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Abstract. An electrohydrodynamic model for the simulation of droplet formation, mo-
tion and detachment in an electrically driven droplet generator is introduced. The nu-
merical approch is based on the coupled solution of the multiphase flow problem with
the charge continuity equation. A conduction-convection model, taking into account con-
ductive, capacitive and convective currents in the fluid, describes the charge relaxation
phenomena in the moving liquid. The charge received by the droplets during acceleration
by an external electric pulse is an important parameter influencing dynamics of droplets
in the pressure chamber. The model is illustrated with simulations of detachment of high
conductivity acetone droplets and low conductivity n-pentane droplets.

1 INTRODUCTION

The application of strong electric fields on liquids is used in many engineering appli-
cations to induce liquid atomization in a controlled manner. In electrosprays [1, 2], the
droplet size and the opening angle of the spray cone can be affected by charging the liquid
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prior to its atomization. In electrically driven on-demand droplet generators, millimetric
droplets pending from a capillary can be detached on a controlled manner by applying
strong electrical pulses. The method provides reliable injection of liquid samples in the
experimental chamber, at a broad range of atmospheric conditions [3].

Deformations of the phase boundary induced by electric fields result in changes in
the electric field and force distribution. The mechanical and electric problems are thus
strongly coupled. Additionally, due to the presence of intrinsic ionic species and dissolved
impurities, liquids exhibit some electrical conductivity associated with charge migration.
Dynamic charging effects in liquid droplets and convection of free charge can strongly
alter liquid motion. Moreover, the accumulation of free charge in droplets can result
in the generation of charged droplets from initially uncharged liquid. This behavior re-
quires an electroquasistatic field representation, taking into account both conduction and
displacement electric currents in the liquid.

We discuss a conduction-convection model for the simulation of droplet dynamics under
the influence of electric fields. The liquid interface is captured using the Volume of
Fluid method , allowing for an efficient representation of topology changes in the phase
boundaries. The electric problem is solved using the resulting diffuse interface, and the
resulting electric force is introduced as a source term for the hydrodynamic problem.
Wetting is taken into account by using a dynamic contact angle model.

The numerical study of liquid droplets generation in an on-demand droplet generator [3]
is considered in this work. Detachment dynamics of acetone and n-pentane droplets, ex-
hibiting respectively high and low conductivity, are reproduced numerically, and illustrate
the effect of conductivity on electrically induced droplet motion.

2 GOVERNING EQUATIONS

2.1 The Fluid Flow Problem

In this paper, we focus on the application of an external electric pulse to drive droplet
detachment. As a result, we restrict the study of the generator to the lower range of
temperatures, where droplet injection does not involve phase transitions. Under these
atmospheric conditions, the fluid flow problem is governed by the incompressible Navier-
Stokes equations:

∂ρ�u

∂t
+∇ · ρ�u�u = −∇p+∇ ·

(
µ
[
∇�u+∇�uT

])
+ ρ�g + �fs + �fe , (1)

∇ · �u = 0 , (2)

where �u denotes fluid velocity, ρ is the density, µ the dynamic viscosity and p the pressure.
The driving terms �fs and �fe are, respectively, the surface tension force density acting at
the interface between the two fluid phases, and the electric force density. The former is
related to the phase boundary properties according to Young-Laplace equation,

�fs = 2γH�n , (3)
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where γ is the surface tension characterizing the fluid-fluid interface, H is the mean
curvature and �n the interface normal.

This surface tension contribution needs also to be considered at contact lines, where
the fluid-fluid interface meets solid walls. This is particularly important in the case of
this droplet generator, since wetting of the surface of the capillary by test fluids strongly
affects the detachment process [4]. The contact line problem is described in terms of a
local apparent contact angle, θ. For static contact lines, this angle is limited by a minimal
advancing and maximal receding values, θadv and θrec, respectively [5]. Those values can be
determined experimentally. In dynamic cases, the apparent contact angle value depends
on the local contact line velocity, ucl, additionally. In this work, the dynamic contact
angle is calculated from the Kistler correlation [6]:

θ = fH
(
Ca + f−1

H

(
θadv/rec

))
, (4)

with fH (x) = arccos

(
1− 2 tanh

[
5.16(

x

1 + 1.31x0.99
)0.706

])
. (5)

In (4), the capillary number Ca =
µliquid·ucl

γ
is a signed quantity, taken positive for an

advancing contact line, negative otherwise.

