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Abstract. The impressive progress of the kinetic schemes in the solution of gas dy-
namics problems and the development of effective parallel algorithms for modern high
performance parallel computing systems led to the development of advanced methods
for the solution of the magnetohydrodynamics problem in the important area of plasma
physics. The novel feature of the method is the formulation of the complex Boltzmann-
like distribution function of kinetic method with the implementation of electromagnetic
interaction terms. The numerical method is based on the explicit schemes. Due to logical
simplicity and its efficiency, the algorithm is easily adapted to modern high performance
parallel computer systems including hybrid computing systems with graphic processors.

1 INTRODUCTION

The tremendous progress in the development of high performance computing systems,
especially expecting drastically new exascale computing systems, including the challenges
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in architecture, scale, power and reliability, gives new opportunities for the mathematical
modeling of important physical phenomena in the present and future. Nevertheless the
complexity of the challenges in science and engineering continues to outpace our ability
to adequately address them through impressively growing computational power.

A feature of the present is that the development of technologies and computer systems
architecture are well ahead of software development. The software problems are primarily
associated with the complexity of the algorithms adaptation for the differential equations
of mathematical physics to high performance computing systems architecture. In partic-
ular they refer to one of the important requirements as the accuracy in combination with
the correctness of the initial mathematical models. Another requirement for the methods
is their logical simplicity and high efficiency at the same time. The numerical algorithms
should be simple and transparent from a logical point of view.

One of the important directions to overcome these problems is the development of a
nontraditional approach to initial mathematical models and computational algorithms.
In the present study for the solution of the multidimensional gas dynamics and magneto-
hydrodynamics problems kinetic difference scheme is proposed. It is convenient from the
physics point of view to define the gas dynamics and magnetohydrodynamics quantities
from close relations between the kinetic and gas dynamics description of physics processes
[1, 2, 4, 5, 6, 7].

Another aspect is the study of the explicit finite difference schemes, which seem to
be preferable for future high performance parallel computing, especially in terms of their
simplicity and well adaptability to parallel program realization, including hybrid high
performance parallel computing systems. The weakness of explicit schemes is a strictly
limited time step that ensures computational stability. This restriction becomes critical
with the growing number of nodes and the reduction in the step of a spatial mesh. The
advanced explicit kinetic finite difference schemes have a soft stability condition giving
the opportunity to enhance the stability and to use very fine meshes [3].

The mentioned aspects are used for the development of the framework for the study of
the dynamics of the conducting gas media in strong magnetic fields at high performance
parallel computing systems.

2 THEORETICAL ISSUES

2.1 Gas Dynamics Processes

The kinetic theory describes the gas dynamics by the Boltzmann differential equation
through the evolution of the distribution function f (x, ξ, t) [8]:

(1)
∂f (x, ξ, t)

∂t
+ ξ · ∇f (x, ξ, t) = C (f)

where C (f) is a nonlinear integral operator which describes the collisions between
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gas molecules.

This evolution equation follows naturally from the relations between the kinetic and
the gas dynamics description of continuous media. The macroscopic observables such as
density, momentum, energy flux as a function of x and t are obtained from the moments of
the distribution function with respect to the macroscopic velocity. The evolution equations
for these gas dynamics quantities are obtained by integrating Eq. (1) over molecular
velocities ξ with summational invariants m,mξ,1

2
mξ2. The computational interest in

kinetic formulations of the gas dynamics is high due to the linearity of the differential
operator on the left side of Eq. (1). Nonlinearity is confined by the collision term, which
is generally local in x and t.

An important feature is that the collision integral vanishes in the equilibrium state
when the local Boltzmann distribution function f is a Maxwellian:

(2)f(x, ξ, t) =
ρ(x, t)m1/2

(2πkT (x, t))3/2
exp

{
− m

2kT (t,x)
(ξ − u(t,x))2

}

This leads to the use of this model for numerical methods and possible generaliza-
tions in order provide a natural kinetic description of the system of conservation laws.
This approximation is sufficient for the gas dynamics processes and is called the kinetic
approach [1].

