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Abstract. Freezing phenomena in porous media have attracted great attention in geotechnics,
construction engineering and geothermal energy. For shallow geothermal applications where
heat pumps are connected to borehole heat exchangers (BHEs), soil freezing around the BHEs
is a potential problem due to persistent heat extraction or inappropriate design which can sig-
nificantly influence the temperature distribution as well as groundwater flow patterns in the
subsurface, and even lead to frost heave. A fully coupled thermo-hydro-mechanical freezing
model is required for advanced system design and scenario analyses. In the framework of
the Theory of Porous Media, a triphasic freezing model is derived and solved with the finite
element method. Ice formation in the porous medium results from a coupled heat and mass
transfer problem with phase change and is accompanied by volume expansion. The model is
able to capture various coupled physical phenomena during freezing, e.g., the latent heat ef-
fect, groundwater flow with porosity change and mechanical deformation. The current paper is
focused primarily on the theoretical derivation of the conceptual model. Its numerical imple-
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mentation is verified against analytical solutions of selected phenomena including pure phase
change and thermo-hydro-mechanical process couplings.

1 Introduction

Among different coupled processes, the thermal-hydro-mechanical behaviour of solid-liquid
phase change in general and freezing in fluid-saturated porous media in particular is of great
interest in soil construction [1], geotechnics [2], energy storage [3] and geothermal applications
[4, 5]. Considering shallow geothermal energy, ground source heat pump systems (GSHPS) are
increasingly employed as an efficient technology for the heating and cooling of buildings. The
general proposition of a GSHPS is to extract heat from the shallow subsurface (50 m – 200 m
below the surface) by circulating a heat-transfer fluid through single or multiple borehole heat
exchangers (BHE). The energy carried by the circulating fluid is then lifted by heat pumps to
temperature levels suitable for domestic applications. In cold regions, the undisturbed soil tem-
perature is already below 10 ◦C [6]. When its temperature drops below 0 ◦C due to continuous
heat extraction or inappropriate BHE/GSHPS design, freezing of the groundwater surrounding
the BHEs will occur [7]. This will not only strongly affect the soil temperature distribution,
hydraulic properties and the heat pump efficiency but may also cause mechanical damage to the
BHEs and the surrounding facilities [4, 8]. For a discussion of implications on the design length
of BHEs and economic aspects, cf. Zheng et al. [5].

In order to quantitatively analyze these coupled multi-physical phenomena on an engineering
scale, a reliable macroscopic, fully coupled thermo-hydro-mechanical model is required which
captures the relevant phenomena. The macroscopic Theory of Porous Media (TPM) [9, 10, 11]
has been selected here as an ideal framework for this task.

A fundamental mathematical model based on mixture theory and thermodynamical princi-
ples was established for saturated porous media by [12]. Another macroscopic ternary model
[13] incorporating liquid, ice and solid was constructed based on the theory of poromechanics
by Coussy. As an extension of this model [13], Zhou & Meschke [2] developed a ternary model
in view of a detailed physical description of ice crystallization. In recent years, the Theory
of Porous Media was employed and Bluhm et al. [10, 14] presented a ternary model derived
from thermodynamical considerations. Later Lai et al. [18] proposed a theoretical model of
thermo-hydro-mechanical interactions during freezing and validated it with experiments. For
the unsaturated cases, Li et al. [15, 16] demonstrated the heat-moisture-deformation coupling
based on a theoretical framework with and without explicit consideration of the gas phase.
Differing from considering gas as an extra phase, Liu & Yu [17] directly employed Richard’s
equation to capture the fluid flow in the unsaturated zone.

In the present paper, a fully coupled thermo-mechanically consistent THM freezing model
for liquid-saturated porous materials is derived based on the Theory of Porous Media by exploit-
ing the entropy inequality. In contrast to some of the previous models, Truesdell’s metaphysical
principles [19] are strictly adhered to for the mixture balance relations. The description of the
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mechanical behaviour of the ice and solid phases accounts for their differing natural configura-
tions.