2.2 The Electric Field Problem

In electrically conductive fluids, the current density, �J , is composed of a conductive
and a conductive components:

�J = ρe�u+ κ�E , (6)

where κ is the ohmic conductivity of the fluid and ρe the charge density associated with
the free charge carriers in the fluid. Using the free charge continuity equation,

∂ρe
∂t

+∇ · �J = 0 , (7)

and introducing an electric potential so that �E = −∇Φ yields the equations describing
the electric problem:

∇ · ε∇Φ = −ρe , (8)

∂ρe
∂t

+∇ · (ρe�u) = ∇ · κ∇Φ , (9)

where ε is the permittivity of the media.
The electric force density applied on the fluid can be obtained from the electric field

distribution using the Maxwell stress tensor:

�fe = ∇ ·
(
ε �E ⊗ �E − 1

2
εE2��I

)
. (10)
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3 NUMERICAL APPROACH

The electrohydrodynamic problem involves two different fluids, for which a description
of the interface is required. We use the Volume of Fluid (VoF) method [7], a diffuse
interface approach, to describe the topology of the fluid-fluid interface. The solution to
Eq. (1)-(5) and (8)-(10), modeling the coupled problem is implemented, along with the
VoF method, using the OpenFOAM [8] framework, as described in detail below.

3.1 Solution of the Fluid Flow Problem

In the Volume of Fluid method, the fluid material properties are represented using the
volume fraction, α, of one of the fluids in each cell of the computational grid. The Navier-
Stokes equations are solved assuming a single phase whose local material properties are
calculated from the volume fraction. The interface is advanced in time by transporting
the volume fraction:

∂α

∂t
+∇ · (α�u∗) = 0 , (11)

with α ∈ [0, 1]. In Eq. (11), �u∗ is a modified velocity field, including an optional numerical
compression velocity pointing normal to the interface [9]. The effective fluid properties
at the interface between fluid 1 and fluid 2 are determined by weighted averaging as

ρ = α · ρ1 + (1− α) · ρ2 , (12)

µ = α · µ1 + (1− α) · µ2 . (13)

The evolution of the volume fraction does not require interface reconstruction, so that
topology changes of the phase boundary are implicitly taken into account.

The surface tension force applied on the diffuse interface can be described using the
volume fraction, as a body force [10]:

�fs = −γ∇ ·
(

∇α

||∇α||

)
∇α . (14)

The contact angle model (4) provides the necessary boundary condition for the compu-
tation of the contribution of the surface tension at the contact line. The velocity of the
contact line is evaluated, according to the scheme proposed in [5], as

ucl =
�uw · �ni√

1− (�nw · �ni)2
, (15)

where �uw is the fluid velocity near the solid wall, �nw is the normal vector to the wall and
�ni = ∇α/||∇α|| is the normal to the phase boundary interface.

The pressure-velocity equations (1), (2) are solved numerically using the piso algorithm
as implemented, e.g., in the interfoam solver (see [11]). As the electric force density
driving fluid motion depends on the fluid velocity through the convection term of the
charge conservation equation (9), we apply a fixed-point iteration between the electric
field solver and the fluid flow solver at every time step of the simulation.
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3.2 Solution of the Electric Field Problem

Sharp interface representations for the material boundaries are usually used in pure
electric field computations. Methods based on interface tracking using a moving mesh
can be readily applied for droplet simulations [12], as long as topology changes are not
involved. The motion of liquids in this work involves strong stretching as well as splitting
of the fluid-fluid interface. Sharp interface tracking via a moving mesh would there-
fore require explicit treatment of interface topology changes, as in e.g. [13]. As droplet
detachment from a capillary involves multiple topology changes from the liquid thread
and secondary droplets [14], such a treatment would need to be applied frequently. We
therefore adopt a VoF-like method for the solution of the electric field equations (9), (10).