2.2 Electromagnetic Processes

In [9] it was shown that electromagnetic fields do not destroy the validity of the Boltz-
mann equation and this opened the way for the implementation of the electromagnetic
term in the Boltzmann-like distribution function. From the vector nature of the elec-
tromagnetic interaction, the distribution function should taking to account the vector
behavior and provide correct formulation for the evolution of the magnetic field, i. e.
the magnetic field should be generally defined as the momentum of the Boltzmann-like
distribution function.

A few useful attempts to formulate the Boltzmann-like statistical distribution function
can be found in [11, 12, 13], but physical meaning was not clear defined.

We propose an evaluation of the electromagnetic processes in the context of the distri-
bution function, taking to account the axial nature of the magnetic field.

For the purposes of magnetohydrodynamics, the effect, which a magnetic field exerts
on a certain volume, is obtained by integrating the electromagnetic stress tensor over the
surface of that volume and the correspondent propagation velocity can be defined as a
complex vector of velocity:

(3)vem = uem + iwem

At first approximation the term defined by electric forces could be considered as drift
component in meaning that electric field forces is polar vector nature. The magnetic
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field contributions could be defined through the axial vector feature of the magnetic field
interaction and define as Alfven velocity:

(4)wem =
B
√
ρ

2.3 Proposed Distribution Function for MHD

Using the above definitions we define the local complex Boltzmann Maxwellian distri-
bution function of magnetohydrodynamics with drift velocity u in magnetic field B at the
equilibrium:

fM =
ρm1/2

(2πkT )3/2
exp

{
− m

2kT

∣∣∣∣(ξ − u)− i
B

√
µmρ

∣∣∣∣
2
}
, (5)

The first term on the right-hand side of (5) includes the internal energy and the second
term is the magnetic field energy. The hydrodynamics observables are real scalars and
vectors. The complex components include the dynamics of the macroscopic observables
introduced by the evolution of the magnetic field, keeping their specific pseudo-vectorial
nature. The hydrodynamic and electromagnetic observables are obtained respectively
as the real and imaginary part of the integral of the distribution function (5) with the
summational invariants

(
m,mξ, 1

2
mξ2,mξ∗

)
along the line L parallel to the real axis and

shifted by iB/
√
µρ in the imaginary axis direction.

ρ =

∫

L

mfMd3ξ (6)

u =
1

ρ

∫

L

mξfMd3ξ (7)

E =

∫

L

1

2
mξ2fMd3ξ (8)

B = −
√

µm

ρ

∫

L

mξ∗fMd3ξ (9)

For the compressible media, we use the linear approximation of the magnetic permeability:

µm = µρρ (10)

where µρ is a constant representing the magnetic permeability per unit density. The
proposed complex Boltzmann Maxwell like distribution function contains the hydrody-
namics terms and the electromagnetic terms. Thus by using this distribution function
to calculate the mass, momentum, energy and magnetic field fluxes, most of the elec-
tromagnetic contributions are calculated directly, i.e. one does not have to solve the
hydrodynamics and magnetic force components separately or differently, as will be shown
below.
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3 THE IDEAL MAGNETO GAS DYNAMICS EQUATIONS

To provide the first step of the formulation of the MHD conservation laws equation,
the equilibrium state is considered with the proposed distribution function. The MHD
system of equations is obtained by the integration of (1) with vanishing collision integral
with the summational invariants following the definition in (9):

∫

L

m
∂f

∂t
+

∫

L

mξ · ∇fd3ξ = 0 (11)
∫

L

mξ
∂f

∂t
+

∫

L

mξξ · ∇fd3ξ = 0 (12)
∫

L

1

2
mξ2

∂f

∂t
+

∫

L

1

2
mξ2ξ · ∇fd3ξ = 0 (13)

∫

L

mξ∗
∂f

∂t
+

∫

L

mξ∗ξ · ∇fd3ξ = 0 (14)

