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Abstract

In this study, the forecast quality of 1993-2014 summer seasonal predictions of five global coupled

models, of which three are operational seasonal forecasting systems contributing to the Copernicus

Climate  Change  Service  (C3S),  is  assessed  for  Arctic  sea  ice.  Beyond  the  Pan-Arctic  sea  ice

concentration and extent deterministic re-forecast assessments, we use sea ice edge error metrics such

as the Integrated Ice Edge Error (IIEE) and Spatial Probability Score (SPS) to evaluate the advantages

of a multi-model approach.

Skill in forecasting the September sea ice minimum from late April to early May start dates is very

limited, and only one model shows significant correlation skill over the period when removing the

linear trend in total sea ice extent. After bias and trend-adjusting the sea ice concentration data, we

find quite  similar  results  between the different  systems in terms of ice  edge forecast  errors.  The

highest values of September ice edge error in the 1993-2014 period are found for the sea ice minima

years (2007 and 2012), mainly due to a clear overestimation of the total extent. Further analyses of

deterministic  and  probabilistic  skill  over  the  Barents-Kara,  Laptev-East  Siberian  and  Beaufort-

Chukchi regions provide insight on differences in model performance.

For all skill metrics considered, the multi-model ensemble, whether grouping all five systems or only

the three operational C3S systems, performs among the best models for each forecast time, therefore

confirming the interest of multi-system initiatives building on model diversity for providing the best

forecasts.
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1. Introduction

In recent decades, Arctic sea ice extent has significantly decreased, while exhibiting important year-

to-year variability, sparking interest in the polar prediction community in the provision of forecasts

for sea ice conditions at the sub-seasonal to decadal time scales.

Arctic sea ice extent anomalies have both local and remote impacts. At a local or regional scale, sea

ice  formation  or  melt  can  have  consequences  on  the  livelihood  of  local  communities,  shipping

activities, fisheries and infrastructure safety (Eicken, 2013). Moreover, several works (see e.g. Vihma,

2014 and Jung et al. 2015 and references therein) have suggested evidence for remote effects of sea

ice cover on atmospheric variability in the midlatitudes, and the accelerated warming of the Arctic is

thought by some studies to bring more persistent Northern Hemisphere weather regimes favouring

extremes (Coumou et al. 2018, Francis et al. 2018), although this is still widely debated (Blackport et

al. 2019). One example of such remote effects is the link between autumn sea ice concentration over

the Barents-Kara seas and the subsequent winter North Atlantic Oscillation index which could explain

a significant part of climate variability over the North Atlantic sector at weekly to annual time scales

(Garcia-Serrano et al. 2015).

Mechanisms for Arctic sea ice predictability have been highlighted by past studies (see Guemas et al.

2016 for a review). These include the advection of anomalous sea ice conditions, the atmospheric

circulation over the Arctic, ocean heat transport and thermohaline circulation, but also persistence of

anomalies in the initial sea ice state.  In the last decade, potential predictability studies using global

coupled  models  (GCMs)  in  a  perfect  model  framework,  such  as  that  of  the  APPOSITE  project

(Tietsche et al. 2014) have provided estimates of theoretical seasonal-to-decadal sea ice prediction

skill  limits  in  current-generation  climate  models.  Using  different  metrics,  Day  et  al.  (2014)  and

Chevallier and Salas y Mélia (2012)  estimated e-folding times of 2-5 months for total sea ice area in

GCMs,  depending  on  the  initial  date,  and  consistent  with  that  of  observations  such  as  NSIDC

(Blanchard-Wrigglesworth  et  al.  2011).  For  sea  ice  volume,  significant  levels  of  potential

predictability were found up to three years ahead (Day et al. 2014, Cruz-Garcia et al. 2019). Yet the

skill  of  initialized  seasonal  hindcasts  often  fall  short  of  these  potential  predictability  estimates

(Guemas et al. 2016). 

Reliable prediction of total Arctic sea ice extent is in itself a challenge, but a correct sea ice extent

value may mask some large compensating errors in the presence or absence of ice. Indeed, sea ice

predictability and prediction skill may vary depending on the region of interest (Germe et al. 2014,

Bushuk et al. 2017), with different processes at play. Cruz-Garcia et al. (2019) highlighted using EC-
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Earth perfect-model simulations that predictability in the Atlantic sector peripheral seas was linked to

local  sea  surface  temperature  and ocean heat  content  anomalies.  In  the  case  of  summer  sea  ice

predictions, initial sea ice thickness is found to be a precursor for sea ice extent over the East Siberia,

Laptev, Beaufort and Chukchi Seas (Bushuk et al.  2017; Bushuk et al.  2019). To circumvent the

possible overestimation of skill using total sea ice extent, more challenging metrics that assess ice

edge errors were suggested by Goessling et al. (2016) and Goessling and Jung (2018) to evaluate

model skill in forecasting the position of the sea ice. 

With  thinning  ice  and  a  warmer  atmosphere  over  the  region,  the  melt  season  is  particularly

challenging to forecast at such extended time ranges, where drivers of variability are dominated by

chaotic processes (Serreze and Stroeve, 2015; Olonscheck et al. 2019). Past studies have found that

SIE potential predictability estimated from GCM simulations drops faster in predictions initialized

from May than from July (Day et al. 2014), although these conclusions seem to be model-dependent

for the pan-Arctic SIE (see e.g. Bushuk et al. 2019). Bonan et al. (2019) found evidence for this loss

in predictive capacity in GCMs in the Arctic marginal seas between June and May starts by analyzing

correlation between sea ice area and sea ice volume from previous months of CMIP5 preindustrial

control runs. This springtime “predictability barrier” is also consistent with evaluations of empirical

forecasts based on observational  data (Walsh et  al.  2019).  Moreover,  initialized predictions often

perform at  substantially  lower  skill  levels  than  those  estimated  in  potential  predictability  studies

(Guemas et al. 2016; Bushuk et al. 2019).