The fundamental kinematics and balance relations are listed in Section 2. The assumptions
made and constitutive relations derived from the Clausius-Duhem inequality are presented in
Section 3. With the balance relations and constitutive laws, the governing equations are given
in Section 4. The verification of the numerical model is performed in Section 5. The paper
closes with an illustrative numerical example in Section 6.

2 General definitions

2.1 Kinematics

Consider a medium composed of different phases or constituents α, each represented by
a substitute continuum defined on the entire control space. The motion of a constituent α is
described by its motion function χα that maps the position Xα of a material point (particle) in
the reference configuration to its spatial location x in the current configuration:

x = χα (Xα, t) (1)

Each phase can then be assigned a deformation gradient as well as its inverse

Fα = Gradα x and F−1
α = grad Xα (2)

and the material time derivative following the motion of a phase α defines the phase velocities

vα = x′α =
∂χα (Xα, t)
∂t

(3)

Based on these fundamental kinematic definitions, the entire spectrum of continuum mechanical
kinematic quantities becomes available, e.g. the material and spatial velocity gradients:

(Fα)′α = Gradα x′α and lα = grad x′α = (Fα)′α F−1
α (4)

Following the above relations, the right Cauchy-Green deformation tensor and Green-Lagrangean
strain tensor read:

Cα = FT
αFα and Eα =

1
2

(Cα − I) (5)

When small-strain conditions are assumed, the finite deformation approach can be reduced
to a geometrically linear one via lin Eα = εα and the distinction between reference configuration
and current configuration is no longer necessary in the spatial operators. For further definitions,
see standard texts on continuum mechanics [19].

Based on Truesdell’s metaphysical principles [19], the motion of the mixture is governed by
the same equations as the motion of a single body. Hence, summation of the balance equations
of the individual phases listed in the subsequent section must yield the balance equations known
from continuum mechanics of single phase materials. This condition imposes restrictions on the
production terms. For details, the reader is referred to, e.g., [9] and references therein.
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3 Balance equations and constitutive relations

3.1 Specific assumptions

To maintain a certain level of generality in the conceptual modelling section, a finite strain
setting will be maintained throughout the derivation of the model. A first implementation of the
governing equations will then rest on the assumption of linear kinematics.

Before specifying the balance equations, some basic assumptions of the model shall be clar-
ified.

1. A three-phase mixture consisting of solid (S), ice (I) and the aqueous pore fluid (L) is
considered: α = {S, I, L}.

2. For all phases we assume incompressibility in the sense �αR = �αR(T ).

3. Deformation and flow occur in a quasi-static fashion such that inertial effects can be
neglected in the final governing equations: aα = 0.

4. The local temperatures of all constituents are equal (local thermal equilibrium): Tα = T .

5. Mass transfer is limited to the water and ice phases, i.e. �̂S = 0, �̂L = − �̂I.

6. The constituents solid and ice are kinematically constrained once the ice is formed at
time tF, i.e. vS = vI. At that stage, the solid may have undergone a motion already, i.e.
the reference coordinates of an ice particle are given by X̂I = χS(XS, tF). The current
placement of corresponding solid and ice particles is then given by the motion function
of ice and solid via x = χS(XS, t) = χI(X̂I, t) = χI

(
χS(XS, tF), t

)
.

