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Abstract. The paper is devoted to the homogenization approach in modelling of peri-
odic porous media constituted by piezoelectric porous skeleton with pores saturated by
viscous fluid. The representative volume element contains the piezoelectric solid part (the
matrix) and the fluid saturated pores (the channels). Both the matrix and the channels
form connected subdomains. The mathematical model describing the material behaviour
at the microscopic scale involves the quasi-static equilibrium equation governing the solid
piezoelectric skeleton, the Stokes model of the viscous fluid flow in the channels and the
coupling interface conditions on the transmission interface. The macroscopic model is
derived using the unfolding method of homogenization. The effective material coefficients
are computed using characteristic responses of the porous microstructure. The consti-
tutive law for the upscaled piezo-poroelastic material involves a coefficient coupling the
electric field and the pore pressure. A numerical example illustrates different responses
of the porous medium subject to the drained and undrained loadings

1 INTRODUCTION

The piezoelectric effects which couple the mechanical deformation and the electrical
field have been extensively used in the design of transducers and sensors. The piezoelec-
tric materials have found wast applications in electronics, mechatronics, and micro-system
technology. Smart structures based on these materials allow for intelligent self-monitoring
and self-control capabilities. Nowadays the piezoelectric sensor-actuator systems can be
distributed continuously, being attached to the surface of other structural parts. Such an
arrangement can be used e.g. in the aerospace industry to control vibrations, or acoustic
radiation of thin flexible structures. In the context of porous piezoelectric materials, the
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acoustic wave propagation has been subject of several works [10]. In [4] we suggested to
exploit the piezoelectric effect in the design of a new type of bio-materials which should
assist in bone healing and regeneration. Such possible application for piezoelectric mate-
rials in biomedical engineering is motivated by the electrochemical processes in biological
tissues, being coupled tightly with periodic mechanical loading. In [7], the shape sensitiv-
ity formulae were derived for a class of 2D microstructures comprising one piezoelectric
and one arbitrary elastic material, whereby the shape of the interface between the two
materials was parameterized. The numerical tests have shown how a suitable geometry of
the interface can amplify some of the homogenized coefficients. Sensitivity of the effective
medium properties to the microsrtucture properties were also reported in [9].

This paper is focused on the derivation of the effective material coefficients of the
fluid-saturated porous media with the piezoelectric skeleton. Although this topic was
treated recently in [3], where a special type of piezoelectric anisotropic composite ma-
terials was studied using numerical and analytical methods and the porosity influence
was examined, we pursue another homogenization approach which was reported in [6].
Assuming a quasistatic loading, such that inertia effects can be neglected, by a decom-
posed homogenization of the fluid-structure interaction problem we obtain a macroscopic
model of the upscaled medium. Here we present only the resulting equations governing
the local problems for computing the characteristic responses which are used to evaluate
all the homogenized coefficients involved in the constitutive law. A numerical example
is included to demonstrate the influence of the pore fluid on the overall response of the
upscaled porous piezoelectric medium.

Notations We employ standard bold-face notations for tensors and vectors, alterna-
tively the Einstein summation convention is used. The Lebesgue spaces of 2nd-power
integrable functions on a domain D is denoted by L2(D), the Sobolev space W 1,2(D)
of the square integrable vector-valued functions on D including the 1st order general-
ized derivative, is abbreviated by H1(D). Further, H1

#(Ym) and H1
#(Ym) are the Sobolev

spaces of scalar and vector-valued Y-periodic functions (the subscript #), respectively,
with vanishing mean in Ym.

2 HOMOGENIZED MODEL OF POROUS PIEZOELECTRIC MATERIAL

The poroelastic medium occupies an open bounded domain Ω ⊂ R3 whereby the follow-
ing decomposition of Ω into the matrix and channel parts is considered: Ω = Ωε

m∪Ωε
c∪Γε,

Ωε
m ∩ Ωε

c = ∅, where Γε = Ωε
m ∩ Ωε

c is the interface. By ∂extΩ
ε
m = ∂Ωε

m \ Γε and ∂extΩ
ε
c =

∂Ωε
c \ Γε we denote the exterior boundaries of Ωε

m and Ωε
c, respectively. Both Ωε

m and Ωε
c

are connected domains generated by the representative periodic cell Y = Π3
i=1]0, ȳi[⊂ R3

which splits into the solid part occupying domain Ym and the complementary channel
part Yc, thus

Y = Ym ∪ Yc ∪ ΓY , Yc = Y \ Ym , ΓY = Ym ∩ Yc . (1)
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Figure 1: Porous periodic structure in domain Ω is generated using the reference cell Y .

