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Abstract. The purpose of this presentation is to outline the main features of a new
numerical method under development for the simulation of complex, Newtonian and non-
Newtonian free-surface flows. The method makes use of a Particle Level Set (PLS) ap-
proach along with Adaptive Mesh Refinement (AMR) techniques to retrieve, accurately
and efficiently, the fluid interface at each time step as the zero isocontour of a level set
function. The convective terms are dealt with by means of a semi-Lagrangian formulation
of the Navier-Stokes equations within a Finite Element framework, leveraging isotropic as
well as anisotropic AMR techniques developed via error estimation to produce spatially-
adapted “optimal” triangulations. Multiscale simulations of non-Newtonian flows are re-
alized through the kinetic modelling of ensembles of dumbbells scattered over the domain,
their internal configurations providing the extra-stress tensor representing the viscoelastic
contribution to the Newtonian solvent.

The capabilities of the method are illustrated in a series of 2D simulations of pure-
advection and complex free-surface flows, showing surface tension and viscoelastic effects.

1 INTRODUCTION

The development of a general, accurate, robust and efficient method for the solution of
multiphase flows is a topic of great interest to the Scientific and Engineering community,
due to the large number of applications in which a free-surface is present. Though in
recent years significant progress has been made in this field [1, 2, 3] there is still much
room for improvement; the purpose of this talk is to present a contribution in this
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direction by means of a semi-Lagrangian Particle Level Set method with (An)Isotropic
Mesh Refinement capabilities to capture the interface of pure advection and complex
Newtonian and non-Newtonian flows, in a robust, accurate and efficient way.

2 METHODOLOGY

We briefly describe next the main features of the method introduced in this talk.

2.1 Time and space discretization

We take advantage of the semi-Lagrangian approach so that for each mesh-point, the
departure points X (or ‘feet’ of the characteristic curves) are computed according to:





dX (x, tn; t)

dt
= u (X (x, tn; t) , t) , t ∈ (tn−1, tn) ;

X (x, tn; tn) = x.
(1)

Thus, the Navier-Stokes equations for incompressible, viscous flows can be rewritten in
terms of a Stokes-like problem, in which quadratic finite elements are used for velocity,
linear discontinuous for the pressure, and linear polynomials are employed for the level
set function. Non-Newtonian fluids are considered by means of a multiscale procedure
in which kinetic models are coupled with the macroscopic solution of the Navier-Stokes
equations. The internal configurations Q of the polymer particles advected by the flow
are ruled by the stochastic differential equation:

dQ =

[
κ ·Q− 2

ζ
F (Q)

]
dt+

√
4kBΘ

ζ
dW, (2)

with F the spring-force of the dumbbells, kB the Boltzmann constant, ζ the friction
coefficient, Θ the absolute temperature and W a three-dimensional Wiener process. These
configurations are conveniently integrated by a (weak) second-order scheme, with the
polymer stress tensor being computed from their second moments. See [4, 5] for details.

2.2 Interface-capturing technique

The Particle Level Set method captures the interface as the zero isocontour of φ
(level set function) solving at each time step the conservation equation

Dφ

Dt
= 0, (3)

using the semi-Lagrangian approach sketched above. Marker particles advected by the
flow and placed sufficiently close to the interface enhance shape reconstruction by defining
local level set functions. A second-order accurate reinitialization procedure is also used to
keep the level set function from developing numerical instabilities as the simulation goes
on. For details, see the SLEIPNNIR technique introduced in [6].
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2.3 Adaptive Mesh Refinement technique

Isotropic as well as anisotropic mesh refinement is here considered to produce spatially-
adapted “optimal” triangulations as presented in [7, 8]. For isotropic mesh refinement
one only has to define the size of elements |K| ∝ hd

K with any tolerance criterium:
e.g. min(hK) = hmin, to produce an equidistribution of the numerical error over all
mesh elements. However, for anisotropic mesh refinement not only the size of the el-
ement must be provided, but also its shape SK = diag{s1,K , ...., sd,K} and orientation
RK = {r1,K , ..., rd,K}. All this information is wrapped up in the so-called metric tensor,
which is evaluated at each element of the spatial triangulation K as folllows:

MK = |K|−2/dRKS
−1
K RT

K . (4)

The optimal size of a given element |K| is computed via a posteriori error estimator of
the truncation error incurred in each time subinterval [tn−1, tn]; then, the optimal shape
SK and orientation RK are determined using a linear a priori error analysis. 1269+

3 RESULTS

In this section we show some results obtained with our new method for the simulation
of free-surface flows: first, we highlight the capabilities in pure advection problems, by
means of the Zalesak slotted cylinder; then, we investigate bubble dynamics of Newtonian
and non-Newtonian flows.

