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Abstract. This investigation concerns to the determination of the material properties
of nanoscale thermoelastic composites of an arbitrary anisotropy class with stochastically
distributed porosity. In order to take into account nanoscale level at the borders between
material and pores, the GurtinMurdoch model of surface stresses and the highly conduct-
ing model are used. Finite element package ANSYS was used to simulate representative
volume and to calculate the effective material properties. This approach is based on the
theory of effective moduli of composite mechanics, modeling of representative volumes
and the finite element method. Here, the contact boundaries between material and pores
were covered by the surface membrane elastic and thermal shell elements in order to take
the surface effects into account.

1 INTRODUCTION

As it is well known from experiments, a scale effect can be observed for nanoscale bodies,
which results in the change of effective stiffness and other material moduli compared
to the corresponding macroscale bodies. Among various approaches that explain this
phenomenon, the models of theory of elasticity with surface stresses are widely used now.
The idea of surface stresses in solids has been formulated long time ago [27]. However,
significant development of this idea was done later in [10, 13, 26]. As it was shown further,
the theory of surface stresses can be considered as a particular case of the models with
imperfect interface boundaries.

At present the theory of surface stresses, commonly referred to as the model of Gurtin–
Murdoch, has been become widely used for describing scale effects at nanolevel, which can
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be seen, for example, from overviews given in [3, 28]. In a range of papers this theory was
applied for modelling of thermoelastic nanoscale composites. For example, in [1, 2, 16,
17] thermomechanical properties of composites with spherical nanoinclusions (nanopores)
and fiber nanocomposites were studied in the frames of the theory of thermal stresses
with surface effects. The methodology of finite element approximations for thermoelastic
materials with surface effects was demonstrated in [11].

Models of lowly and highly thermal conducting interfaces [18, 19] are well known for
modeling of effective thermal conductivity of composites with imperfect interface bound-
aries. The model of high conductivity with continuous thermal field when passing through
the phase interface is similar to the Gurtin-Murdoch model for elastic fields. The model
of lowly conducting interface, which includes Kapitsa contact thermal resistance, allows
discontinuous temperature field. Generalizations of these models for a more general case
of thermoelastic interface boundaries were presented [14], and a related review was given
in [12]. The problems on the determination of effective thermal conductivity moduli
for composite materials with imperfect boundaries, including micro- and nanoscale, were
studied in [6, 15, 18, 19, 20, 30] and others.

This paper considers anisotropic thermoelastic materials with randomly located nano-
pores. In order to take into account nanoscale level at the borders between material and
pores, the Gurtin-Murdoch model of surface stresses and the highly conducting model are
used. The paper is organized as follows. Section 2 presents the mathematical statement
of a homogenization problem for two-phase composites with special conditions for stresses
and heat flux discontinuities at the phase interfaces. Both composite phases are assumed
to be anisotropic thermoelastic materials. The boundary value problem statements, their
weak formulations and the resulting formulas for determination of the full set of effective
constants for a two-phase composite with arbitrary types of phase anisotropy and sur-
face properties are also described. We note that homogenization procedures for porous
composites with surface stresses and heat fluxes can be regarded as special cases of the
corresponding procedures for two-phase composites with imperfect interface boundaries
under negligibly small stiffnesses and thermal stresses for nanoinclusions.

The finite element approximations of the considered homogenization problems are given
in Section 3. We note that homogenization problems for the composites under investi-
gation can be solved with the help of known finite element software, using shell finite
elements with membrane stresses options and plate thermal elements in order to take into
account interphase surface stresses and heat fluxes.

Following [25] Section 4 describes an implementation of the proposed approaches in the
finite element software ANSYS. We suggest an algorithm for automatic determination of
interphase boundaries and location of shell and plate elements on them, which will work
for various sizes of representative volumes built in forms of cubic lattice of hexahedral
thermoelastic and thermal finite elements. As an example, in [25] we consider the models
of porous material of cubic crystal system for various values of surface moduli, porosity
and number of pores. We note the influence of the magnitude of the area of interphase
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boundaries on the values of the effective moduli for porous material with nanoscale struc-
ture.