Assumption 6 will be captured by a multiplicative decomposition of the deformation gradient
of the solid into a part before freezing (S0) and a part after freezing (I) following [10]

FS = F̂IFS0 (6)

It will be assumed that stresses in the ice are only determined by that part of the motion accrued
after freezing has occurred, i.e. by F̂I, while the stress response of the solid is characterised by
FS itself. Under the small-strain assumption, the decomposition of the motion simplifies to:

εS = εI + εS0 (7)

Based on the general mass balance in the form

φα (�αR)′α + (φα)′α �αR + �αRφα div vα = �̂α (8)

as well Assumptions 5 and 6, the derivatives of the individual volume fractions are obtained
from the above mass balances in the following form
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(φS)′S = −φSdivvS − φS
(�SR)′S
�SR

(9)

(φI)′S =
�̂I

�IR
− φIdivvS − φI

(�IR)′S
�IR

(10)

(φL)′S = −
�̂I

�LR
− φLdivvL − φL

(�LR)′L
�LR

− gradφL · wLS (11)

Based on Assumption 2, the time derivative of the material density can be expressed via the
temperature rate and the volumetric thermal expansion coefficient βTα

(�αR)′α =
∂�αR

∂T
T ′α = −�αR βTαT ′α with βTα = −

1
�αR

∂�αR

∂T
(12)

3.2 Saturation condition

The saturation condition for this ternary mixture can be written in absolute and in rate form
(following the trajectory of the solid) as

∑
α

φα = 1 and
∑
α

(φα)′S = 0 (13)

Substitution of Eqs. (9)–(11) yields the model-specific form of the mixture volume balance:

0 = div
[
vS + φLwLS

]
+ �̂I
(
�−1

LR − �−1
IR

)
+
φS(�SR)′S
�SR

+
φI(�IR)′S
�IR

+
φL(�LR)′L
�LR

(14)

3.3 Evaluation of the entropy inequality

The entropy inequality will be exploited following the Coleman-Noll procedure. Invoking
the assumption of local thermal equilibrium, the production-term constraint in the energy bal-
ance, and adding the saturation condition as a constraint to the entropy inequality yields

0 ≤
κ∑
α=1

{
−�α[(ψα)′α + T ′αηα] − �̂α

(
ψα −

1
2

vα · vα
)

+

σα : lα − p̂α · vα −
1
T

qα · grad T − λ(φα)′S

} (15)

The Lagrange multiplier λ can be understood as a pressure-type reaction force enforcing the
saturation constraint.

Employing the principle of phase-separation [9], the free energy of the solid phase is as-
sumed to depend on solid deformation and temperature, the liquid phase free energy only on
temperature, and the free energy of the ice phase on the ice volume fraction, temperature and
that part of the deformation characterizing ice deformation, cf. Eq. 6. Hence, the following
Ansatz is made for the specific Helmholtz free energies:
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ψS = ψS(CS,T ) ψI = ψI(ĈI,T, φI) ψL = ψL(T ) (16)

where the right Cauchy-Green tensors CS = FT
SFS and ĈI = F̂T

I F̂I have been used.
Neglecting terms associated with the kinetic energy of mass transfer, and using the trans-

formed mass balance equations (9)–(11), inequality (15) can be expanded to

0 ≤ −�S(ψS)′S + T ′S

(
−�SηS + λ

φS

�SR

∂�SR

∂T

)
− �I(ψI)′S + T ′S

(
−�IηI + λ

φI

�IR

∂�IR

∂T

)
−

− �L(ψL)′L + T ′L

(
−�LηL + λ

φL

�LR

∂�LR

∂T

)
− �̂I

(
ψI +

λ

�IR
− ψL −

λ

�LR

)
+

+ (σS + λφSI) : dS + (σI + λφII) : dS + (σL + λφLI) : dL−

−
∑
α

p̂α · vα + λ grad φL · wLS −
1
T

qSIL · grad T with qSIL =
∑
α

qα

(17)

Now, the terms σE
α = σα + λφαI defining the so-called extra stresses can be introduced.