The result obtained, set of Eq. (14), is the ideal magnetohydrodynamics system of
equations:

∂ρ

∂t
+

∂

∂xi

ρui = 0 (15)

∂

∂t
ρui +

∂

∂xk

[(
p+

B2

2µM

)
δik + ρuiuk −

BiBk

µM

]
= 0 (16)

∂E

∂t
+

∂

∂xi

[
ui

(
E + p+

B2

2µM

)
− BiukBk

µM

]
= 0 (17)

∂Bi

∂t
+

∂

∂xk

[ukBi − uiBk] = 0 (18)

In addition an equation for ∇ ·B is obtained as the imaginary part of the integral of the
summational invariant (m) respect to the velocities ξ:

∫

L

m
∂f

∂t
+

∫

L

mξ · ∇fd3ξ = 0 (19)

∂Bi

∂xi

= 0 (20)

4 THE QUASI MAGNETO GAS DYNAMICS SYSTEM OF EQUATIONS

The quasy MHD system of equations for the real gases is obtained using the integration
technique outlined in section 2 and the balance relation based on the Taylor expancion of
the variation of the local distribution function in spatial variables up to third order [?]:

f j+1 − f j

∆t
+ ξi

∂f j

∂xi

= ξiξk
∂

∂xi

τ

2

∂f j

∂xk

(21)

5

928



B. Chetverushkin, N. D’Ascenzo, A. Saveliev and V. Saveliev

The evalution equation for the magneto gas dynamic variables (quasi magneto gas dy-
namic equations) obtained as:

∂ρ

∂t
+

∂

∂xi

ρui =
∂

∂xi

(
τ

2

∂

∂xk

Πik

)
(22)

∂ρui

∂t
+

∂

∂xk

Πik =
∂

∂xk

ΠD
ik +

∂

∂xk

[(
τ

2

∂

∂xk

Πik

)
uk

]
(23)

∂E

∂t
+

∂Fi

∂xi

=
∂Qi

∂xi

+
∂

∂xi

ΠD
ikuk+

+
∂

∂xi

[(
E + p

ρ
+

1

µm

B2

2ρ

)
τ

2

∂

∂xk

Πik

]
(24)

∂Bi

∂t
+

∂

∂xk

MB
ik =

∂

∂xk

ΠDB
ik (25)

The right-hand of the kinetic magneto gas dynamic Eq. (22-25) contains dissipative
terms. In comparison with other methods, the dissipative terms are obtained not by
phenomenology with some assumptions about magneto gas dynamics processes but in
consistency with the difference scheme of the Boltzmann equation.

Πik is the momentum flux density tensor for a perfect gas in magnetic field:

Πik =

(
p+

B2

2µm

)
δik + ρuiuk −

1

µm

BiBk (26)

Fi is the heat transfer flux of a perfect gas in magnetic field:

Fi =

[(
E + p+

B2

2µm

)
ui −

1

µm

BiukBk

]
(27)

MB
ik is the asymmetric product between velocity u and magnetic field flux B:

MB
ik = ukBi − uiBk (28)
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The dissipative terms:

ΠD
ik =

τ

2

(
p
∂ui

∂xk

+ p
∂uk

∂xi

− 2

3
p
∂ul

∂xl

δik

)

+
τ

2

[(
1

µm

B2

2
δlk −

1

µm

BlBk

)
∂ui

∂xl

+

(
1

µm

B2

2
δil −

1

µm

BiBl

)
∂uk

∂xl

−
(

1

µm

B2

2
δik −

1

µm

BiBk

)
∂ul

∂xl

]

+
τ

2

[
1

µm

Bl

(
−Bk

∂ui

∂xl

− Bi
∂uk

∂xl

+ Bn
∂un

∂xl

δik

)]

+
τ

2

[
ρuiul

∂uk

∂xl

+ ui
∂p

∂xk

+ ui
∂

∂xk

1

µm

B2

2
− ui

∂

∂xl

1

µm

BlBk

]