2 EFFECTIVEMODULI METHOD FORHOMOGENIZATION OF THER-

MOELASTIC MIXED TWO-PHASE NANOCOMPOSITES

Let Ω be a representative volume of thermoelastic two-phase composite body with
nanodimensional inclusions; Ω = Ω(1) ∪ Ω(2); Ω(1) is the volume occupied by the main
materials of the first phase (matrix); Ω(2) is the set of the volumes occupied by the
materials of the second phase (inclusions); Γ = ∂Ω is the external boundary of the volume
Ω; Γs is the set of frontier surfaces of materials with different phases (Γs = ∂Ω(1)∩∂Ω(2));
νi are the components of the external unit normal vector ν to the boundary, outward
with respect to the region Ω(1) occupied by the material of the matrix; x = {x1, x2, x3} is
the vector of the spacial coordinates. We assume that the volumes Ω(1) and Ω(2) are filled
with different anisotropic thermoelastic materials. Then in the framework of linear static
theory of thermoelasticity we have the following system of differential equations

σij,j = 0, σij = cijklεkl − βij θ, εij = (ui,j + uj,i)/2 , (1)

qj,j = 0, qi = −kijθ,j , (2)

where σij are the components of the stress tensor σ; εij are the components of the strain
tensor ε; ui are the components of the displacement vector u; θ is the temperature
increment from natural state, cijkl are the components of the forth rank tensor of elastic
stiffness moduli; βij are the thermal stress coefficients; qi are the components of the heat

flux vector q; kij are the components of the tensor k of thermal conductivities; cijkl = c
(m)
ijkl,

βij = β
(m)
ij , σij = σ

(m)
ij , x ∈ Ω(m), etc.

In accordance with Gurtin–Murdoch model for surface stresses we will assume that on
nanosized interphase boundaries Γs the following equation is satisfied

νi[σij] = ∂s
i σ

s
ij, x ∈ Γs , (3)

where [σij] = σ
(1)
ij − σ

(2)
ij ; ∂s

i = ∂i − νi(νl∂l) are the components of the surface gradient
operator; σs

ij are the components of the surface stress tensor σs.
We adopt that the surface stresses σs

ij are related to the surface strains εsij and the
temperature θ by the formulas

σs
ij = csijklε

s
kl − βs

ij θ , εskl = (∂s
kumAml + Akm∂

s
l um)/2, Aml = δml − nmnl , (4)

where csijkl are the components of the forth rank tensor of elastic surface stiffness moduli;
βs
ij are the surface thermal stress coefficients; δml is the Kronecker delta.
Similarly, for interphase boundaries Γs, we accept the equation of highly thermal con-

ducting boundaries

ni[qi] = ∂s
i q

s
i , qsi = −ks

ij∂
s
j θ, x ∈ Γs , (5)
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where ks
ij are the surface thermal conductivities.

Setting the appropriate boundary conditions at Γ = ∂Ω, we can find the solutions of
the problems (1)–(5) for heterogeneous medium in the representative volume Ω. Then
the comparison of the solution characteristics averaged over Ω (such as stresses, heat
flux, etc.) with analogous values for homogeneous comparison medium will permit to
determine the effective moduli for the composite material. We note that for anisotropic
media in order to determine the full set of the effective moduli it is necessary to solve
several problems of the considered types for different boundary conditions.

Here the main difficulties consist in the choice of the representative volume and bound-
ary problems for the heterogeneous medium and the comparison medium, as well as the
technologies for solving the problems for heterogeneous media. According to the previ-
ously developed methods of modeling the thermoelastic composite materials of ordinary
sizes [23, 24], we consider analogous approaches for the problems of thermoelasticity with
surface effects [25].

For thermoelastic homogeneous comparison medium we adopt that the same equations
(1)–(5) are satisfied with constant moduli c effijkl, β

eff
ij , k eff

ij , which are to be determined.

Note that thermal problem (2), (5) is independent, and so the moduli c effijkl, β
eff
ij and the

moduli k eff
ij can be found from separate problems.