One approach to try and bridge the gap between potential and actual forecast skill  is to combine

single-model  forecasts  into  a  multi-model  ensemble.  Since  2008,  the  Sea  Ice  Outlook  initiative

(Blanchard-Wrigglesworth  et  al.  2017)  has  collected  several  sources  of  forecasts  (statistical,

dynamical and heuristic) for the September Arctic sea ice minimum extent at three to one month lead

times.  A  recent  study  by  Wayand  et  al.  (2019)  has  demonstrated  the  current  capabilities  -  and

limitations  -  of  such  state  of  the  art  forecasting  systems in  predicting  sea  ice  concentration  and

thickness during the 2018 melt season and the better performance of the multi-model on sub-seasonal

time scales. At the seasonal scale, past studies have demonstrated the interest of combining individual

forecasting systems into a multi-model ensemble for atmospheric fields (e.g. Hagedorn et al. 2005) as

a way of improving the signal-to-noise ratio of ensemble forecasts. Merryfield et al. (2013) showed

that the combination of CanSIPS and CFSv2 seasonal forecast systems led in most cases to improved

sea ice concentration forecast  skill  over the Arctic.  Dirkson et al.  (2019a) recently provided new

evidence of the additional skill of multi-model combinations over single models for September sea ice

concentration using six different state-of-the-art seasonal forecasting systems. In the framework of the

H2020-APPLICATE project, which aims to broaden the understanding of linkages between the Arctic

region and the Northern Hemisphere mid-latitudes and improve models over these regions, several
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seasonal re-forecasts were run using state-of-the-art coupled climate models initialized in May and

November, over a period covering at least 22 years. These were evaluated alongside re-forecasts from

operational climate prediction centers involved in the project, contributing to the Copernicus Climate

Change Services (C3S) initiative. We focus here on predictions initialized at the end of April or May

to assess the skill  of these models in forecasting summer Arctic sea ice concentration and extent

anomalies. We also further investigate the added value of a multi-model approach for sea ice forecasts

grouping the models from the APPLICATE project.

A complete description of the models and the skill metrics used for the evaluation is presented in

section 2. Section 3 describes the main results at a pan-Arctic scale, whereas section 4 focuses on

specific Arctic seas or regions. Limitations to the study and future developments for the different

forecast systems are discussed in section 5.

2. Models and methods

2.1 Seasonal re-forecasts and reference data

The present study focuses on boreal summer re-forecasts initialized on May 1 or late April. Seasonal

re-forecasts  from five  GCMs are  evaluated:  the  model  developed  jointly  by  Centre  National  de

Recherches  Météorologiques  (CNRM)  and  Cerfacs  for  the  sixth  phase  of  the  Coupled  Model

Intercomparison Project (CMIP6) called CNRM-CM6-1; European Consortium Earth system model

version  3.2  (hereafter  EC-Earth3.2),  as  well  as  re-forecasts  provided  in  the  framework  of  the

Copernicus Climate Change Service (C3S) from three operational systems: Met Office fifth global

seasonal forecasting system GloSea5, Météo-France sixth generation seasonal forecast system System

6 and the European Centre for Medium-Range Weather Forecasts fifth generation seasonal forecast

system SEAS5. Table 1 presents information on these different sets of seasonal re-forecasts regarding

the coupled  model  components,  their  resolution,  and  the  initial  conditions  for  the  ocean  and ice

components. All re-forecasts use the Nucleus for European Modelling of the Ocean (NEMO, Madec

et  al.  2017) ocean model,  albeit  with different  model  versions and settings;  however,  the sea ice

components differ amongst the GCMs.

The CNRM-CM6-1 GCM is described in detail in Voldoire et al. (2019). This version of the GCM

uses Arpege-Climate v6.3 for the atmosphere and NEMO 3.6 – Gelato v6 for the ocean and sea ice.

The land surface component is Surfexv8. Coupling between atmosphere/land and ocean is called in

the Surfex interface using the OASIS-MCT code. This GCM was used to run seasonal re-forecast

experiments  initialized on May 1st  1993-2014.  An ensemble of  30 members  was constructed by
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combining three ocean and sea ice initial conditions with 10 initial perturbations of the ERA-Interim

atmospheric initial conditions for Arpege. The ocean and sea ice components are initialized from a

run constrained towards the Mercator Ocean International Glorys 2V4 reanalysis (Ferry et al. 2010),

using the same NEMO-Gelato model versions as in the GCM. The sea ice component adjusts to the

atmospheric forcing and ocean constraints, except for sea ice concentration which is relaxed towards

Glorys.

Re-forecasts from a second GCM, EC-Earth3.2, are also evaluated in this study. EC-Earth3.2 is based

on  ECMWF’s  atmospheric  circulation  model  IFS (cycle  36r4)  and  land  surface  model  H-Tessel

coupled with the OASIS-3 coupler to the ocean model NEMO 3.6 including the Louvain-la-Neuve

Sea Ice Model LIM3 (Vancoppenolle et al., 2009). As for CNRM-CM6-1, re-forecasts are initialized

on May 1st 1993-2014. The ensemble size is of 10 members, generated with random perturbations of

ERA-Interim initial conditions. The LIM3 model is initialized in these re-forecasts using a standalone

NEMO-LIM3 run forced with atmospheric fluxes calculated from the Drakkar Forcing Set  (DFS,

Brodeau et  al.,  2010),  and  assimilating  sea  ice  concentrations  using  an  Ensemble  Kalman Filter

approach  (Massonnet  et  al.,  2014).  The  ocean  initial  conditions  are  interpolated  from the  ocean

reanalysis system ORAS4 reanalysis (Balmaseda et al., 2013).

Alongside these re-forecasts, three operational seasonal forecast systems from the Copernicus Climate

Change Service (C3S) are analyzed for the same forecast times. ECMWF SEAS5 (Johnson et al.,

2019) is based on the IFS cy43r1 atmospheric model directly coupled to the NEMO 3.4 ocean and

LIM2 sea ice (Fichefet et al., 1997) components. The 25-member ensemble is generated using both

initial condition and stochastic perturbations of the atmosphere. Ocean and sea ice are initialized from

the ocean reanalysis system ORA-S5 part of the operational OCEAN5 analysis (Zuo et al., 2019). 

Met Office GloSea5 (MacLachlan et al. 2015) re-forecasts were also analyzed, building a 28-member

ensemble re-forecast from the 7-member ensembles initialized on the 9th, 17th, 25th of April and 1st

of May. GloSea5 also uses NEMO 3.4 but the Los Alamos sea ice model CICE 4.1. Note that these

two forecast systems use a higher resolution ocean and sea ice (1/4°) than the other models in this

study. 

