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Abstract. Controlled flextensional actuators essentially involve a compliant mechanism
assembled in association with piezoceramics featuring sensing and actuation of the struc-
ture by the ceramics energy conversion property. For applications that require vibration
response attenuation, these devices account with an active feedback control to regulate
disturbances that might be introduced to the system. In the field of intelligent struc-
tures, the self-monitoring and control assemblage can be largely used in systems such as
micro-grippers for sample handling, hard disk reading [1] and atomic force microscopy.
One distinct advantage of this kind of structure is their higher accuracy when compared
to conventional actively controlled structures because their sensing is distributed instead
of being discrete about the response measurement phenomenon. The control law effec-
tiveness in such a controlled system can be enhanced by designing their elastic structure
by means of the Topology Optimization Method (TOM), since an optimized material
distribution within a fixed domain affects the structure stiffness, vibration modes and re-
sponse characteristics. Previous works that apply the TOM in controlled piezo-actuators
aiming vibration suppression focus on the distribution of piezoceramic material over a
host structure either in frequency domain or in time domain [2]. However, the low cou-
pling constants of piezoelectric ceramics may reduce the capability of energy conversion
for input displacements or for input voltages in actuating systems. Therefore, in order
to avoid an unfeasible or less effective active control targeting vibration suppression, this
work focuses on the distribution of the host structure and eliminates the dependence on
the magnitude of electro-elastic coupling constants for a satisfactory energy conversion.
As stated, the optimized smart devices proposed in this work involve a host structure ma-
terial distribution which is sensed and actuated by two predefined piezoceramic locations
connected through a feedback architecture, while the system is subjected to a transient
input load. Approximations to the damping matrix coefficients are considered for both
the metallic material and the piezoelectric material, even though the ceramic layers are
significantly thinner than the middle layer. The objective function chosen minimizes the
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vibration energy of the system subjected to a volume constraint. The dynamic equilibrium
equation accounts with an extra damping matrix derived from the current amplification
chosen as the feedback control law, or for short, the Active Velocity Feedback (AVF). The
material model implemented is the Solid Isotropic Material with Penalization (SIMP) for
the 4-node solid finite element with two mechanical degrees-of-freedom (DOFs) per node,
and one electrical DOF per node. A density-based filter eliminates the checkerboard
pattern, the sensitivity analysis is calculated by the adjoint method, and the Sequential
Linear Programming (SLP) algorithm is employed as the optimization procedure. Two-
Dimensions (2D) results are presented and the influence of the gain velocity value over
the final layouts is analyzed.

1 INTRODUCTION

Refinement on motion precision of actuating systems envision applications in most
of the modern electronic devices, which require lighter, less stiff and more vulnerable
to transient external loads components [3]. The optical pickup system on hard drive
reading, the hard drive base itself and the servovalves in hydraulic control systems are
examples of devices that have their work operation based on fast response and vibration
suppression actuation. Intelligent structures provide those characteristics given that their
self-monitoring feature based on sensors, actuators and an active control law, interfere to
the systems dynamics. Among the smart materials employed with sensing and actuation
properties to regulate vibrations to the referred systems, the piezoelectric ceramic is the
most commonly used of them.

Time-domain formulation for piezoelectric transducers has been studied by Wang
(2001) [4], who applied the velocity feedback control and evaluated the system stabil-
ity according to its piezoceramics placement, by Zhang (2015) [5], who applied LQR
and PID control schemes for free vibration and step, harmonic and random excitations
to study their influence on the response of flexible structures. For the previously men-
tioned works, the predefined placement of sensors and actuators associated with an active
controller resulted in vibration attenuations of the system. An active vibration control
scheme is defined by the extra voltage or electric charge that is supplied to the piezo-
ceramic material [6]. Further improvement to these systems response might require an
optimized sensor, actuator and base materials distribution, a structure design conveyed
by the Topology Optimization Method (TOM).