For a given scale, �i = εȳi is the characteristic size (associated with the i-th coordinate
direction, whereby also ε ≈ �i/L for a given macroscopic characteristic length. Below we
describe two separate problems which can be upscaled independently, if the inertia effects
are neglected:

• steady states of the porous piezoelectric solid saturated by static fluid,

• the Stokes flow in the pores of the undeformed configuration.

2.1 Porous piezoelectric solid saturated by static fluid

We consider the static problem of a deformed piezo-elastic porous structure saturated
by a fluid under a constant pressure, whereby the pores are assumed to be connected.
In the piezoelectric solid, the Cauchy stress tensor σε and the electric displacement �Dε

depend on the strain tensor e(uε) = (∇uε + (∇uε)T )/2 defined in terms of displacement
field uε = (uε

i ), and the electric field E (ϕε) = ∇ϕε defined in terms of the electric
potential ϕε, where we adhere to the sign convention employed in [4],

σε
ij(u

ε, ϕε) = Aε
ijkle

ε
kl(u

ε)− gεkij∂kϕ
ε ,

Dε
k(u

ε, ϕε) = gεkije
ε
ij(u

ε) + dεkl∂lϕ
ε .

(2)

Above, AAε = (Aε
ijkl) is the elasticity fourth-order symmetric positive definite tensor of the

solid, i.e. Aijkl = Aklij = Ajilk, the deformation is coupled with the electric field through
the 3rd order tensor g ε = (gεkij), g

ε
kij = gεkji and d = (dkl) is the permitivity tensor.

The state of the solid skeleton is governed by the following boundary value problem
involving uε, ϕε and the static fluid pressure pε:

• equilibrium of the stress and electric displacements,

−∇ · σε(uε, ϕε) = f ε , in Ωε
m ,

−∇ · �Dε(uε, ϕε) = qεE , in Ωε
m ,

(3)

where f ε is the volume-force and qεE is the volume electric charge;

3

1082



Eduard Rohan, Vladimı́r Lukeš, Robert Cimrman

• mass conservation (change of fluid and solid volume due to fluid injection −Jε)∫

∂Ωε
c

uε · n [c] dSx + γpε|Ωε
c| = −Jε , (4)

where γ is the fluid compressibility;

• boundary and interface conditions,

n [m] · σε(uε, ϕε) = hε , on ∂extΩ
ε
m ,

n [m] · σε(uε, ϕε) = −pεn [m] , on Γε ,

n [m] · �Dε(uε, ϕε) = �εE , on ∂extΩ
ε
m ,

n [m] · �Dε(uε, ϕε) = 0 , on Γε ,

(5)

where n [m] is the outer unit normal vector of the boundary Ωε
m, h

ε and �εE are
the applied surface-forces and the surface electric charge, respectively. Obviously,
for these conditions uε is determined up to a rigid body motion from the space
RBM(Ωε

m), and ϕε up to a constant, provided solvability conditions are satisfied.

To obtain the effective material coefficients describing the piezo-poroelastic material
in the limit for ε → 0, the homogenization method is applied to the weak formulation
of the problem (2)-(5) which reads, as follows: Find (uε, ϕε, p̄ε) ∈ H1(Ωε

m)/RBM(Ωε
m) ×

H1(Ωε
m)× R such that:∫

Ωε
m

[AAεe(uε)− (g ε)T · ∇ϕε] : e(v) dV + p̄ε
∫

Γε

n [m] · v dSx =

∫

∂extΩε
m

hε · v dSx +

∫

Ωε
m

f ε · v dV ,

∫

Ωε
m

[g ε : e(uε) + d ε · ∇ϕε] · ∇ψ =

∫

Ωε
m

qεEψ dV +

∫

∂extΩε
m

�εEψ dSx ,

∫

∂Ωε
c

ũε · n [c] dSx + γαp̄ε|Ωε
c| = −Jε ,

(6)

for all (v , ψ) ∈ H1(Ωε
m)×H1(Ωε

m).