A third system from the C3S program was also included in the analysis,  Météo-France seasonal

forecast system 6 (MF-Sys6). This system is based on a very similar model version of the CNRM-CM

coupled  model  as  CNRM-CM6-1  described  previously,  but  runs  at  a  higher  resolution  in  the

atmosphere. 25 ensemble members are generated using atmospheric stochastic perturbations (Batté

and Déqué, 2016) and a lagged initialization, with 12 members initialized on the 20th of April, 12 on

the 25th of April, and one control member on the 1st of May. Ocean and sea ice initial conditions are
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derived similarly to CNRM-CM6-1 from a run constrained towards Glorys 2V4, except for sea ice

concentration which evolves freely in the NEMO-Gelato run to initialize MF-Sys6.

Beyond the coupled GCMs used, the re-forecasts compared in this study use different initialization

strategies and ensemble generation techniques. This can impact  the ensemble spread and forecast

quality.

The study evaluates monthly mean sea ice extent (SIE) derived from sea ice concentration (SIC),

using the 15% SIC threshold to define presence or absence of sea ice. These fields are compared to

reference data provided by the National Snow and Ice Data Center (NSIDC) version 4, based on

brightness temperature (Cavalieri et al. 1996).

Throughout the re-forecast period, NSIDC SIC data is missing in some areas north of 85°N. This

could have some influence on skill evaluations especially when computing area-averaged scores, we

therefore chose to consider gridpoint SIC data from 45°N to 85°N, masking out regions from 85°N to

90°N in our computations over the Pan-Arctic region.

2.2 Re-forecast bias adjustment

Due  to  model  imperfection  and  initial  error  growth,  re-forecasts  based  on  GCMs  are  prone  to

systematic errors and drift when forecast time increases. This makes bias adjustment of re-forecasts a

necessary step before the evaluation of forecast quality using the metrics described in the following

section.

For Pan-Arctic SIE, we chose to bias-correct the ensemble mean SIE of each individual model against

NSIDC using a leave-one-out cross-validation bias correction. The metrics shown therefore evaluate

the skill of the model SIE anomalies versus NSIDC SIE anomalies, irrespective of the mean SIE bias.

In  the  case  of  metrics  based  on  Arctic  sea  ice  edge  position,  we  compare  in  this  study  two

straightforward methods for bias-adjusting the grid-point SIC values. The first  method consists in

bias-correcting (BC) the SIC values using (as for total SIE) leave-one-out cross-validation against

NSIDC SIC. This simple method has some caveats, since for bounded fields such as SIC values it can

yield  values  outside  the  theoretical  range.  We simply  correct  “out  of  bounds”  values  by  setting

negative SIC values to 0 and SIC values higher than 100% to 100%.

The second method uses also a leave-one-out cross-validation, but to trend-adjust (TA) the data: we

adjust the SIC of each model (either ensemble mean or member) at a given grid-point as well as
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NSIDC data for a linear trend. In this study we chose to remove the linear trend and then compute

anomalies with respect to the 1993-2014 mean. The obtained SIC values are then adjusted to the [0,1]

range before computation of the indices described in the following section. Note that more elaborate

trend-adjustment  techniques  for  SIC have  been  introduced in  past  works  such  as  Dirkson  et  al.

(2019b).

2.3 Re-forecast evaluation metrics

After evaluating (and removing) the mean model biases for SIC and SIE with respect to NSIDC, two

types of verification metrics are used in this study. In section 3.2, total Pan-Arctic SIE re-forecast skill

is evaluated according to forecast time using standard deterministic scores such as root mean square

error (RMSE) and correlation. Benchmark skill for SIE is assessed using the persistence of April SIE

anomalies.

We then focus on the skill of the models in representing the position of the sea ice edge, using the

Integrated Ice Edge Error (IIEE, Goessling et al. 2016) and its probabilistic counterpart, the Spatial

Probability Score (SPS, Goessling and Jung, 2018). These metrics take into account possible error

compensations  between overestimation and underestimation  of  the  presence  of  ice  over  different

basins of the Arctic, and therefore present a more complete analysis of the ability of GCMs to predict

sea ice concentration at a seasonal time scale. 

The IIEE is computed to evaluate the total spatial extent of errors in the position of the sea ice edge.

The IIEE is the sum of areas where the presence of sea ice, defined with a 15% SIC threshold, is

overestimated (O) and underestimated (U) with respect to reference data. Following Goessling et al.

(2016), the IIEE is decomposed into two terms, namely misplacement error (ME) and absolute extent

error (AEE), as follows:

IIEE=O+U=|O−U|+2 ⋅min (O,U )=AEE+ME

The absolute error corresponds to the total Pan-Arctic SIE error when this metric is computed over the

region, whereas the misplacement error shows the compensation between areas with overestimation

and areas with underestimation.

In the case of the IIEE, two benchmark re-forecasts are considered depending on the bias-adjustment

technique used. The benchmark re-forecast IIEE is computed for comparison with bias corrected re-

forecasts (trend-adjusted re-forecasts, respectively) using a leave-one-out climatology (linear trend-

adjusted climatology, respectively) of SIC NSIDC data.
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A natural extension to the IIEE is used to examine the skill of probabilistic forecasts for presence of

sea  ice  at  a  grid  point  level.  The  SPS  consists  of  a  spatial  integral  of  the  Brier  Score  for  the

probabilistic event of SIC exceeding the 15% threshold. With NSIDC data as a reference, and under

the  assumption  that  reference  data  is  “perfect”  and  therefore  not  accounting  for  observational

uncertainty, the SPS is formulated as follows:

SPS=∬ (PSIC f>0.15 ( x , y )−1SICo>0.15 ( x , y ) )
2
dxdy 

In this study, probabilities are computed by counting the fraction of ensemble members exceeding the

15% concentration threshold (with or without trend-adjustment), and then bias-corrected using leave-

one-out cross-validation. For the benchmark probability re-forecasts, we consider probabilities based

on the 21 other years of the re-forecast period, either with or without trend-adjustment.

The  Brier  Score  (Brier,  1950)  and  its  decomposition  into  reliability,  resolution  and  uncertainty

components  (Murphy,  1972)  are  computed  over  regional  seas  for  the  probabilistic  event  of  SIC

exceeding the 15% concentration threshold. The positively-oriented Brier Skill Score (BSS) is used to

determine model skill over using a simple climatology to forecast this probability. In this framework,

reliability diagrams plotting binned forecast probabilities against mean observed frequencies for the

event  help estimate the conditional  bias in probability space of the ensembles,  and quantify how

trustworthy these systems are on average over the re-forecast period (Weisheimer and Palmer, 2014).

