 0

Σ(z) =




Υ2
2(z) + Φ2

1(z), Im z > 0,

Υ2
1(z) + Φ2

2(z), Im z < 0,
(28)

V (z) =




µ1Υ
2
2(z)− µ2κ1Φ

2
1(z), Im z > 0,

µ2Υ
2
1(z)− µ1κ2Φ

2
2(z), Im z < 0,

(29)

we arrive to the Riemann–Hilbert problems on the boundary value of functions Σ and V .
The solutions of both equations can be written as:

Σ(z) =
1

2πi

+∞∫

−∞

iτ ′s(ζ)

ζ − z
dζ − 1

2πi

+∞∫

−∞

σ1(ζ)

ζ − z
dζ, V (z) =

µ1µ2

πi

+∞∫

−∞

v1(ζ)

ζ − z
dζ. (30)

In view of Eqs. (28) and (29), one can obtain the complex potentials Φ2
j and Υ2

j as it
follows: 


Φ2

1(z) = −Φ2
2(z) + Σ(z) + T1/4, Im z > 0,

Υ2
1(z) = −Υ2

2(z) + Σ(z) + T1/4, Im z < 0,
(31)




Υ2
2(z) =

µ2κ1Σ(z) + V (z)

µ1 + µ2κ1

+ T2/4, Im z > 0,

Φ2
2(z) =

µ2Σ(z)− V (z)

µ2 + µ1κ2

+ T2/4, Im z < 0.

(32)

6
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Using the properties of the Cauchy-type integrals [13], we can rewrite the solution of
the second problem in the terms of the complex potentials Φ1

1 and Υ1
1 if substitute Eq.

(19) when α = 0, η1 = 1 and η1 = κ1 into Eqs. (30) for Σ and V , accordingly:

Σ(z) =
1

2πi

+∞∫

−∞

iτ ′s(ζ)

ζ − z
dζ +





Υ1
1(z + ih) + 2ihΦ1′

1 (z − ih), Im z > 0,

Φ1
1(z − ih), Im z < 0,

(33)

V (z) = µ2





Υ1
1(z + ih) + 2ihΦ1′

1 (z − ih), Im z > 0

−κ1Φ
1
1(z − ih), Im z < 0,

(34)

After that, considering Eq. (21) when k = 2, z → z1, η1 = 1 and α = α1 and taking
into account Eqs. (23)–(25), we derive the first-order approximation for function σ2(z1):

σ2(z1) = σ2
0(z1) + ε

[
σ2d
1 (z1) + σ2u

1 (z1)
]
, (35)

where

σ2
m(z1) = Φ2

1m(z1)−Υ2
1m(z1) + 2ihΦ2′

1m(z1), m = {0, 1},

σ2d
1 (z1) = if(x1)

[
Φ2′

1 0(x1) + Υ2′
1 0(x1) + 2Φ2′

1 0(x1)− 2ihΦ2′′
1 0(x1)

]
+ (36)

+2if ′(x1)
[
Υ2

1 0(x1)− 2ihΦ2′
1 0(x1) + Φ2

1 0(x1)
]
.

Also we can derive the equalities of the first-order approximation for the strains εktt
from (4) if we consider the approximation for the stresses σk

tt and σk
nn similar to Eq. (21):

εkttm(z) =
1

2(λj + µj)

[
(λj + 2µj)σ

k
ttm − λjσ

k
nnm

]
, z ∈ Ωj. (37)

To obtain the relations of the stress tensor components σk
ttm and σk

nnm with the complex
potentials Φk

j m,Υ
k
j m of the first-order approximation, one can take the angle between t-

axis and x1-axis to be equal first α and then α + π/2 in Eq. (21), and sum the results:

σk
nnm + iσntm = Φk

j m(z) + Φk
j m(z)−

(
Υk

j m(z) + Φk
j m(z)− (z − z) Φk′

j m(z)
)
e−2iα,

(38)

σk
ttm + σk

nnm = 4ReΦk
j m(z), z ∈ Ωj.

Here, in Eqs. (38) and above in Eq. (37) j, k = {1, 2}, m = {0, 1}.
Finally, we substitute Eqs. (24), (35), (37) and (38) into Eqs. (15)–(18) and take into

account Eqs. (25)–(27), (31)–(34) and (36). As a result, the system of the boundary
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equations (13)–(18) take the form of the integral equations system in the unknown func-
tions pm, ϑ

′
m, σ

′
sm and τ ′sm that consists of one singular and three hypersingular equations.