+
τ

2

[
ul

∂p

∂xl

+ γp
∂ul

∂xl

]
δik +

τ

2

[
1

µm

B2
n

∂ul

∂xl

− BnBl

µm

∂un

∂xl

+
1

µm

Bnul
∂Bn

∂xl

]
δik +

τ

2

[
−BiBk

µm

∂ul

∂xl

+
BiBl

µm

∂uk

∂xl

− Bi

µm

ul
∂Bk

∂xl

]

+
τ

2

[
−BkBi

µm

∂ul

∂xl

+
BkBl

µm

∂ui

∂xl

− Bk

µm

ul
∂Bi

∂xl

]
(29)

QD
i =

τ

2

(
5

2
p

∂

∂xi

p

ρ

)

+
τ

2

[
5

2

(
B2

2µm

δik −
BiBk

µm

)
∂

∂xk

p

ρ

]

+
τ

2

[
3

2

(
pδik +

B2

2µm

δik −
BiBk

µm

)
∂

∂xk

B2

2µmρ
−

(
p+

B2

2µm

)
∂

∂xk

BiBk

µmρ

−BiBk

µmρ

∂

∂xk

B2

2µm

]
+

τ

2

[
ρuiuk

∂

∂xk

3

2

p

ρ

]

+
τ

2

[
ρuiuk

(
p+

B2

µm

)
∂

∂xk

1

ρ
− ui

B2

µm

∂uk

∂xk

]

+
τ

2

[
ui

Bl

µm

(
Bl

∂uk

∂xk

− Bk
∂ul

∂xk

+ uk
∂Bl

∂xk

)]

+
τ

2

[
1

2
ρuiuk

(
B2

2µm

∂

∂xk

1

ρ
− 1

ρ

∂

∂xk

B2

2µm

)]

+
τ

2

[
BiBl

(
−uk

∂ul

∂xk

− 1

ρ

∂p

∂xl

− 1

ρ

∂

∂xl

B2

2µm

+
1

ρ

∂

∂xk

BlBk

µm

)]
(30)
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ΠDB
ik =

τl
2

[
1

ρ

(
p+

B2

2µm

)(
∂Bi

∂xk

− ∂Bk

∂xi

)]

+
τ

2

[(
p+

B2

2µm

)(
Bi

∂

∂xk

1

ρ
− Bk

∂

∂xi

1

ρ

)]

+
τ

2

[
ukBl

∂ui

∂xl

− uiBl
∂uk

∂xl

]
+

τ

2

[
1

ρ

BiBl

µm

∂Bk

∂xl

− 1

ρ

BkBl

µm

∂Bi

∂xl

]

+
τ

2

[
ukBi

∂ul

∂xl

− ukBl
∂ui

∂xl

+ ukul
∂Bi

∂xl

]

+
τ

2

[
Biul

∂uk

∂xl

+
Bi

ρ

∂p

∂xk

+
Bi

ρ

∂

∂xk

B2

2µm

− Bi

ρ

∂

∂xl

BkBl

µm

]

+
τ

2

[
−uiBk

∂ul

∂xl

+ uiBl
∂uk

∂xl

− uiul
∂Bk

∂xl

]

+
τ

2

[
−Bkul

∂ui

∂xl

− Bk

ρ

∂p

∂xi

− Bk

ρ

∂

∂xi

B2

2µm

+
Bk

ρ

∂

∂xl

BiBl

µm

]
(31)

It was shown in [2] that the dissipative terms of the gas dynamics system of equations
are small in comparison with the convective terms. The corresponding dissipative terms
are associated with the real physics processes and an important remark is that in this
case the gas dynamics parameters such as viscosity and heat conductivity are obtained
from the kinetic theory.