3.1 Advection problems

The test proposed by Zalesak [9] is carried out using our code with anisotropic mesh
refinement active. This benchmark heavily taxes the ability of the free-surface method
to accurately represent sharp interfaces, typically resulting in the interface-capturing or
interface-tracking techniques rounding corners and eventually producing a degenerated
free-surface after just a couple of solid body rotations.

Table 1: Minimum grid size h−1
min, number of elements NE, number of mesh-points NP and error in the

infinity eL∞ , for the Zalesak slotted cylinder test after 50 revolutions, with anisotropic mesh refinement.

h−1
min NE NP Error eL∞

32 249 510 1.02674× 10−3

64 486 983 1.89065× 10−4

128 803 1616 6.19143× 10−5

256 1053 2118 3.26022× 10−5

The results for different minimum grid size hmin with time step size ∆t = 10−2,
Np = 5× 104 marker particles and reinitialization of the level set function are collected in
Table 1 after 50 revolutions of the slotted cylinder.
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Figure 1: Zalesak slotted cylinder after 50 revolutions. Mesh with minimum grid size hmin = 1/128
and NE = 803 elements. Time step size ∆t = 10−2; Np = 5× 104 marker particles. Initial solution also
plotted.

We observe very low errors in the infinity norm for a low number of elements NE and of
mesh-points NP , along with an almost unchanged interface as plotted in Fig. 1, noticing
that the initial interface quite overlaps the final shape when a mesh with as low as 803
elements are used.

3.2 Complex flows

We now move to more demanding problems with non-imposed flows. For this talk we
consider the unsteady simulation of a bubble rising by buoyancy effects in a quiescent fluid.
The Stokes problem derived from the semi-Lagrangian approach to the Navier-Stokes
equations are solved efficiently using the PETSc (‘Portable, Extensible Toolkit for Scientific
Computation’) tool [10], taking advantage of the PCFieldsplit approach based on the
Schur-complement, block preconditioning of the Stokes matrix system.

In Fig. 2, we show the final shape of two such simulations along with isovelocity contours
of the vertical component of the velocity over a contour-filled plot of that component vy.
The left panel of the Figure shows a Newtonian fluid rising in another Newtonian fluid,
with moderate density and viscosity ratios ρ2/ρ1 = 10−1 = µ2/µ1, using Np = 1.5× 103

marker particles to improve shape preservation and prevent mass loss; surface tension
effects are considered throught the Weber dimensionless number (We = 35), whereas
the viscous and inertial effects are represented by the Reynolds number (Re = 35); the
time step size, in this mesh with minimum grid size hmin = 1/320, is such that Nt = 960
time steps are required to reach the dimensionless time t = 3, with an external mass loss
of just 1.7645 × 10−5%. Under such conditions, the bubble reaches an ellipsoidal-cap
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regime, which is in accordance with the findings of [11]. The right panel of Fig. 2 depicts a
Newtonian bubble in a viscoelastic fluid represented by means of the FENE kinetic model,
with the finite-extension parameter bFENE = 35. This simulation scatters 15000 ensembles
each of them containing 2500 dumbbells carrying the internal degrees of freedom of the
polymer molecules. Compactly-Supported Radial Basis Functions (CSRBFs) are used as
explained in [12] to reconstruct the extra-stress tensor that enters as a right-hand side
term (body force) in the Navier-Stokes equations; this technique has proved extremely
useful in AMR situations, where certain refined regions of the mesh have a low number of
ensembles (or are empty of them altogether). The interface of the viscous-elastic (Re = 35)
bubble develops an incipient tail which due to surface tension effects (We = 50) does
not attain a cusp-like shape at the final time of the simulation; however, weak ‘negative’
(downwards) velocities are indeed observed in the wake of the bubble, something of a
purely viscoelastic effect [13] which is here attained with a Deborah number De = 2.5.
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Figure 2: Bubble dynamics simulations at t = 3 with isocontours of rise velocity: Newtonian fluid with
Re = 35,We = 35 (left panel); non-Newtonian fluid with bFENE = 35, Re = 35,We = 50, c = 4.5, De =
2.5 (right panel).
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4 CONCLUSIONS

Next we collect some of the main points of the method under development presented in
this talk:

• We present a new methodology for the simulation of free-surface flows for Newtonian
and non-Newtonian flows.

• The method uses a Particle Level Set (PLS) approach along with Adaptive Mesh
Refinement (AMR) techniques and the Finite Element Method.

• Pure advection problems are solved accurately even for extremely low number of
mesh-points when using anisotropic mesh adaptation.

• Benchmark tests for complex flows both for Newtonian and non-Newtonian fluids
show promising results: the simulations are carried out efficiently and accurately
with the implementation of the new method.
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