Note  that  these  metrics  can  be  sensitive  to  the  ensemble  size  of  each  model  re-forecast,  and

differences in skill should therefore be interpreted with caution - in particular, for the EC-Earth 3.2

model, 10 members were available, significantly less than the 25-30 member ensemble sizes of the

other models in this study.

2.4  Multi-model combination

The advantages of using a multi-model approach in seasonal forecasting have been demonstrated in

many studies focusing on the predictability of atmospheric fields (e.g. Hagedorn et al., 2005). We

compute here a simple multi-model combination of the different model re-forecasts by first  bias-

adjusting each model  individually  (either  with  the  BC or  TA methods),  and  then  combining  the

members of each of the five models into an unweighted multi-model ensemble. This ensemble is

called MME in what follows. Most models studied have a similar ensemble size, except for the EC-

Earth 3.2 model. With the unweighted ensemble approach used in this study, this model is thus under-
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represented with respect to the others in the MME.

Since two of the operational systems considered in this study show higher correlation values and

lower root mean square errors than in the other model re-forecasts, we also examine the skill of a

multi-model restricted to the operational C3S systems, called C3S MME.

3. Pan-Arctic scale results

This  section  describes  the  ability  and deficiencies  of  current  state-of-the-art  seasonal  forecasting

systems in reproducing summer Arctic sea ice concentration variability from May initializations. 

3.1 Systematic errors in sea ice concentration and extent

Before focusing on integrated indices of hindcast quality, often computed after bias-correcting the

individual ensemble forecasts, we first assess the model quality in terms of systematic errors in the

raw model outputs for sea ice concentration.

Figure 1 shows the mean bias over the re-forecast period of month 1 (May) and month 5 (September)

SIC with respect to NSIDC. Red areas show where SIC is too low in the models, whereas blue areas

highlight where model have excessive SIC. All models show a common low bias in Labrador Sea

SIC,  already present  in  the  reanalyses  used  to  initialize  the  re-forecasts  (Chevallier  et  al.  2017).

Elsewhere, from the first month of simulation, the systems exhibit different behaviors. CNRM-CM6-1

has too low SIC along the ice edge in the Greenland sea, a feature shared with the operational MF-

Sys6 which relies on a similar version of the CNRM-CM coupled model and initial conditions of the

ocean and sea ice. The three other systems show too high SIC in the Iceland and Nordic seas at month

1. At longer lead times, both sets of re-forecasts based on CNRM-CM exhibit a substantially different

bias than the other models,  with too little SIC over most  of  the Arctic.  This is likely due to the

initialization strategy for the model, for which even at the initial stage, sea ice thickness is often too

low. During the melt season, this results in an excessive reduction of SIC over most of the Arctic, and

a  subsequent  loss  in  predictability.  EC-Earth  3.2,  SEAS5 and  GloSea5 show similar  patterns  of

systematic errors for September,  particularly over the Beaufort-Chukchi and East Siberian sectors

where SIC is too high at the end of the melt season. The largest differences between these three

models are found north of the Greenland, Iceland and Norwegian (GIN) seas and Barents-Kara seas in

September, where GloSea5 slightly under-estimates and SEAS5 slightly over-estimates SIC, while

EC-Earth 3.2 has biases of opposite sign between the Barents and Kara sectors.
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So as to evaluate the impact of these biases on total Pan-Arctic SIE re-forecasts, as well as the model

spread 5 months after initialization, we show in Fig. 2 box-and-whisker plots of Pan-Arctic September

SIE computed with raw model outputs (before bias-correction) for SIC. For each year of the common

re-forecast period, the boxes show the interquartile range and spread of ensemble members, compared

to SIE computed from NSIDC SIC data. Alongside this analysis, we also compute the linear trend in

mean September SIE for each model as well as for NSIDC. Values are shown in Table 2.

The models exhibit different characteristics: consistent with results from Fig. 1, CNRM-CM6-1 (Fig.

2(a)) and MF-Sys6 (Fig. 2(e)) show a clear underestimation of September SIE for most years of the

re-forecast, whereas the three other models show values in the observed range. However, SEAS5 SIE

values are comparable to NSIDC in the beginning of the re-forecast period but are then overestimated

with respect to NSIDC after 2006, due to a too weak negative trend in the re-forecast (about one third

of the linear trend estimated in NSIDC). The four other models also underestimate the amplitude of

the negative trend, but much less so, with values ranging from -83,000 to -96,000 squared kilometers

per year of loss in Pan-Arctic SIE. This underestimation of the negative trend in SIE was also found,

although over a different re-forecast period and using a different model, by Wang et al. (2013). In the

case of  GloSea5 and EC-Earth 3.2,  SIE computed from NSIDC data  are inside the range of the

ensemble for almost all years of the re-forecast period. The spread of SEAS5 appears to be slightly

lower than the other two operational seasonal re-forecast systems, GloSea5 and MF-Sys6. This could

be  due  to  the  burst  initialization  strategy  for  SEAS5,  whereas  the  other  systems  used  a  lagged

ensemble approach with different ocean (and therefore sea ice) initial conditions.

Two consequences arise from these analyses. First of all, for most systems, it appears necessary to

bias-correct  the  SIC values  since  large  systematic  errors  are  found  (sometimes  related  to  errors

present from month 1 onwards). Second of all, the strong negative trend in SIC and hence SIE values

means that in skill scores such as correlation, the trend may have an impact on results. In Table 2,

results both with and without detrending SIE values are shown for each model and persistence of

April SIE anomalies. Although some models have very large biases which translate into high RMSE

before bias removal, they all exhibit correlation values before linear detrending above 0.65, with most

systems reaching approximately 0.8. However, when removing the linear trend, it appears that most of

this apparent skill is in fact related to correctly capturing the sign -and part of the amplitude -of the

trend over the region. Levels of skill unrelated to trend are much more modest.

Unless mentioned otherwise, the skill evaluations presented in what follows are therefore computed

for sea ice concentration ensemble re-forecasts that are linearly-detrended and bias corrected in cross-

validation mode, as described in section 2.2. At this stage, we note that the choice of a linear trend

may have some influence  on results,  but  the  short  re-forecast  period  made  more elaborate  trend
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computations hazardous.