The Navier-Stokes viscosity is identified as the first term of Eq. (29):

ΠNS
ik =

τ

2

(
p
∂ui

∂xk

+ p
∂uk

∂xi

− 2

3
p
∂ul

∂xl

δik

)
= µ

(
∂ui

∂xk

+
∂uk

∂xi

− 2

3

∂ul

∂xl

δik

)
(32)

where the bulk viscosity component is neglected and the shear viscosity µ is related to
the gas pressure p and the characteristic time τ as µ = τ

2
p.

The Navier-Stokes thermal flux vector is identified as the first term of Eq. (30):

QNS
i =

τ

2

(
5

2
p

∂

∂xi

p

ρ

)
= k

∂T

∂xi

(33)

with T gas temperature and k thermal coefficient expressed as k = 1
Pr

5
2
R τ

2
p, with Pr

Prandtl number.
A similar analysis of the dissipative terms of the electromagnetic processes gives the

estimation of their smallness. The correct magnetic viscosity is represent as part of
dissepative term. The gas resistivity is identified as the first term of Eq. (31) and also
appears as a result of the kinetic formulation:

ΠB
ik =

τm
2

[(
p+

B2

2

)(
∂Bi

∂xk

− ∂Bk

∂xi

)]
= η

(
∂Bi

∂xk

− ∂Bk

∂xi

)
(34)

Where the η = τm
2

(
p+ B2

2

)
represents the resistivity.
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5 The COMPUTATIONAL ALGORITHM

The computational task consists of the solution of the kinetic consistent MHD system
of equations ??.

The computational algorithm used in this paper is build upon the Finite Volume
method applied to the gas dynamic equations and on the Contrained Transport method
applied to the magnetic induction equation [14, 15].

In the finite volume method the conserved gas dynamics variables, density, gas momen-
tum and energy, are averaged above the volume of the computational cell. The contrained
transport method treatment is based on the area-averaging of the magnetic field through
the surfaces of the grid cells.

Figure 1: 3D Computational Domain

Fig. 1 shows the four neighbour to the cell (i, k, l) used in evaluations of the hydrody-
namics and electromagnetic variables.

The gas dynamics observables - mass density, momentum and energy density are de-
fined at the cell center. The components of the magnetic field are defined at the face
centers of the cells. A duality is established between the electric field and the fluxes.
This duality is utilized to obtain the electric field at the edges of the computational
cell through a reconstruction process that is applied directly to the properly upwinded
fluxes. The electric field is then utilized to make an update of the magnetic fields that
preserves the solenoidal nature of the magnetic field and ensures that the magnetic field
in a magnetohydrodynamics model remains strictly solenoidal up to discretization errors.

The explicit finite volume computational algorithm for the magneto gas gas dynamics

9
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are used. This method has the convinient stability conditions and very important for
adaptation on the massive parallel computing systems.

6 RESULTS OF NUMERICAL MODELLING

The parallel implementation of the numerical algorithm is obtained through the doman
composition in ditributed memory approach. The communication between processors is
performed via MPI protocol. The computational method needs only one layer of ghost
cells at the boundary and along the edges of each subdomain which is exchanged between
the domains with MPI calls. The algorithm is well suited to distributed memory clusters
as it is time explicit and requires only one MPI call per time step, reducing significantly
the processor communication time contribution to the total computational time.

The demostration of the method is performed on the basis of the solution of the spher-
ical expansion problem of ionised gas and the solution of the expansion of an ionised gas
in strong magnetic field. The initial conditions are the same as proposed in [16] and are
expressed in normalized units in order to provide a direct comparison. They consist of a
sphere with radius 0.1 placed in the center of the physical region with pressure of 100 in
comparison to the overall represented area with pressure 1. The density is uniform and
equal to 1 in the full computational domain. For the study of ionized gas in a strong
magnetic field the uniform magnetic field Bz = 5/

√
π aligned with the z coordinate is

added to the initial conditions. The adiabatic coefficient of the gas is chosen as γ = 5/3.
Reflective border conditions are used throughout the simulation.

The simulations are performed for a Cartesian rectangular mesh 100×100×100 in the
physics domain [0,1].