2.2 Stokes flow through rigid porous structure

As pointed out above, the quasistatic viscous flow in the pores can be upscaled sepa-
rately of the deformation problem. The steady flow problem through the channel network
constituting domain Ωε

c is defined in terms of the flow velocity w ε and pressure pε which
satisfy the following equations:

−ηε∇2w ε +∇pε = f ε , in Ωε
c ,

∇ ·w ε = 0 , in Ωε
c ,

w ε = 0 , on Γε ,

−pεn [c] + ηεn [c] · ∇w ε = g ε , on ∂extΩ
ε
c ,

(7)
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where g ε is given on the exterior boundary of the channels. It is worth to remark that
w ε describes the relative velocity of the fluid w.r.t. the solid phase.

By virtue of the small viscosity ansatz [1] we define ηε = ε2η̄ which decreases with the
scale. As discussed e.g. in [2], this viscosity scaling applies when the pores are small, so
that an internal length scale characterizing the velocity profile in the pores is preserved
in the limit ε → 0.

3 The homogenized poroelastic model

The homogenization methods based on the two scale convergence or the unfolding
operator techniques can be applied to describe the limit models arising from asymptotic
analyses of the problems (6) and (7) for ε → 0, cf. [8]. A consistent result has been
obtained e.g. in [5].

In this short paper, we merely present the local problems for the so-called characteristic
responses describing local fluctuations of the involved fields; the detail derivation of the
upscaled model will be published in a forthcoming paper.

3.1 Local problems

We shall use the following bilinear forms:

amY (u , v) = |Y |−1

∫

Ym

[AAey(u)] : ey(v) ,

gmY (u , ψ) = |Y |−1

∫

Ym

gkije
y
ij(u)∂

y
kψ ,

dmY (ϕ, ψ) = |Y |−1

∫

Ym

[d∇yϕ] · ∇yψ .

(8)

By −
∫
D

= |Y |−1
∫
D

with D ⊂ Y we denote the local average. We employ Πij = (Πij
k ),

i, j, k = 1, 2, 3 with components Πij
k = yjδik.

The local microstructural response is obtained by solving the following decoupled prob-
lems for the characteristic responses (ω, ϑ) associated with the macroscopic variables:
strain, electric field and the pore pressure.

• Find the strain correctors (ωij, ϑij) ∈ H1
#(Ym) × H1

#(Ym) for any i, j = 1, 2, 3
satisfying

amY
(
ωij +Πij, v

)
− gmY

(
v , ϑij

)
= 0 , ∀v ∈ H1

#(Ym) ,

gmY
(
ωij +Πij, ψ

)
+ dmY

(
ϑij, ψ

)
= 0 , ∀ψ ∈ H1

#(Ym) ,
(9)

• Find the electric field correctors (ωk, ϑk) ∈ H1
#(Ym) × H1

#(Ym) for any k = 1, 2, 3
satisfying

amY
(
ωk, v

)
− gmY

(
v , ϑk + yk

)
= 0 , ∀v ∈ H1

#(Ym) ,

gmY
(
ωk, ψ

)
+ dmY

(
ϑk + yk, ψ

)
= 0 , ∀ψ ∈ H1

#(Ym) ,
(10)

5

1084



Eduard Rohan, Vladimı́r Lukeš, Robert Cimrman

• Find pore fluid pressure correctors (ωP , ϑP ) ∈ H1
#(Ym)×H1

#(Ym) satisfying

amY
(
ωP , v

)
− gmY

(
v , ϑP

)
=∼
∫

ΓY

v · n [m] dSy , ∀v ∈ H1
#(Ym) ,

gmY
(
ωP , ψ

)
+ dmY

(
ϑP , ψ

)
= 0 , ∀ψ ∈ H1

#(Ym) ,

(11)

3.2 Macroscopic model of the static piezo-poroelastic medium

Using the characteristic responses (9)–(11) obtained at the microscopic scale, the ho-
mogenized coefficients describing the effective properties of the deformable porous medium
are given by the following expressions:

AH
klij = amY

(
ωij +Πij, ωkl +Πkl

)
+ dmY

(
ϑkl, ϑij

)
,

BH
ij = amY

(
ωP , Πij

)
− gmY

(
Πij, ϑP

)
= − ∼

∫

Ym

divyω
ij ,

MH = amY
(
ωP , ωP

)
+ dmY

(
ϑP , ϑP

)
,

DH
kl = dmY

(
ϑl + yl, ϑ

k + yk
)
+ amY

(
ωk, ωl

)
,

GH
kij = gmY

(
Πij, ϑk + yk

)
− amY

(
ωk, Πij

)
= gmY

(
ωkl +Πkl, yk

)
+ dmY

(
ϑij, yk

)
,

Fi =∼
∫

ΓY

ωi · n [m] dSy = gmY
(
ωP , yi

)
+ dmY

(
ϑP , yi

)
.