3.2 Pan-Arctic sea ice extent skill

As a first glimpse of the skill of different systems in re-forecasting sea ice conditions, we focus on

Pan-Arctic sea ice extent RMSE and correlation over the 1993-2014 re-forecast period are shown in

Fig. 3, and results for September summarized in Table 2. 

The skill of individual systems is compared to a multi-model ensemble (MME) grouping all ensemble

members of each system together (without weighting individual systems but with equal weight for

each  member).  The  skill  of  the  MME is  shown  in  black.  Scores  can  be  compared  to  a  simple

persistence approach (persisting SIE anomalies from April to the following months) for which results

are  shown  in  magenta.  Most  systems  exhibit  fairly  similar  levels  of  skill,  both  for  RMSE  and

correlation. RMSE is maximum in September when SIE is at the minimum of the seasonal cycle.

Correlation drops (as expected) with lead time, from above 0.8 in May to near-zero correlation for

two of the models in October, namely CNRM-CM6-1 and EC-Earth 3.2, although in the case of the

latter, this may be due to the smaller ensemble size. The three operational systems generally exhibit

significant levels of correlation with NSIDC data at a 6-month lead time, although MF-Sys6 drops

below the 95% significance threshold for August and September SIE (see Table 2 for September

RMSE and correlation values). As expected from the results of the individual models, the C3S-MME

(in orange) outperforms the MME for both metrics in the long forecast times. All models show higher

skill than persistence, although the score for persistence is included inside the range of uncertainty of

the scores (based on a χ² for RMS and a Fisher test for correlation) after 2 months forecast time in

most  cases  (not  shown).  This  is  likely  related  to  the  limited  number  of  re-forecast  years  in  the

evaluation.

Although  not  strictly  comparable  due  to  different  re-forecast  years,  the  results  found  for  SIE

correlation and RMSE are consistent with previous works: Wang et al.  (2013) and Msadek et al.

(2014) found similar performances with other re-forecast systems in terms of SIE correlation. Msadek

et al. (2014) also showed evidence that skill tends to be lower in recent decades than over a longer re-

forecast period spanning also the 1980s. More recently, Bushuk et al. (2019) showed with the GFDL-

FLOR model a sharp drop in summer pan-Arctic SIE anomaly correlation for May initializations as

early as June (see their Fig. 5).

3.3 Sea ice edge forecast quality
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While  seasonal  forecasts  of  Pan-Arctic  sea  ice  can provide some indication of  below-average or

above-average presence of sea ice, these may not be the most relevant indicators for potential end-

users of seasonal forecast information.  Among these users,  some are most  interested in the exact

position  of  the  sea  ice  edge,  or  its  probability  of  presence  along  shipping  routes  or  near  the

climatological sea ice edge (Melia et al. 2017).

We therefore evaluate the skill of the different models in representing the position of the sea ice edge

(based on monthly averages) by computing the IIEE metric introduced by Goessling et al. (2016).

This  is  first  done  after  correcting  SIC  for  systematic  errors  with  a  simple  cross-validation  bias

removal. 

Figure 4 shows the IIEE for each individual model for September 1993-2014, as well as for the MME

and C3S-MME (after individual model bias correction). Results for the different models are quite

similar, with IIEE increasing during the re-forecast period, mainly due to an increase in AEE. This

positive  trend  in  AEE is  consistent  with  the  models  under-estimating  the  negative  trend  in  SIE

discussed previously.

Peaks in IIEE are found in 2007 and 2012 for each system, indicating that all models missed to some

extent the record low SIE for both of these years. Conversely, in the first half of the re-forecast period,

most models exhibit their highest IIEE for 1996 for which SIE was the highest of the 1993-2014

period. IIEE is (by construction) very sensitive to errors in forecast extrema. These results can be

expected  given  the  low  predictability  of  such  extrema,  partly  due  to  atmospheric  conditions  at

synoptic scales which are inherently unpredictable at such large forecast times. However, in the case

of the 2012 minimum, past studies using observational data and GCM experiments suggest that the

role of an extreme summer storm over the Arctic was minor compared to sea ice preconditioning and

warmer  near-surface atmospheric temperature conditions during the summer season (Zhang et  al.

2013, Guemas et al. 2013).

The operational systems show generally less variability in the misplacement error than CNRM-CM6-

1 and EC-Earth 3.2, apart from MF-Sys6 in the first half of the re-forecast period. This suggests that

for the former, skill evaluations based on RMSE of Pan-Arctic SIE are giving a rather accurate picture

of the model capacity to predict the sea ice edge position, whereas for the latter two systems, the Pan-

Arctic SIE may  “hide” some compensation between areas where SIC is overestimated and where it is

underestimated.

For some systems, IIEE tends to grow during the re-forecast period, which may be related to the
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strong decrease in total SIE during 1993-2014. We therefore re-compute the IIEE score after trend-

adjusting the SIC as described in section 2.2.   Results  are shown in Fig.  5.  With this SIC trend

adjustment, the minimum over the period is 2007 (and 2012 no longer appears as a year with low

SIE).  All models miss the 2007 anomaly with a large AEE. As found previously using SIC data

corrected for the mean bias, the AEE is the largest contribution (on average) for September IIEE in all

systems.

In order to evaluate the impact of trend-adjustment on IIEE, and also extend the analysis to the other

months of the re-forecasts, we show in Fig. 6 the mean evolution as a function of forecast time of the

IIEE in the different models and both MMEs considered, using bias-corrected SIC data (left) and

trend-adjusted  SIC data  (right).  Trend  adjustment  does  improve  the  mean  IIEE values  for  most

systems,  although some seem to  benefit  far  more  from this  technique  than  others.  For  instance,

focusing again on the month of September, the CNRM-CM6-1 model forecasts are clearly improved,

whereas EC-Earth 3.2 and SEAS5 IIEE are only slightly reduced. It is also worth noticing in Fig. 6

that both the MME (in black) and C3S MME (in orange) exhibit very similar results in terms of IIEE,

and improve all  the individual  forecasts for almost  every forecast  month,  irrespective of the bias

adjustment technique used. When compared to SIE RMSE values in Fig. 3, IIEE values (which are

dominated by the AEE term) exhibit substantially higher values. Although the computation method

for total sea ice extent differs between Fig. 3 and Figs. 5-6, this suggests that further improvements

would be found with more sophisticated bias correction and trend-adjustment techniques.