For determination of the moduli c effijkl, β
eff
ij let us assume that at the boundary Γ the

following boundary conditions take place

ul = xkε0kl, θ = θ0, x ∈ Γ , (6)

where ε0kl = ε0lk, θ0 are some values that do not depend on x. Then ul = xkε0kl, εkl = ε0kl,
θ = θ0, σij = σ0ij = c effijklε0kl − β eff

ij θ0 will give the solution for the problem (1)–(6) in the
volume Ω for the homogeneous comparison medium. Note, that for θ = θ0 = const the
equations (2), (5) are satisfied identically, because qi = q0i = 0, qsi = 0, and this pure
thermal problem is not actually used for solution of mechanical problem with thermal
stresses (1), (3), (4), (6).

Let us solve now problem (1)–(6) for heterogeneous medium (or (1), (3), (4), (6)
because for θ = θ0 the equations (2), (5) are satisfied indentically) and assume that for
this medium and for the comparison medium the averaged stresses are equal ⟨σij⟩ = ⟨σ0ij⟩,
where hereinafter the angle brackets ⟨(...)⟩ denote the averaged by the volume Ω and by
the surfaces Γs values

⟨(...)⟩ = 1

|Ω|

(∫

Ω

(...) dΩ +

∫

Γs

(...)s dΓ
)
. (7)

Therefore we obtain that for the effective moduli of the composite the equation σij =
σ0ij = c effijklε0kl − β eff

ij θ0 = ⟨σij⟩ is satisfied, where ε0kl and θ0 are the given values from
the boundary conditions (6). Hence, even in the assumption of the anisotropy of the
general form for the comparison medium, all the stiffness moduli c effijkl and thermal stress

coefficients β eff
ij can be computed. Indeed, setting in (6) ε0kl = ε0(δkmδln + δlmδkn)/2,
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ε0 = const, θ0 = 0, where m, n are some fixed indexes, we get the computation formulas
for the elastic moduli c effijmn: c effijmn = ⟨σij⟩/ε0. If in (6) we set ε0kl = 0, θ0 ̸= 0, than
from the boundary problem (1), (3), (4), (6) the thermal stress effective moduli can be
obtained: β eff

ij = −⟨σij⟩/θ0.
As mentioned above, in order to determine the effective coefficients of the tensor kij

it is sufficient to consider thermal conductivity equation (2) and interface relation (5).
For the formulation of the corresponding boundary-value problem we adopt the boundary
conditions in the following form

θ = xjG0j, x ∈ Γ , (8)

where G0j are the components of some constant vector that does not depend on x. It is
obvious that θ = xjG0j, Gj = ∂jθ, Gj = G0j, qi = q0i = −k eff

ij G0j will give the solution
of the problem (2), (5), (8) in the volume Ω for the homogeneous comparison medium.
Having solved the problem (2), (5), (8) for heterogeneous medium, we can set that for this
medium and for the comparison medium the averaged heat fluxes are equal ⟨qi⟩ = ⟨q0i⟩.
As a result we get the equation for the effective moduli of the composite k eff

ij G0j = −⟨qi⟩,
where G0j are the components of the vector known from the boundary conditions (8).
Then for the comparison medium with anisotropy of general form it is not difficult to
obtain computation formulas for thermal conductivity moduli k eff

ij . Indeed, setting in
(8) G0j = G0δjl, G0 = const, where l = 1, 2, 3 is some fixed index, we get computation
formulas for the moduli k eff

il : k eff
il = −⟨qi⟩/G0.

The approaches described above are associated with the averaging of the moduli cijkl,
βij, kij. Note that the boundary value problems (1), (3), (4), (6) and (2), (5), (8) differ
from the usual problems of linear thermoelasticity by the presence of the interface bound-
ary conditions (3)–(5) which are typical for the Gurtin–Murdoch model of surface stresses
and the model of highly thermal conducting boundaries for nanosized bodies.

For the numerical solution of the problems (1), (3), (4), (6) and (2), (5), (8) we derive
their weak or generalized statements. Previously we introduce the space of the functions
θ and the vector functions u, defined on Ω.

On the set of vector functions u ∈ C1 which satisfy the first homogeneous boundary
condition (6), i.e. ul = 0 on Γ, we introduce the scalar product

(v,u)H1
u
=

∫

Ω

εij(v)εij(u) dΩ +

∫

Γs

εsij(v)ε
s
ij(u) dΓ .