(12)

Further we define:

B̂ij = BH
ij + φδij , M̂ = MH + γφ . (13)

The macroscopic problem reads, as follows: Find (u0, ϕ0) ∈ H1(Ω)/RBM(Ω)×H1(Ω)/R
and p̄ ∈ R, such that∫

Ω

[AAHe(u0)− (GH)T∇ϕ0 − p̄B̂ ] : e(v 0) dV =

∫

Ω

f̂ · v 0 dV +

∫

∂Ω

h(p̄) · v 0 dSx ,
∫

Ω

[GHe(u0) +DH∇ϕ0 − F p̄] · ∇ψ0 dV =

∫

Ω

q̂Eψ
0 dV +

∫

∂Ω

�Eψ
0 dSx ,

∫

Ω

(
B̂ : e(u0)− F · ∇ϕ0 + M̂p̄

)
dV = −J ,

(14)

for all (v 0, ψ0) ∈ H1(Ω)×H1(Ω).
To conclude this section, we write the effective constitutive equations for the upscaled

porous piezoelectric material:

σH = AAHe(u)− (GH)T∇ϕ− pB̂ ,

�D = GHe(u) +DH∇ϕ− Fp ,

−p =
1

M̂

(
B̂ : e(u)− F · ∇ϕ+ j

)
,

(15)
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where j is the local fluid volume production in the porous material; in fact j = ∇·w , where
w is the seepage velocity. As the consequence of (15), the pressure can be eliminated from
(15)1,2, so that

σH = ÂA
H
e(u)− (Ĝ

H
)T∇ϕ+ M̂−1B̂j ,

�D = Ĝ
H
e(u) + D̂

H
∇ϕ+ M̂−1Fj ,

(16)

where

ÂA
H
= AAH + M̂−1B̂ ⊗ B̂ undrained elasticity ,

D̂
H
= DH − M̂−1F ⊗ F undrained dielectricity ,

Ĝ
H
= GH + M̂−1F B̂ undrained piezoelectric coupling .

(17)

The upscaled piezoelectric effect incorporates the electric field induced by increasing
the fluid pressure, or fluid contents in the pores. Let us consider injection of a fluid
under the pressure p̄ into the porous structure such that the macroscopic deformation is
disabled. If �D = �0 (insulated boundary and no volume charge), then the following electric
field is established (the fluid content increased by j, see (16))

∇ϕ = (DH)−1F p̄ , or ∇ϕ = −(M̂D̂
H
)−1Fj . (18)

4 Flow in the homogenized fluid-saturated piezo-poroelastic medium

As mentioned earlier, if the inertia effects are neglected, the upscaling result can be ob-
tained in two independent steps. From (14), we obtain the mathematical model describing
the static response of the medium, thus no flow occurs. Then, the effective flow of an
electrically neutral fluid in the porous material governed by the Darcy law involving the
intrinsic hydraulic permeability KH and the fluid viscosity η̄. In (14), the last equality
can be interpreted locally. Let p(t, x) be the local pressure and w(t, x) the effective flow
seepage velocity describing the relative effective fluid velocity w.r.t. the solid skeleton,
i.e. w = φ(v f − u̇), where v f is the mean fluid velocity. Then from (14)3, dropping the
superscripts 0, we can derive the following equation:

B̂ : e(u̇)− F · ∇ϕ̇+ M̂ṗ+∇ ·w = 0 , where w = −η̄−1KH∇p . (19)

The Darcy flow model is the classical result, obtained upon homogenizing the Stokes
problem (7), see e.g. [1, 2].

Below we present the problem describing the viscous flow in the piezo-poroelastic
medium characterized by the effective model parameters (12) and (13). To introduce
boundary conditions for the coupled problem, we need the following 3 decompositions of
∂Ω into disjoint parts:

∂Ω = ∂σΩ ∪ ∂uΩ , ∂σΩ ∩ ∂uΩ = ∅ ,

∂Ω = ∂wΩ ∪ ∂pΩ , ∂wΩ ∩ ∂pΩ = ∅ ,

∂Ω = ∂EΩ ∪ ∂ϕΩ , ∂EΩ ∩ ∂ϕΩ = ∅ .