The hypersingular equations are obtained similar to [1, 4, 5] as the result of differentiating
Eqs. (16)–(18). The kernels of the derived integral equations are the same for each step
of approximation. The right-hand sides are the known continuos functions.

In the case of the zero-order approxiamtion, we arrive to the homogeneous integral
equations which have only zero solution following from the physical considerations. In
accordance with Eqs. (26), (27) and (31)–(34), the complex potentials of the zero-order
approximation are equal:

Φ1
1 0(z) = Υ1

1 0(z) = 0, z ∈ Ω1; Φ2
j 0(z) = Υ2

1 0(z) = Tj/4, z ∈ Ωj, j = {1, 2}. (39)

As it follows from Eqs. (12), (17)–(19) and (21), they correspond to the piecewise uniform
stress state of the film coating with flat surface:

σ11 0(z) = Tj, z ∈ Ω2; σs 0(z) = γ0
1 +

M1(1 + κ1)

4
T1, τs 0(z) = γ0

2 +
M2(1 + κ1)

4
T2, (40)

where M1 =
λ1
s + 2µ1

s

2µ1

, M2 =
λ2
s + 2µ2

s

2µ2

.

We seek the solution for the first-order approximation in the following form:

p1(x1) = A1
−1e

−ikax1 + A1
1e

ikax1 , ϑ′
1(x1) = A2

−1e
−ikax1 + A2

1e
ikax1 ,

(41)

σ′
s 1(x1) = A3

−1e
−ikax1 + A3

1e
ikax1 , τ ′s 1(x1) = A4

−1e
−ikax1 + A4

1e
ikax1 ,

Based on the properties of the Cauchy-type integrals, the system of the integral equa-
tions is reduced to the linear system of algebraic equations for the unknown complex
coefficients Aj

k. After finding these coefficients, one can define the complex potentials Φk
j 1

and Υk
j 1 from Eqs. (26), (27), (31)–(34) and, as a consequence, the solution of the original

boundary value problem (1)–(7) from Eqs. (12), (19), (21) and (41).

6 RESULTS AND CONCLUSIONS

As a numerical example, we consider the dependence of stress concentration factor
S = maxσmax

tt /T2 on the perurbation wavelength a for h/a = 0.15 (Figure 1 (a)),
h/a = 0.3 (Figure 1 (b)), surface elasticity constants M1 = M2 = 0 (solid lines),
M1 = 0.117nm, M2 = 0 (dashed lines), M1 = M2 = 0.117nm (dot-dashed lines), stiffness
ratio µ1/µ2 = 10 (curves 1) and µ1/µ2 = 0.1 (curves 2) in case of ε = 0.1, γ0

1 = γ0
2 = 0,

ν1 = ν2 = 0.3.
It is seen from the dashed lines on Figure 1 that the surface stress alone reduces

the stress concentration factor. Taking into consideration the interface stress (see the
dot-dashed lines) decreases the stress concentration factor as well. However, both effects
decreases when the size a of the asperities increases, and the solution passes to the classical

8
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Figure 1: Stress concentration factor S = σmax
tt /T2 as a function of surface perturbation wavelength a.

one (i.e. to the solid lines). It should be noted that the solid lines correspond to our
previous model [8]. The influence of the size of the asperities is greater for the stiffer
film when µ1/µ2 = 10 (see the curves 1). As one can see, the stress concentration factor
decreases when the stiffnes ratio µ1/µ2 decreases. This effect is more sensitive for the
films with the smaller thickness (see Figure 1 (a)).

In this paper, we have extended our previous model of thin film with the slightly curved
free surface deposited on a thick substrate to the case when the film thickness and the
size of surface deffects are in nanometer range. For this purpose, we have used the sur-
face/interface elasticity theory proposed by Gurtin and Murdoch [10], which allowed us to
formulate corresponding boundary value problem involving the additional one-dimensional
constitutive equations for surface phase and interphase with the extra elastic constants
and the residual surface stresses. Based on the linear perturbation technique combined
with the Goursat-Kolosov complex potentials and the superposition principle, the orig-
inal boundary value problem has been reduced to the analytical solution of the system
consisting of one singular and three hypersingular integral equations. It has been shown
that the coupled effect of surface and interface stresses reduce the stress concentration
factor. We have observed that this effect was more sensitive for smaller surface asperities.
Finally, it should be noted that the obtained results are in a good agreement with our
previous studies [1, 8].
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