The closure of this set of vector functions u in the norm generated by the indicated scalar
product will be denoted by H1

u.
For functions θ ∈ C1 which satisfy second homogeneous boundary condition (6) or (8),

i.e. θ = 0 on Γ, we introduce the scalar product

(η, θ)H1
θ
=

∫

Ω

∂iη ∂iθ dΩ +

∫

Γs

∂s
i η ∂

s
i θ dΓ .
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The closure of this set of functions φ in the norm generated by the indicated scalar product
will be denoted by H1

θ .
In order to formulate the generalized or weak solution we scalar multiply the first

equations (1) by arbitrary components vi of the vector function v ∈ H1
u, and we multiply

the first equation (2) by some function η ∈ H1
θ . By summing over i and by integrating

the obtained equations on Ω, and by using the standard technique of the integration by
parts with Eqs. (1)–(5), we obtain the following integral relations

c(v,u)− β (v, θ) = 0 , (9)

k(η, θ) = 0 , (10)

where

c(v,u) = cΩ(v,u) + cΓs(v,u), β(v, θ) = βΩ(v, θ) + βΓs(v, θ) , (11)

cΩ(v,u) =

∫

Ω

cijklεij(v) εkl(u) dΩ, cΓs(v,u) =

∫

Γs

csijklε
s
ij(v) ε

s
kl(u) dΓ , (12)

βΩ(v,u) =

∫

Ω

εij(v)βij θ dΩ, βΓs(v,u) =

∫

Γs

εsij(v)β
s
ij θ dΓ , (13)

k(η, θ) = kΩ(η, θ) + kΓs(η, θ) , (14)

kΩ(η, θ) =

∫

Ω

kij∂iη ∂jθ dΩ, kΓs(η, θ) =

∫

Γs

ks
ij∂

s
i η ∂

s
j θ dΓ . (15)

Further, we present the solution {u, θ} of the problem (1), (3), (4), (6) in the form

uj = udl + ubl, θ = θ0 , (16)

where udl satisfies homogeneous boundary mechanical conditions and ad hoc fitted func-
tions ubl satisfy the inhomogeneous boundary conditions on Γ, i.e.

udl = 0, ubl = xkε0kl, x ∈ Γ , (17)

and therefore, ud ∈ H1
u.

By using (16) we can rewrite Eq. (9) in the form

c(v,ud) = Lu(v), Lu(v) = β (v, θ0)− c(v,ub) . (18)

Now we can define the generalized or weak solution of the problem with thermal stresses
(1), (3), (4), (6) using introduced functional space. Namely, the functions u, θ in the form
(16), (17) are the weak solution of the problem (1), (3), (4), (6), if Eq. (18) with (11)–(13)
is satisfied for ∀ v ∈ H1

u.
Analogously, we will find the solution θ of the purely thermal problem (2), (5), (8) in

the form

θ = θd + θb , (19)
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where θd satisfies homogeneous boundary thermal conditions and θb is known function,
satisfying the inhomogeneous boundary conditions on Γ, i.e. θd ∈ H1

θ

θd = 0, θb = xjG0j, x ∈ Γ . (20)

By using (19) we can also rewrite (10) in the form

k(η, θd) = L θ(η), L θ(η) = −k(η, θb) . (21)

Then we can introduce the generalized or weak solution of the thermal problem (2),
(5), (8) as the function θ in the form (19), (20), for which Eq. (21) with (14), (15) is
satisfied for ∀ η ∈ H1

θ .
So far we have been discussing the two-phase composites. However, we can note that

the presented models also describe homogenization procedures for porous composites with
surface effects, if we put the stiffness and thermal stresses moduli negligible, and set the
thermal conductivities equal to the coefficient of thermal conductivity of air.