(20)
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For the displacement, the electric potential and the pressure we may consider the following
boundary conditions, where p∂ , wn and g s are given:

u = 0 , on ∂uΩ , n · σ = g s , on ∂σΩ ,

p = p∂ , on ∂pΩ , n ·w = wn , on ∂wΩ ,

ϕ = 0 , on ∂ϕΩ , n · �D = Dn , on ∂EΩ .

(21)

Therefore, the following spaces and admissibility sets are involved in the weak formulation:

U (Ω) = {u ∈ H1(Ω)| u = 0 on ∂uΩ} ,

P (Ω) = {p ∈ H1(Ω)| p = p∂ on ∂pΩ} ,

Φ(Ω) = {ϕ ∈ H1(Ω)| ϕ = 0 on ∂ϕΩ} .

(22)

The space of test pressure functions P0(Ω) is defined according to (22)2 with p∂ ≡ 0
while test displacements belong to U 0(Ω) which is identified with U (Ω) due to (21). In
analogy, Φ0(Ω) = Φ(Ω) is considered as the space of the test electric potentials.

We are now in a position to introduce the weak formulation of the macroscopic problem
for the piezo-poroelastic medium. The zero initial conditions are considered for simplicity,
i.e. u(·, t = 0) = 0, p(·, t = 0) = 0, and ϕ(·, t = 0) = 0. For any time t > 0, the following
system is to be satisfied by (u , ϕ, p) ∈ U (Ω)× Φ(Ω)× P (Ω)

∫

Ω

[AAHe(u)− (GH)T∇ϕ− pB̂ ] : e(v) dV =

∫

Ω

f̂ · v dV +

∫

∂σΩ

g s · v dSx ,

∫

Ω

[GHe(u) +DH∇ϕ− Fp] · ∇ψ dV =

∫

Ω

q̂Eψ dV +

∫

∂EΩ

Dnψ dSx ,

∫

Ω

ζ
(
B̂ : e(u̇)− F · ∇ϕ̇+ M̂ṗ

)
dV +

∫

Ω

∇ζ · η̄−1KH(∇p− f f ) dV =

∫

∂wΩ

wnζ dSx ,

(23)

for all (v , ψ, ζ) ∈ U 0(Ω)× Φ0(Ω)× P0(Ω).

5 NUMERICAL EXAMPLES

We shall illustrate features of the homogenized piezo-poroelastic material using a nu-
merical simulation of a compaction test. To compute numerical solutions of the local
problems (9)-(11) at the micro-level and those of the macroscopic problem (23), we use
the standard FE method using piecewise linear (conforming) approximation for the macro-
scopic fields u , p, and ϕ, and the corrector fields (ω, ϑ). The macroscopic specimen with
dimensions 2h× 2h×h, with h = 1 cm, and the representative periodic cell Y generating
the porous structure are depicted in Fig. 2. In Tab. 1, the homogenized coefficients are
compared with those of the piezoelectric material BaTiO3 constituting the skeleton Ym.
The other homogenized coefficients of the upscaled porous medium are listed in Tab. 2.

8
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Figure 2: Left: periodic cell Y representing piezoelectric porous microstructure; gray part: solid matrix,
red part: fluid channel. Right: Macroscopic domain Ω, only one quarter (as emphasized by the red
colour) is used to solve the macroscopic problem due to its symmetry.

Figure 3: Deformed state of the drained macroscopic specimen at time t = 0.8ms Left: macroscopic
pressure p and seepage velocity w (depicted by arrows, max. magnitude = 7.126 · 10−3 m/s); Right:

electric potential ϕ and electric displacement �D (depicted by arrows, max. magnitude = 3.016 · 10−5

C/m2).