The electric field problem is solved on the same computational grid as the fluid problem
using averaged electric properties, defined similarly to Eq. (12) and (13):

1

ε
=

α

ε1
+

1− α

ε2
, (16)

1

κ
=

α

κ1

+
1− α

κ2

. (17)

Note that in (16) and (17), harmonic averaging of the material properties is used rather
than arithmetic averaging. This relates to the particular form of the expected field solu-
tion, where the electric field is essentially normal to the phase boundary for conductive
liquids. In that case, harmonic averaging leads to more accurate results than arithmetic
averaging [15, 16].

Equations (9), (10) are updated by a time staggering scheme as

∇ · εn+1/2∇Φn+1/2 = −ρn+1/2
e , (18)

ρn+1
e − ρne
∆t

+∇ · (ρn+1/2
e �un+1/2) = ∇ · κn+1/2∇Φn+1/2 . (19)

The charge density, ρ
n+1/2
e in (18), is initially unknown. Thus, an inner fixed-point itera-

tion is applied for the solution of (18), (19) in addition to the outer iteration loop which
is applied in every time step of the simulation.

4 Validation Example

In order to validate the numerical approach, a simple one-dimensional example is con-
sidered, see Fig. 1. A planar liquid layer of thickness Ll is transported passively with a
constant velocity u in a surrounding gaseous environment. The two fluids are character-
ized by the permittivities, εl and εg, and electric conductivities, κl and κg, respectively.
At time t0 = 0, an electric voltage U is applied between the two boundaries of the
computational domain. When the external voltage is switched on, electric charges start
accumulating at the front and back interfaces of the liquid layer. The induced charge
moves together with the phase boundaries and keeps increasing until a steady state is
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reached. The analytic solutions for the transient electric field and surface charge densities
are given by

E{l,g} =
U

L
·
[
κ{g,l}

κ∗
·
(
1− exp−κ∗

ε∗
t
)
+

ε{g,l}
ε∗

· exp−κ∗
ε∗

t

]
, (20)

σ± = ±U

L
· εgκl − εlκg

κ∗
·
(
1− exp−κ∗

ε∗
t
)

(21)

where El and Eg are the electric field strengths in the liquid and gas layers, respectively,
σ± are the two interface charge densities, ε∗ = (Lgεl+Llεg)/L, κ∗ = (Lgκl+Llκg)/L and
L = Ll+Lg is the total length of the computational domain. Note that this solution does
not depend on fluid velocity.

Figure 1: Schematic representation of the moving layer problem.

Figure 2 shows the results of the numerical simulation compared to the analytic solu-
tion. The parameters of the problem are chosen as: u = 1m s−1, εl = 4 · ε0, εg = 1 · ε0,
κl = 1.5× 10−8 Sm−1 and κg = 1× 10−12 Sm−1. As seen in the figure, a good agreement
between the analytic and numerical results is obtained even for the coarse grid used here.
Similarly to the numerical solution for the fluid density, the electric field distribution
at the phase boundaries is subject to numerical diffusion. However, the computed total
interface charge agrees nearly perfectly with the analytic solution.

5 Droplet Generator Simulations

The model described in the previous section is applied in the simulation of an electri-
cally driven droplet generator [3]. The generator setup is shown in Fig. 3. A metallic
capillary tube, kept at ground potential, introduces liquid in the pressure chamber. Two
electrodes on each sides of the capillary are connected to a high-voltage source. In order to
prevent electric breakdown in the test chamber, the electrodes are embedded in two insu-
lator blocks. The chamber is capable of sustaining a high-pressure and high-temperature
environment. The liquid introduced from the capillary can be heated separately. In the
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on the droplet accelerate the droplet for the duration of the pulse, eventually leading to
droplet detachment.