With the advancements in processing capability of computers, the TOM have been
made possible for the design of systems under dynamical analysis. Jang (2012) [7] showed
that, under multiple dynamic loads, the dynamic response topology optimization sub-
stantially reduces the strain energy when compared to the static topology optimization.
Deng (2014) [8] combined TOM and optimal control method to obtain the optimal match
between the material distribution and the control effect applied to heat transfer, steady
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flow and structure compliance problems.
Focusing on the dynamic load case scenario and on the TOM for the design of con-

trolled piezoelectric actuators, recent works have optimized the distribution of piezoelec-
tric patches within the structures to enhance the control effects towards a specific oper-
ation mode. Wang (2006) [9] applied a genetic algorithm-based topology optimization to
the design of sensors and actuators for torsional vibration control of laminated composite
plate. In the work of Zhang et al. (2014a) [10], the authors work with an optimized
electrode distribution over piezoelectric sensors and actuators attached to a thin-walled
shell structure for reducing sound radiation. Yet, in their most recent work, Zhang et
al. (2014b) [2] used the same optimized electrode distribution applied to the vibration
suppression in time-domain, assuming thin layers of piezoelectric material and therefore
rejecting their damping effects.

Besides being more versatile to distribute the piezoceramic material, their low coupling
constants may reduce the capability of energy conversion for input voltages in actuating
systems, what results in an unfeasible problem when applied to certain active control
that depends on the magnitude of electro-elastic coupling constants. In that case, for the
active control to be efficient, a large control gain would be needed [11]. Therefore, this
work proposes to apply the TOM to the host layer of the structure, given the locations
for the sensor and actuator layers, in order to achieve better control performance with
lower control gain.

Unlike most part of previous study on topology optimization, this work focuses on a
time-domain transient analysis to achieve the goal of vibration suppression on piezoelectric
structures. TOM is used to optimize the compliant structure for reduced vibration given
two predefined locations for the ceramic layers. The TOM implementation is based on
a density material model, the Solid Isotropic Material with Penalization (SIMP) and the
velocity feedback control technique is chosen for the regulation. To illustrate the method,
bidimensional optimized topologies of flextensional actuators are obtained considering
different active control gains. The efficiency of these devices is evaluated for each of the
control gains implemented.

2 FEM FOR A TRANSDUCER UNDER AVF CONTROL

In order to develop the closed loop equations of motion for the active controlled piezo-
electric transducer, the boundary conditions of the prospective system are presented in
figure 1. The solid system Ω = Ω1 ∪Ω2 is formed by the piezoelectric domain Ω1 and the
elastic domain Ω2 inside a fixed domain Ω̄

(
Ω ⊆ Ω̄

)
to which constraints and loads are

defined. The boundary surface of Ω̄-system, denoted by Γ, is partitioned into prescribed
mechanical displacements Γu, prescribed traction vector ΓT , an equipotential electroded
region Γφ and an unelectroded region ΓD, where it concentrates the free charge density
per unit surface area.

The dynamics of deformation here is approximated by a 2D-solid bilinear finite ele-

ment and the displacement field U =
[
u Φ

]�
is given by two mechanical components
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Figure 1: Design domain

u = [ux uy]
� for deformations in directions x and y, respectively. The electric vector

component Φ = [Φf Φp] is subdivided into free voltages, Φf , for intermediate nodes in
ceramic layers, and prescribed voltages, Φp, for electrode nodes. The grounded electrodes
are not represented in the equations.

The strain-displacement field is defined by the normal strains Sx and Sy in x and y
directions, respectively, and by the in-plane shear strain Sxy:

S =
[
Sx Sy Sxy

]�
. (1)

Likewise, the stress components are given by the stress vector

T =
[
Tx Ty Txy

]�
, (2)

and along with the electric displacement vector D and the coupling piezoelectric tensor
e, the piezoelectric constitutive equations are written:

T = cES − eE,
D = eS + εSE.

(3)

In the piezoelectric constitutive equations, cE is an elastic matrix evaluated under a
constant electric field E, and εS is a dielectric tensor evaluated under constant strain S.

Considering infinitesimal deformation, the linear behaviour of piezoelectric materials
and the linear electric and structural fields in plane stress condition result in the material
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matrices given by

cE =




c11 − c212
c11

c13 − c12c13
c11

0

c13 − c12c13
c11

c33 − c213
c11

0

0 0 c66


 , (4)

e =




0 e31 − e31c12
c11

0 e33 − e31c13
c11

e15 0


 , (5)

εS =

[
−ε11 0

0 −ε33 − e231
c11

]
, (6)

where c66 =
c11 − c12

2
, [12].