The IIEE peaks in September when the total SIE is lowest, and the opposite sign in the evolution of

average IIEE and SIE during summer is quite striking. Some models did seem to exhibit (to some

degree) a return of skill in terms of correlation and RMSE between September and October (see Fig.

3) which is also suggested by the decrease in IIEE.

Ensemble forecasts  bear  the  advantage that  information can be provided in  probabilistic  form to

potential  users.  This  is  most  useful  when  the  forecast  is  associated  with  a  potential  risk  and

corresponding losses for the user, as different courses of action may be undertaken depending on a

given probability threshold, and at the time scales considered in this study, forecasts are rarely yes/no

answers as they bear intrinsic uncertainties. We therefore focus in the following paragraph on the

probabilistic extension of the IIEE, the SPS.

3.4 Probabilistic re-forecasts of sea ice edge

We compute  the  SPS using  monthly  SIC re-forecasts  and  a  15% SIC threshold  for  presence  or

absence of sea ice, with two approaches to bias-adjust the model data over the re-forecast period. The
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first method used is a grid-point bias correction of the probabilities for each model (or multi-model) to

exceed the 0.15 threshold, using leave-one-out cross-validation. Probabilities exceeding 1 or below 0

are readjusted to 1 or 0, respectively. The second method uses the same adjustment of probabilities,

but computes these after applying the trend adjustment to the SIC values. Figure 7 shows results

according to the forecast month for each individual model as well as the 5-model and C3S MMEs.

Consistent with deterministic results for the IIEE, the MMEs rank among the best models (low SPS)

for each forecast time with the first adjustment, and tend to outperform all the individual systems after

the second adjustment, but skill scores are not significantly better. Year-to-year values for SPS are not

shown, since very limited inter-annual variability in SPS is found - setting aside the 1996, 2007 or

2012 cases during which SIE over the Pan-Arctic region reached local extrema.

As found previously, the SIC trend adjustment technique helps further improve skill levels. This is

particularly striking in the case of the CNRM-CM6-1 model, which suffered from large systematic

errors  in  SIC at  longer  forecast  times,  and shows that  despite  these issues  some predictive  skill

remains.

In most cases, by comparing Fig. 7 with Fig. 6, it appears that the SPS values are clearly lower than

the corresponding IIEE. This suggests that in areas where uncertainty is high, the spread in the models

tends  to  reduce  the  probabilities  for  presence  of  sea  ice,  so  models  are  generally  not  too

overconfident. These considerations prompted the analysis of model reliability shown in the following

section, which focuses on the skill at a regional level.

4. Regional skill

In this section we focus on skill of the different models over different key regions of the Arctic. Based

on previous results, we target our analysis on the IIEE for sub-basins, as well as the Brier Score and

reliability  and  resolution  components  to  characterize  probabilistic  skill.  Note  that  the  SPS  is  a

spatially weighted Brier Score for the event of SIC exceeding the 0.15 threshold set in this study to

define the presence of sea ice.  Our  analysis  focuses on the extended Beaufort-Chukchi  Seas and

Laptev-East Siberian Seas sectors, as well as the Barents-Kara region, where all models exhibit strong

biases at forecast month 5.

Figure 8 shows the models and multi-models IIEE after trend-adjustment as a function of forecast

time over the Beaufort-Chukchi Seas (a), Laptev-East Siberian Seas (b), and the Barents and Kara

seas  (c).  For  the  Beaufort-Chukchi  and  Laptev-East  Siberian  seas,  all  models  exhibit  similar

evolutions with forecast time, quite similar to the total SIE over the region. As for the total Pan-Arctic
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region, IIEE is maximum when the SIE is minimum, and then drops in October. May IIEE is close to

zero for each system, suggesting that models are correctly initialized as fully ice-covered over these

regions and error grows quite slowly initially. In the Laptev-East Siberian seas sector, the October

IIEE is very similar for all systems due to the annual cycle of sea ice extent over the region: only a

few years in NSIDC data show some ice-free areas in these seas, and they are generally not captured

by the different forecasting systems at such long forecast ranges (not shown). The MME and C3S

MME IIEE values nearly overlap (black and orange lines), indicating that the CNRM-CM6-1 and EC-

Earth 3 models do not necessarily provide additional value to the multi-model approach in these areas.

Skill is very limited compared to re-forecasts based on a simple linear trend climatology (Clim in Fig.

8), although more systems outperform this empirical forecast over the Beaufort-Chukchi sector than

over the Laptev-East Siberian seas.

Over the Barents and Kara sector, the IIEE evolution exhibits a quite different behavior. From the first

month of the re-forecasts, some errors in the ice edge are found in the different systems, leading to a

first peak of IIEE in July for which the IIEE amounts to almost half of the total SIE over the area.

However, the error of the linear trend climatology forecast is higher than each system from May to

July,  and  higher  than  most  systems up  to  October.  This  suggests  that  although predictability  of

summer sea ice over the Barents and Kara seas is very limited, dynamical systems do provide some

information on SIE beyond simple empirical forecasts.

We evaluate the probabilistic skill in forecasting the presence of ice by plotting reliability diagrams

for each region, alongside the Brier Skill Score (BSS) and reliability and resolution components of the

Brier  Score  for  the  event  of  SIC in the  grid cell  exceeding 0.15.  The probabilistic  forecasts  are

evaluated after bias correcting or trend-adjusting the SIC data as previously described for the Pan-

Arctic SPS. Since over the 1993-2014 period, most of the Barents-Kara Seas region is ice-free in

September, we show results for the Beaufort-Chukchi and Laptev-East Siberian Seas regions only.

Results for the C3S operational re-forecasts and the C3S MME for September over the Beaufort-

Chukchi  region  are  shown  in  Fig.  9.  Comparing  the  top  and  bottom  rows,  we  find  that  trend

adjustment improves the reliability and resolution of the forecasts. This translates into higher BSS for

each  system.  Unlike  SEAS5  and  GloSea5  (Fig.  9  e-f),  MF-Sys6  (g)  almost  systematically

underestimates the probabilities of presence of ice, whereas the other systems tend to have too high

forecast  probability  values  with  respect  to  the  observed  occurrence  of  the  event  (SEAS5  more

dramatically so than GloSea5).