Experimental observations show that the dynamics of the flow induced by the electric
field strongly depend on the electrical properties of the test liquid. The two cases are
analyzed separately in the following sections, in order to emphasize the different charging
and fluid flow dynamics.

Although the geometry of the droplet is not axisymmetric, the electric field distribution
is nearly so in the vicinity of the capillary. In order to reduce the computational cost of
simulations, a 2D axisymmetric approach is therefore used in what follows.

Simulations are performed with a grid resolution of 1
δx

= 2.5× 10−5 m−1, corresponding
to approximately 35 cells per primary droplet radius. This resolution is chosen as further
refinement of the grid does not influence the dynamics of primary droplets, while still
capturing the qualitative behavior of the liquid thread and secondary droplets. The time
step size is chosen as ∆t = 2 µs for this grid size, according to the stability limit for surface
tension driven flow [17].

In order to save computational effort, the initial filling regime is simulated on a reduced
domain centered on the capillary. The computational domain is extended vertically for
simulating droplet detachment events. The two domains have, respectively, 20960 and
50200 cells for the chosen resolution. The typical time required to simulate the droplet
filling is 24 h; the typical time required for simulating droplet detachment is 8 h.

5.1 Acetone Droplet Generation

At 1 bar, 293K, the electrical conductivity of acetone is κ = 20 µS and its relative
permittivity εr = 21. The resulting free charge relaxation time is therefore of the order
of 10µs, orders of magnitude smaller than the voltage pulse duration, τp ≈ 10ms and the
time scale of fluid motion. Acetone can be therefore considered as highly conductive for
the considered experimental conditions. The result of the simulation is shown in Fig. 4.
The voltage profile assumed for the simulation, peaks at 2 kV, over a duration of 11.5ms.

The droplet is initially pulled downwards during the short electric pulse. After the end
of the pulse, the droplet continues stretching under its own inertia, eventually leading to
detachment. A comparison of the dynamics of the droplet detachment, Fig. 4, at different
time instants before and after detachment, shows a close agreement between simulated
and experimental dynamics. A slight discrepancy is visible in the form of a secondary
droplet, originating from the liquid thread at the time of detachment, that follows the
primary droplet in the experiment.

A detailed investigation of the dynamics of detachment is shown in Fig. 5. The volume
of the detached primary droplet, illustrated in Fig. 5b is weakly dependent on the applied
voltage, varying less 3% in the investigated range of voltages, 2-5kV. The detachment time,
illustrated in Fig. 5a, is however strongly dependent on the generator voltage. At lower
voltages, a fast variation of the detachment time is observed, while at higher voltages, the
detachment time decreases nearly linearly with increasing applied voltage.
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from the external electric pulse is low, so that electric fields penetrate the droplet. The
effective polarization forces initial push the droplet upwards, causing it to ascend on the
capillary. The weight of the droplet, unbalanced after the end of the electric pulse, results
in the droplet accelerating downwards, eventually leading to detachment.
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Figure 6: n-pentane droplet dynamics: comparison between simulation and experiment for the droplet
shape in the generator at different time instants during the detachment process.

Unlike the case of acetone droplet generation, in the absence of shielding of the capil-
lary by charged conductive liquid, the electric field distribution strongly depends on the
location of the droplet on the capillary. The dependency of the detachment time on the
applied voltage is thus much lower than in the case of conductive droplets, see Fig. 7a. A
small charge is carried by the droplet, after detachment, due to the long relaxation time
in n-pentane, as seen in Fig 7b.

6 Conclusion

The proposed electrohydrodynamic simulation approach allows for accurate modeling
of droplet dynamics under the influence of strong electric fields. In particular, it takes
into account conductive, capacitive as well as convective electrical currents in the fluid.
These contributions determine the induced electric charge in the droplet before and af-
ter detachment and, therefore, are crucial for the droplet dynamics. Simulation results
are shown for an electrically driven droplet generator using highly conductive acetone
droplets and low conductivity n-pentane droplets, respectively. In both cases, excellent
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