Based on dimensional analyses, it is common practice to neglect fluid extra stresses. Hence, we
find a hydrostatic stress state in the fluid and identify the Lagrange multiplier λ with the pore
pressure pLR:

σL = −pLRφLI with λ = pLR (18)

The constraint on the momentum production terms yields the relation

−(p̂S + p̂I) = p̂L + �̂IwLS (19)

Similarly to the stresses, the extra momentum production is the constitutively determined
term in addition to effects contributed by the Lagrange multiplier—i.e. the liquid pressure—
and is defined as

p̂E
L = p̂L − λ grad φL (20)

With Eq. (16) and (Cα)′α = 2FT
αdαFα we can now write

0 ≤
(
σE

S − 2�SFS
∂ψS

∂CS
FT

S

)
: dS +

(
σE

I − 2�IF̂I
∂ψI

∂ĈI
F̂T

I + �IφI
∂ψI

∂φI
I
)

: dS−

−
∑
α

�α

(
ηα − λ

1
(�αR)2

∂�αR

∂T
+
∂ψα
∂T

)
T ′α − �̂I

[
ψI +

1
�IR

(
λ + φI

∂ψI

∂φI

)
− ψL −

λ

�LR

]
−

− �IφI βTI
∂ψI

∂φI
T ′S − p̂E

L · wLS −
1
T

qSIL · grad T

(21)

This form motivates the introduction of the extra entropy terms ηE
α such that
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ηα = η
E
α + λ

1
(�αR)2

∂�αR

∂T
= ηE

α −
βTα

�αR
pLR (22)

Based on the Ansatz defined in Eq. (16), the following restrictions can be derived:

ηE
α = −

∂ψα
∂T

and ηα = η
E
α −
βTα

�αR
pLR for α = S and L (23)

ηE,F
I = −∂ψI

∂T
and ηI = η

E,F
I −

βTI

�IR

(
pLR + �I

∂ψI

∂φI

)

︸�������������︷︷�������������︸
pred

with ηE,F
I = ηE

I +
βTI

�IR
�I
∂ψI

∂φI

(24)

σS = −pLRφSI + 2�SFS
∂ψS

∂CS
FT

S (25)

σI = −φI

(
pLR + �I

∂ψI

∂φI

)

︸�������������︷︷�������������︸
Pred

I + 2�IF̂I
∂ψI

∂ĈI
F̂T

I (26)

Introducing the chemical potential-type quantities

ΨI = ψI +
pred

�IR
and ΨL = ψL +

pLR

�LR
(27)

allows the formulation of the remaining dissipation inequality as

D = −p̂E
L · wLS −

1
T

qSIL · grad T − �̂I(ΨI − ΨL) ≥ 0 (28)

Treating physically distinct terms independently, the heat flux vector can be found from the
linear relation

0 ≤ −qSIL · grad T → qSIL = −λSIL grad T with a · λSILa ≥ 0 ∀ a � 0 (29)

where λSIL is the effective heat conductivity tensor of the saturated porous medium.
Similarly, the flow-law can be derived from a linear relationship as

0 ≤ −p̂E
L · wLS → p̂E

L = −SwLS with a · Sa ≥ 0 ∀ a � 0 (30)

Substituting the fluid stress tensor from Eq. (18) and the flow law from relation (30) into the
fluid momentum balance and choosing S−1 = K/(µLRφ

2
L) recovers a Darcy-like law:

φLwLS = −
K
µLR

(
grad pLR − �LRbL

)
(31)

In which K is the permeability and varies with the ice formation which occupies the porosity.
Finally, a kinetic law for the phase transition can be defined based on the difference in the
chemical potentials of the liquid and ice phases:

0 ≤ − �̂I(ΨI − ΨL) → �̂I = cF(ΨL − ΨI) with cF ≥ 0 (32)

For an extended discussion of phase change in this context, see [20].
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4 Governing Equations and Numerical Implementation

Free energy formulations for the finite-strain setting can be found in [14, 10, 20] and others.
Based on the general constitutive setting outlined above, considerations are now limited to the
small strain setting using the decomposition in Eq. (7). For an initial implementation with the
purpose of algorithmic testing, some of the physical terms occurring as a consequence of the
above derivations and the chosen energy functionals have been neglected. They will be added
subject to their relevance indicated by an order-of-magnitude analysis. The following set of
governing equations has been implemented into OpenGeoSys [21] for initial testing.