 Over the Laptev and Siberian Seas (Fig. 10), trend adjustment noticeably improves the reliability of

all systems considered, with reliability diagrams closely fitting the perfect reliability diagonal. Out of

the three operational systems, MF-Sys6 is the one which is most improved after trend adjustment,
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since  using  a  simple  bias  correction  led  in  this  case  to  practically  no  skill  over  climatology  in

predicting the presence of ice over the region.  All  systems (including the C3S MME) have very

similar levels of resolution after trend adjustment, demonstrating the interest of correcting for the

trend in sea ice concentration before formulating probabilistic forecasts for the presence of ice.

5. Summary and discussion

In this study, a comprehensive multi-system ensemble was evaluated for boreal summer predictions of

sea ice by grouping re-forecasts from three operational  systems with two ensembles with current

generation GCMs (CNRM-CM6-1 and EC-Earth 3.2). The common re-forecast period, 1993-2014,

coincides with the highest trends in sea ice concentration and extent over the Pan-Arctic region. The

focus of this study was on sea ice concentration and extent, and using metrics designed to assess the

ability of models to represent the position of the sea ice edge. A companion study by Acosta Navarro

et al. (2020) examines the link in these models between fall Arctic sea ice and Northern Hemisphere

boreal winter atmospheric seasonal forecast skill.

Models exhibit diverse levels of forecast quality and ability to reproduce tendencies in sea ice extent

estimated with NSIDC data. Beyond this comparison, a multi-model approach either grouping all five

models or the three operational C3S systems does not lead to major improvements, especially with

respect  to  the  best  systems,  besides  reliability  and  resolution  components  when  investigating

probabilistic  skill  over  the  Beaufort-Chukchi  and  Laptev-East  Siberian  seas.  However,  either  the

MME or C3S MME rank systematically  among the two best  models  at  all  lead times and cases

examined, which pleads in favor of model diversity, and is consistent with pan-Arctic and regional

evaluations  of  probabilistic  skill  of  single-models  and  multi-models  discussed  in  Dirkson  et  al.

(2019a). Yet some model deficiencies leading to strong biases or errors in trends do seem to alter the

MME skill. This highlights the need for a careful bias correction and trend adjustment of current state-

of-the-art forecasting systems, as a necessary first step before using such predictions. These results

confirm  the  limited  predictability  of  summer  Arctic  sea  ice  with  current  state-of-the-art  GCMs,

especially at longer forecast times such as five months ahead of the September sea ice minimum.

They are consistent with recent results suggesting a “spring predictability barrier” in prediction skill

(e.g. Bonan et al. 2019).

One major limitation to statistical post-processing and adjustments of forecasts is the very restricted

number of years available for the evaluation of seasonal forecast biases and skill. The use of linear

trends  over  longer  time  periods  may  quickly  show  some  limitations,  especially  with  bounded
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variables such as sea ice concentration. Director et al. (2017) emphasized the limitations related to

such bias correction techniques which can lead to unrealistic sea ice edges, and designed a contour

shifting method which corrects using linear regression the position of the sea ice edge. Dirkson et al.

(2019b) found additional improvements in terms of probabilistic skill scores when fitting the sea ice

concentration distribution to a parametric distribution and applying a trend-adjusted quantile mapping

correction. These methods would likely further enhance skill scores of the systems evaluated in this

study. However, given the coarse common spatial resolution used, the restricted number of re-forecast

years, and the same statistical treatment applied to our benchmark forecasts, we are confident the bias

and trend adjustment  applied  yield  results  that  are  representative  of  the  actual  capacity  of  these

models  to  forecast  summer  Arctic  sea  ice  over  simple  empirical  approaches.  Another  source  of

possible error in the estimation of skill levels is the reference data used. The NSIDC data is known to

have some uncertainties, in particular during the summer season where melt ponds can be interpreted

as ice free areas, but was chosen so as to provide a fair comparison between systems (since none were

initialized directly from this dataset).

The diverse levels of  skill  likely arise from differences in the sea ice initialization and modeling

strategies, as suggested by recent works on the S2S scale by Zampieri et al. (2018) and Wayand et al.

(2019). In particular, the results found for re-forecasts based on CNRM-CM (either CNRM-CM6-1 or

MF-Sys6)  show  substantially  lower  skill  than  in  previous  studies  (e.g.  Chevallier  et  al.  2013).

Ongoing evaluation of these systems show that they exhibit from the first month of the re-forecasts

lower  sea  ice  thickness  than  reference  datasets.  The  initialization  of  sea  ice  thickness  has  been

identified by  recent  works  as  a  source  of  predictability  on  seasonal  time  scales,  either  by direct

assimilation (Blockley et  al.,  2018)  or  constraining SIT with SIC (Kimmritz  et  al.,  2019).  Other

important processes for the melt season, such as melt ponds, are still only partially represented in

models used in this study. Some pathways for improvement of current systems are currently explored

in the framework of the APPLICATE project and will hopefully contribute to better and more robust

forecasts of Arctic sea ice at the seasonal time scale in years to come.
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Tables

Table 1: Characteristics of the seasonal re-forecasts evaluated. All systems are initialized with ERA-

Interim for the atmosphere component. 

Model/System CNRM-CM6-1 EC-Earth 3.2.2 SEAS5 GloSea5 MF-Sys6
Atmosphere Arpege 6.3 IFS Cy36r4 IFS Cy43r1 UM v6 Arpege 6.2
Ocean NEMO 3.6 NEMO 3.6 NEMO 3.4 NEMO 3.4 NEMO 3.6
Sea ice Gelato v6 LIM3 LIM2 CICE 4.1 Gelato v6
Atmospheric 
resolution

~1.4°
91 levels 

~0.7°
91 levels 

36 km 
91 levels 

~0.7°
85 levels 

~0.5°
91 levels 

Ocean/ice 
resolution

1°
75 levels 

1°
75 levels 

0.25°
75 levels 

0.25°
75 levels 

1°
75 levels 

Sea ice initial 
conditions

Gelato-NEMO 
run constrained
towards Glorys
2V4 (Mercator)

Forced LIM3-
NEMO run 
with ENKF 
SIC 
assimilation

ORA-S5 NEMOVAR Gelato-NEMO 
run constrained
towards Glorys
2V4 (Mercator)

Ensemble size 30 10 25 28* 25*
* All re-forecasts are initialized on the 1st of the month, except for GloSea5 for which 7 members

from the 9th, 17th and 25th of April as well as 7 from the 1st of May are grouped into a 28-member

ensemble, and MF-Sys6 for which 12 members from the 20th and 25th of April are grouped with one

member from the 1st of May into a 25-member ensemble. 
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Table 2: Linear trend of SIE and RMSE of SIE after linear detrending (in thousands of km²/year) and

correlation over 1993-2014 for September over the Pan Arctic region in the different models studied,

the MME and C3S MME. Scores are computed against NSIDC SIC data.