Fig. 2 present the state of the 3D simulation of the processes for relative time 0.03.
On the 3D pictures the arrows represent the velocities of the ionised gas and the color
represents the density of gas. 3D figures clearly show the confinement of the ionized gas
in the cylindrical area along z due to the magnetic field.

Fig. 3,4 represent the 2D projections of the density, pressure and kinetic energy of the
gas expansion without magnetic field and the 1D density profile for these condition at
time t = 0.03.

Fig. 5,6 represents the 2D projections of the density, pressure, magnetic pressure and
kinetic energy for the gas expansion problem of the ionized gas with initial magnetic field
and Fig. 7 shows the 1D profile of the density for these conditions at time t = 0.03.

This test demostrates the ability of the computational algorithm in preserving perfect
simmetry. The comparison of the results in [16] shows a reasonable agreement and will
be analysed further.

Another significant numerical test is the implosion. It consists of a 3-dimensional gener-
alization of the Sod shocktube problem [17]. The initial condition corresponds to hydrogen
gas presenting a discontinuity perpendicular to the diagonal of the computational domain.
The left state has initial density ρl = 0.719 Kg/m3 and pressure Pr = 722680 Pa. The
right state has initial density ρr = 0.125 × ρl and pressure Pr = 0.14 × Pl. The initial

10
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Figure 2: 3D view of the conductive gas expancion in strong magnetic field

magnetic field of 0.1 T is aligned with the y-axis. Reflective boundary conditions are
used.

The simulations are performed for a Cartesian rectangular mesh 2000 × 2000 × 2000
in the physics domain [0,10] µm.

Fig. 8 represents the 2D projections of the density at time t = 1.76× 10−8 for the two
cases with and without magnetic field.

The reflection of the shock generated by the initial contact discontinuity drives con-
sequent vortices and instabilities. The result is characterized by complex shock reflec-
tions and rarefactions. In absence of magnetic field the simmetry along the diagonal is
preserved. The presence of the magnetic field changes dramatically the picture. The de-
flection of the charged media flow in the direction of the magnetic field is clearly visible.
Another observed effect is the strong smoothing of the instabilities of the gas dynamics,
which corresponds to a physical experimental evidence. The possibility of such obser-
vation is the basis of the importance of the very detailed space discretization, which is
available with the proposed method.

7 CONCLUSIONS

A new 3D kinetic algorithm has been developed for the solution of the magnetohydro-
dynamics problems. The novel feature of the method is that the local complex Boltzmann-
like distribution function incorporated most of the electromagnetic processes terms. The
fluxes of mass, momentum and energy across the cell interface as well as the magnetic
field are calculated by integrating a local complex Boltzmann-like distribution function
over the velocity space. Thus by using this distribution function to calculate the mass,
momentum and energy fluxes, most of the electromagnetic contributions are calculated di-
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Figure 3: 2D gas density and 2D gas pressure projections

Figure 4: 2D kinetic energy and 1D density profile
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Figure 5: 2D gas density and 2D gas pressure projections in the magnetic field 5/
√
π

Figure 6: 2D magnetic pressure and 2D kinetic energy in the magnetic field 5/
√
π

Figure 7: 1D density profile in the magnetic field 5/
√
π
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Figure 8: Sod shocktube problem: 2D gas density projections at time 1.76 × 10−8 s without (a) and
with (b) magnetic field.

rectly, i.e. one does not have to solve the hydrodynamics and magnetic force components
separately or differently.

A staggered, divergence free mesh configuration is used for the evaluation of the elec-
tromagnetic behaviour.

Numerical examples demonstrate that the proposed method can achieve high numerical
accuracy and resolve strong shock waves of the magnetohydrodynamics problems.

The explicit method is choosen with respect to optimal adaptation on the large scale
parallel computing systems. The improvement of the stability conditions wich is one
of the limited factor for the explicid method will be study by the imlementation of the
hyperbolic type of the magneto gas dynamic equations.
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