3 FINITE ELEMENT SOLUTION

For solving problems (18) and (21) for thermoelastic body with surface effects in weak
forms we will use classical finite element approximation techniques. Let Ωh be a region
of the corresponding finite element mesh composed of volume elements, Ωh ≈ Ω, Ωh =
Ω

(1)
h ∪ Ω

(2)
h , Ω

(j)
h ≈ Ω(j), Ωh = ∪kΩek, where Ωek is a separate volume finite element with

number k. Let also Γs
h be a finite element mesh of surface elements conformable with the

volume mesh Ωh, Γ
s
h = ∂Ω

(1)
h ∩ ∂Ω

(2)
h , Γs

h ≈ Γs, Γs
h = ∪mΓ

s
em, Γ

s
em is a separate surface

finite element with number m, and the elements Γs
em are the faces of the suitable volume

elements Ωek located on the interface boundaries.
We will use the classic Lagrangian or serendipity volume finite elements with nodal

degrees of freedom of displacements and temperature. Note that due to the structure of
surface mechanical and thermal fields (4), (5), for the elements Γs

em we can use standard
shell or plate elements with elastic membrane stresses options, i. e. only with nodal
degrees of freedom of displacements, and the standard thermal shell elements. For these
elements we can take a fictitious unit thickness so that the surface moduli from (4), (5)
can be determined by the product of specially defined volume moduli and shell thickness.

On these finite element meshes we will find the approximation to the weak solutions
{uh ≈ u, θh ≈ θ} for static thermoelasic problem in the form

uh(x) = N∗
u(x) ·U, θh(x) = N∗

θ(x) ·Θ , (22)

where N∗
u is the matrix of the shape functions for displacements, N∗

θ is the row vector of
the shape functions for temperature, U, Θ are the global vectors of nodal displacements
and temperature, respectively. Here, the surface shape functions are the reduction on the
boundaries Γs

h of the volume shape functions.
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According to conventional finite element technique, we approximate the continuous
weak formulations of the thermoelasticity problems by the corresponding problems in
finite-dimensional spaces. Substituting (22) and similar representations for projection
functions into integral relations (9), (10) for Ωh, we obtain the following finite element
system

Kuu ·U−Kuθ ·Θ = 0 , (23)

Kθθ ·Θ = 0 , (24)

where

Kuu = KuuΩ +KuuΓ, Kuθ = KuθΩ +Kuθ Γ, Kθθ = KθθΩ +Kθθ Γ , (25)

KuuΩ =

∫

Ωh

B∗
u · c ·Bu dΩ, KuuΓ =

∫

Γs
h

Bs∗
u · cs ·Bs

u dΓ , (26)

KuθΩ =

∫

Ωh

B∗
u · βN∗

θ dΩ, Kuθ Γ =

∫

Γs
h

Bs∗
u · βs N∗

θ dΓ , (27)

KθθΩ =

∫

Ωh

B∗
θ · k ·Bθ dΩ, Kθθ Γ =

∫

Γs
h

Bs∗
θ · ks ·Bs

θ dΓ, , (28)

B(s)
u = L(s)∗(∇) ·A ·N∗

u, B
(s)
θ = ∇(s)N∗

θ , (29)

L(s)∗(∇) =




∂
(s)
1 0 0 0 ∂

(s)
3 ∂

(s)
2

0 ∂
(s)
2 0 ∂

(s)
3 0 ∂

(s)
1

0 0 ∂
(s)
3 ∂

(s)
2 ∂

(s)
1 0


 , ∇(s) =




∂
(s)
1

∂
(s)
2

∂
(s)
3




. (30)

In (22)-(30), we use the following vector-matrix notation: c is the 6×6 matrix of elastic
moduli; cαζ = cijkl, α, ζ = 1, ..., 6, i, j, k, l = 1, 2, 3 with correspondence law α ↔ (ij),
β ↔ (kl), 1 ↔ (11), 2 ↔ (22), 3 ↔ (33), 4 ↔ (23) ∼ (32), 5 ↔ (13) ∼ (31), 6 ↔ (12) ∼
(21); β={β11, β22, β33, β23, β13, β12}; (...)∗ is the transpose operation; and (...) · (...) is
the scalar product operation.