Mixture volume balance

0 = div
[
(uS)′S + φLwLS

]
+ �̂I
(
�−1

LR − �−1
IR

)
− βTT ′S with βT =

∑
α

φα βTα (33)

Mixture momentum balance

div (−pLRI + λStr(εS)I + 2µSεS − 3αTSkS(T − TS0)I + λItr(εI)I + 2µIεI−
3αTIkI(T − TI0)I − 3αFIkI(φI − φI0)I) + �b = 0

(34)

Mixture energy balance

(�cp)effT ′S − ∆HI �̂I − div(λSIL grad T ) + �LRcpLφLwLS · grad T = 0 (35)

The corresponding weak forms are linearized using a Newton-Raphson scheme. The discretized
primary variable field uS is interpolated with shape functions an order higher than those used
for the remaining primary variables pLR and T .

5 Verification

Due to the complexity of the fully coupled thermo-hydro-mechanical freezing process and
the associated lack of analytical solutions, the initial verification is here separated into a pure
thermo-hydro-mechanical part and a pure phase change part, both using analytical solutions.

5.1 Verification of the THM model

In this benchmark, phase change is neglected and a completely sealed specimen is heated up
homogeneously. The difference of the thermal expansion coefficients of fluid and solid phase
results in a pore pressure which can be determined analytically in the case of an elastic solid
skeleton [22]:

pLR = −KSφF(βTF − βTS)∆T (36)

where KS is the bulk modulus of the solid matrix, φF is the porosity and βTS= 2.1e-5 and
βTF =2.07e-4 are the volumetric thermal expansion coefficients of solid and fluid. Under a
homogeneous temperature increment of 80 K, a fluid pressure of 0.1042 MPa develops in the
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(a) Radial displacement during unconfined compression.
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(b) The propagation of the freezing front X over
time.

externally load-free specimen under undrained conditions. This value is recovered by the nu-
merical model with a relative error below 10-6. Numerically, the direct linear solver SparseLU
(http://eigen.tuxfamily.org) and nonlinear tolerances 10-8 (absolute error) have been
used.

Other tests performed for verification of the THM coupling included transient confined and
unconfined compression tests (Fig. 1a) as well as flow under thermal gradients; further details
can be found in https://dev.opengeosys.org/docs/benchmarks/.

5.2 Phase change verification

In this benchmark, only the thermal problem including phase change is considered and the
propagation of the freezing front is calculated by the Neumann analytical solution [23]. A 1 m
long water column (achieved by setting the porosity to unity) was connected to a freezing wall
of -3 ◦C. The initial temperature was given as 2 ◦C in the entire domain. All parameters used in
the simulation can be found in [5]. The location of the phase change front X (t) is compared to
the analytical solution in Fig. 1b.

6 Numerical Example

In this section, an academic example of the thermo-hydro-mechanical freezing model uses
an axisymmetric setup of a cylinder with a radius and height of side 1.0 cm. The domain is
divided into 100 elements and the simulation time of 1000 s is split into time steps of 50 s.
The externally load-free specimen has an initial temperature of 5 ◦C. At the bottom, a constant
temperature of -5 ◦C is set as boundary condition. In Fig. 1, the evolving ice saturation with the
associated expansion of the specimen is depicted.
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(a) 50 s (b) 150 s (c) 1000 s

Figure 1: Freezing front evolution (colors) and displacement field (overlay grid) during freezing
propagation.

7 Conclusion

In this paper, a macroscopic fully coupled thermo-hydro-mechanical model under the frame-
work of the Theory of Porous Media is presented for the simulation of liquid-solid phase change
considering effects like the ice volume expansion, hydraulic pressure changes, and the latent ef-
fect. It is verified separately with different transient analytical solutions and will be further used
to predict the frost evolution around bore-hole heat exchangers.
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