9

1088



Eduard Rohan, Vladimı́r Lukeš, Robert Cimrman

elasticity: (in 10× GPa) A1111 A3333 A1122 A2233 A1313 A1212

skeleton: 15.040 14.550 6.560 6.590 4.240 4.390
homog. porous: 7.816 8.614 2.343 2.724 2.419 1.838

piezo-coupling: (in C/m2) G311 G322 G333 G223

skeleton: -4.322 -4.322 17.360 11.404
homog. porous: -1.483 -1.483 12.663 6.046

dielectricity: (in 10−9 C/Vm ) D11 D33

skeleton: 8.456 10.651
homog. porous: 1.284 1.505

Table 1: Piezoelectric properties of the skeleton and of the homogenized porous material. The transverse
isotropy yields the following symmetries: A2233 = A1133, A1313 = A2323, G311 = G322, G223 = G113,
D11 = D22. Other components are zero.

B̂11 B̂33 M̂ F3 K11 K33

- - 10−2/GPa 10−11×m/V −11× m2 −11× m2

0.548 0.464 5.352 -1.274 2.474 7.741

Table 2: Homogenized coefficients. Note the symmetries B̂11 = B̂22, K11 = K22, other components are
zero. Note that the physical permeability is ε20 times smaller, thus, K11/η̄ = 2.604× 10−12 m / Pa·s.

Although the homogenized coefficients computed using (12) and (13) are independent of
the microstructure size, the hydraulic permeability depends on ε0 > 0 by virtue of the
permeability scaling; we used ε0 = 10−4, thus the microstructure size is � = 0.1 mm.
Therefore, η̄ = η/ε20 = 0.950× 10−8 Pa·s for glycerin considered as the pore fluid with its
compressibility γ = 2.30× 10−10 Pa−1.

We considered the drained (case I) and undrained (case II) compaction of the macro-
scopic specimen. In both the cases, the following conditions were prescribed; bottom side:
u ·n = 0, wn = 0, ϕ = 0, top side: prescribed ū = u ·n = −10−3s(t)m, wn = 0, Dn = 0.
The loading function s(t) describes the ramp-and-hold test (the plato for t > 0.5 ms).
On lateral faces of the specimen, p = 0 in case I (drained), while wn = 0 in case II
(undrained). No volume forces are considered, thus, f f = f̂ = 0 in (23).

For case I, in Fig. 3 the pressure, the seepage velocity, and the electric fields are depicted
for the deformed state at t = 0.8 ms. The spatial pressure variation leads to a nonvanishing
field �D(x); obviously, �D vanishes in the case II due to the homogeneous distribution of
e(u), p and ∇ϕ. In Fig. 4 time variation p(xA, t), ϕ(xA, t), and e23(x

A, t) is displayed at
a point A situated in the middle of the computational domain, xA = [0.5h, 0.5h, 0.5h] cm,
see Fig. 2. While all quantities are constant for the case II in the plato, t > 0.5 ms, they
change in the case I.

10
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Figure 4: Left: Comparison of time evolution of pressures pI , pII at macroscopic point A. Right:
Difference of the strain component eII23 − eI23 (blue solid line) and of the electric potential ϕII −ϕI (green
dashed line) at macroscopic point A.

6 CONCLUSIONS

In the present paper we studied the piezoelectric properties of the periodic porous media
saturated by viscous fluids under quasistatic loadings. Using the periodic homogenization
method, the effective medium coefficients were derived. The porous materials enable to
generate the electric field without any macroscopic deformation, just due to an injected
volume of fluid in the pores. In the upscaled model, this is respected by the new vector
coefficient F which is associated with the polarization of the piezomatrial constituting
the skeleton. We have shown, how the piezoelectric properties influence the Biot stress
coupling coefficients and the Biot compressibility. It is worth noting that the model
describes flow of a neutral fluid, whereby electric insulation was considered on the pore
surface.

Although the derived model describes the linear response of the homogenized medium,
it can be adapted to capture some nonlinear effects, namely those associated with the
fluid flow in the pores. Assuming the linear kinematics framework, in [6], we proposed
a weakly nonlinear model of the Biot continuum, where the nonlinearity in the homoge-
nized continuum is introduced in terms of the deformation-dependent material coefficients
which are approximated as linear functions of the macroscopic response. These functions
are obtained by the sensitivity analysis of the homogenized coefficients computed for a
given geometry of the porous structure which transforms due to the local deformation.
The deformation-dependent material coefficients approximated in this way do not require
any solving of local microscopic problems for updated configurations. To deal with the
piezo-poroelastic material, we adhere the same approach of [6] and employ the sensitivity
analysis developed for the piezoelectric composites in [7].
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