Also, we can represent the finite element solutions in the another variants considering
the main boundary conditions: uh = udh + ubh, θh = θdh + θbh, udh ≈ ud, udh = N∗

ud ·Ud,
ubh ≈ ub, ubh = N∗

ub · Ub, θdh ≈ θd, θdh = N∗
θd · Θd, θbh ≈ θb, θbh = N∗

θb · Θb, Nu =
{Nud,Nub}, Nθ = {Nθd,Nθb},

Kuu =

[
Kdd

uu Kdb
uu

Kbd
uu Kbb

uu

]
, Kuθ =

[
Kdd

uθ Kdb
uθ

Kbd
uθ Kbb

uθ

]
, Kθθ =

[
Kdd

θθ Kdb
θθ

Kbd
θθ Kbb

θθ

]
,

U =

{
Ud

Ub

}
, Θ =

{
Θd

Θb

}
,

where Ub, Θb are the vectors, known from the main boundary conditions.
So, after using these expressions we can transform Eq. (23) for the problem with thermal

stresses in the form
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Kdd
uu ·Ud = Fd

u, Fd
u = Kdd

uθ ·Θd +Kdb
uθ ·Θb −Kdb

uu ·Ub , (31)

where the vector Θd is also known, and its component values are equal to θ0 from (6).
Analogously, for the thermal problem (21) we can rewrite Eq. (24) as the system relative

to unknown vector Θd:

Kdd
θθ ·Θd = Fd

θ, Fd
θ = −Kdb

θθ ·Θb . (32)

Thus, the homogenizing problems for thermoelastic composite with surface stresses and
with highly conducting porous boundaries can be solved by finite element approaches. The
resulting finite element systems (31), (32) differ from similar systems for the bodies of
usual sizes by the matrices KuuΓ, KuθΓ, KθθΓ in (26)–(28). These matrices arise due to
the surface mechanical and thermal effects.

4 DISCUSSION AND CONCLUSION

For automated coating of internal boundaries of pores in the cubic representative vol-
ume the following algorithm was used [25]. At the beginning, as a result of the formation
of the porous structure, the finite element mesh from octanodal cubic elements was cre-
ated, some of which had the material properties of thermoelastic material, and the other
part of the elements had the material properties of the pores (with negligible elastic stiff-
ness moduli). Further, only the finite elements with thermoelastic material properties
were selected. The resulting elements on the outer boundaries were covered by four nodal
target contact elements. Then, the contact elements, which were located on the exter-
nal surfaces of the full representative volume, were removed, and the remaining contact
elements were replaced by the four nodal membrane elastic elements. As a result, all
the facets of the contact of thermoelastic structural elements with pores were coated by
membrane finite elements.

The next step consisted in solving the static problems for obtained representative
volume with the main boundary conditions which were conventional for effective moduli
method. Further, in the ANSYS postprocessor the averaged stresses were calculated, both
on the volume finite elements and on the surface finite elements. Finally, the effective
moduli of porous composite with surface effects were calculated from the corresponding
formulas of the effective moduli method by using the estimated average characteristics.

In the results of computational experiments, the following features were observed [25].
If we compare two similar bodies, one of which has usual dimensions and the other is
a nanoscale body, then for the nanosized body due to the surface stresses the effective
stiffness will be greater than for the body with usual sizes. Furthermore, for the porous
body of the usual size the effective elastic stiffness decreases with increasing porosity.
Meanwhile, the effective stiffness of nanocomposite porous body with the same porosity
may either decrease or increase depending on the values of surface moduli, dimensions and
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number of pores. This effect is explained by the fact that the sizes of the surface pore with
surface stresses depend not only on the overall porosity, but also on the configuration, size
and number of pores. We can observe similar effects for the effective thermal conductivity
coefficients.

The described methodology could be also applied for mixed anisotropic nanostructured
composites with other type of connectivity for different physic-mechanical fields, such as
poroelastic, piezoelectric, magnetoelectric (magnetoelectroelastic) and other nanocom-
posites ([5, 7, 8, 9, 21, 22, 29], etc.) At the element level it allows to take into account
local types of inhomogeneities, such as, for example, a rotation of the polarization vectors
(element coordinate systems) in the vicinity of the pores for porous piezoceramic materi-
als. For example, for porous piezoelectric nanosized composites the analogous approaches
can be applied with taking into account both mechanical and electric surface effects.
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