Model CNRM-
CM6-1

EC-Earth
3.2.2

SEAS
5

GloSea5 MF-
Sys6

MME C3S 
MME

Referen
ce*

Sept. SIE 
linear trend

-84.1 -84.7 -44.0 -83.2 -95.9 -78.0 -74.7 -130.1

Sept. SIE 
RMSE

2443.6 666.0 957.1 625.4 2472.5 1208.
6

902.8 947.7

Sept. SIE 
RMSE
(detrended)

702.4 595.8 543.8 535.9 584.3 570.2 543.1 693.7

Sept. SIE 
Correlation

0.66 0.78 0.79 0.84 0.80 0.81 0.83 0.34

Sept. SIE 
Correlation
(detrended)

-0.09 0.15 0.35 0.38 0.17 0.21 0.35 -0.25

* Reference  scores  (RMSE,  correlation)  are  computed  for  the  persistence  of  April  NSIDC  SIE

anomalies (magenta lines in Fig. 3). Reference trend is computed with NSIDC data.
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Figures

Fig. 1 Mean bias in monthly mean sea ice concentration with NSIDC in May (forecast month 1, left

column) and September (forecast month 5, right column) for each of the coupled systems
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Fig. 2 Box-and-whisker plots representing September SIE values for the re-forecast ensembles in each

of  the  models  (a)  CNRM-CM6-1,  (b)  EC-Earth  3.2,  (c)  SEAS5,  (d)  GloSea5  and  (e)  MF-Sys6

compared to NSIDC data (in blue). The boxes show the interquartile range of the ensembles, the thick

black line is the ensemble median, and whiskers show the range of the ensemble up to 1.5 σ, and dots

represent outliers beyond this range

850

851

852

853

854

855



Fig.  3 Evolution  according  to  forecast  month  of  detrended  pan-Arctic  SIE  RMSE  (left)  and

correlation (right) with NSIDC reference data for the individual models (colored lines, open circles)

and multi-model ensembles (filled circles). The multi-model ensemble (MME) is shown in black and

the C3S MME in orange. Skill levels of the persistence of April anomalies are shown with a thin

dotted  magenta  line.  For  correlation  (right),  a  thin  grey  dotted  line  shows  the  95%  confidence

threshold  (0.36)  computed  using  a  one-sided  t-test  accounting  for  observational  dependence  of

samples
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Fig. 4 IIEE (black, in millions of km2) and decomposition in ME (red) and AEE (blue) with respect to

NSIDC data for September 1993 to 2014 in re-forecasts initialized in May with (a) CNRM-CM6-1,

(b) EC-Earth 3.2, (c ) SEAS5, (d) GloSea5 and (e) MF-Sys6. (f) Same as (a-e) but for a multi-model

ensemble grouping all ensemble members of each individual system (after individual bias correction

of SIC). (g) Same as (f) but for the C3S operational systems (c-e). In each graph, thin dashed lines

show the corresponding IIEE, ME and AEE values for a leave-one-out climatology based on NSIDC

data, and the grey line shows the reference SIE (y-axis on the right hand side)

866

867

868

869

870

871

872

873



Fig. 5 Same as Fig 4 but for IIEE computed after trend-adjusting SIC data at the gridpoint level. The

dashed lines (IIEE, ME and AEE values of a forecast based on climatology) and SIE shown in grey

are also computed from trend-adjusted SIC NSIDC data
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Fig. 6 Evolution according to forecast time of mean IIEE computed using bias-corrected SIC data

(left) and trend-adjusted SIC data (right) over the 1993-2014 re-forecast period for each model and the

MME (in black) and C3S MME (in orange). Mean IIEE of the climatology forecasts (respectively,

leave-one-out and trend-adjusted climatologies using NSIDC SIC data) are also shown (Clim, dotted

magenta line). The monthly mean average SIE over 1993-2014 is shown in grey dotted lines (right y-

axis)
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Fig. 7 Left: mean SPS over 1993-2014 according to forecast month for each system and the MME (in

black) and C3S MME (in orange), and 1993-2014 monthly mean SIE computed with NSIDC SIC data

(in grey dotted line,  right  y-axis).  SPS is  computed after  bias-correcting the probabilities  of  SIC

exceeding 0.15. The benchmark forecast (Clim, in magenta) is based on a leave-one-out probability

forecast using the other years of the 1993-2014 period. Right: same as left-hand-side figure but after

additionally trend-adjusting SIC values before computing probabilities; the Clim forecast is in this

case a linear trend adjusted leave-one-out probability forecast.
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Fig. 8 IIEE computed for trend-adjusted SIC re-forecasts for each model and the 5-model and C3S

MME, over the extended Beaufort-Chukchi Seas region (a), the extended Laptev-East Siberian Seas

region (b) and the Barents-Kara Seas region (c). IIEE for a benchmark climatology forecast based on

linear trend-adjusted SIC is also plotted (in magenta dashed lines). Total SIE over the regions are

shown in grey (right y-axis values). The y-axis values differ between graphs (a-b) and (c).
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Fig. 9 Reliability diagrams (observed frequency for binned forecast probabilities) for September mean

SIC exceeding the 0.15 threshold computed for grid cells of the Beaufort-Chukchi seas region, using

trend-adjusted (a-d) and bias-corrected (e-h) SIC ensemble re-forecasts initialized in May 1993-2014

for the three operational  systems and the C3S MME. The size of the dots is  proportional  to the

population of each bin. Reference data is NSIDC. The Brier Skill Score as well as reliability and

resolution components of the Brier Score are shown in the top left corner of each diagram
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Fig. 10 Same as Fig. 9 but for the Laptev-East Siberian Seas region914
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