The dynamic equations of motion in matrix form for a bounded piezoelectric body are
derived from the Hamilton’s principle for a time interval from t1 to t2. The interpolation of
the displacement field {u} and the electric potential {Φ} are done by means of the shape
functions [N u] and [N φ] for the Q4-bilinear finite element. The convenience of applying
this technique to solve the piezoelectric equations for the design of optimized transducers,
relies on the fact that Topology Optimization procedure is based on systematic analysis
of the physical behaviour of the system. Therefore, the FEM is ideal for a design based
on computational iterations so the variational formulations of mathematical models can
be solved. Combining the equilibrium equations established for all elements, the system
of equations in matrix form needs to be solved:


Muu 0 0
0 0 0
0 0 0






Ü

Φ̈f

Φ̈p


+



Cuu 0 0
0 0 0
0 0 0






U̇

Φ̇f

Φ̇p


+



Kuu Kuφf

Kuφp

K�
uφf

−Kφfφf
−Kφfφp

K�
uφp

−K�
φfφp

−Kφpφp






U
Φf

Φp


 =




F
Qf

Qp


 ,

(7)

knowing that the global matrices M , C and K are defined as below:

[M]e =

∫

Ωe

ρe [Nu]
�
e [Nu]e dΩe Muu =

∑
e

[M]e (8)

[Kuu]e =

∫

Ωe

[Bu]
�
e

[
cE

]
e
[Bu]e dΩe Kuu =

∑
e

[Kuu]e (9)

[Kuφ]e =

∫

Ωe

[Bu]
�
e [e]�e [Bφ]e dΩe Kuφ =

∑
e

[Kuφ]e (10)

[Kφφ]e =

∫

Ωe

[Bφ]
�
e [ε]e [Bφ]e dΩe Kφφ =

∑
e

[Kφφ]e (11)

[C]e = α [M]e + β [Kuu]e Cuu =
∑
e

[C]e (12)
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where the subscript e stands for a finite element, [Bu] and [Bφ] defines the derivatives of
shape functions and α and β are Rayleigh’s coefficients for proportional damping. The
damping matrix Cuu involves the damping effect of the metallic layer and the piezoelectric
layers.

For the control problem formulation to be stated, the boundary condition for the
electrode on the sensor layer, top ceramic layer identified by s, is that its electrical voltage
is null, Φs

p = 0, so we can measure its nodal electrical charge Qs
p. Meanwhile, the

boundary condition for the actuator layer, bottom ceramic layer identified by a, is that
its input voltage is prescribed and identified by Φa

p. Additionally, the electric charges at
the piezoelectric internal nodes Qf are null, and the controlled transducer problem to be
designed is illustrated in Figure 2

Figure 2: Controlled transducer with metallic layer to be designed by TOM.

Therefore, the system of equations (7) is rewritten so the electrical charges Qs
p is given

as a function of the vector U . Given the aforementioned boundary conditions, the electric
potential vector on the ceramic internal nodes is defined by

Φf = K−1
φfφf

K�
uφf

U. (13)

By substituting Φf , equation (13), into the two other equations of the system (7),
the output forces F and the measured charges Qs

p at the sensor layer are given by the
expressions:

F = MÜ+CU̇+
(
Kuu +Kuφf

K−1
φfφf

K�
uφf

)
︸ ︷︷ ︸

Huu

U, (14)

Qs
p =

(
K�

uφs
p
−K�

φfφs
p
K−1

φfφf
K�

uφf

)
︸ ︷︷ ︸

H�
uφsp

U. (15)

Based on the voltage definition for a current amplifier, the sensor output charges Qs
p

are differentiate in time and multiplied by a constant gain Gs to obtain the sensor voltage
output

Φs
p = GsH

�
uφp

U̇. (16)
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Premultiplying equation (16) by a unit vector I =
{
1 . . . 1

}
, of the electrode sensor

layer nodal size φs
p, a scalar output voltage ϕ is obtained. In order to have an equipotential

input voltage to the actuator electrode, ϕ must multiply a unit vector I� on the actuator
electrode nodal size φa

p. Therefore,

Φa
p = GsIφa

p
Iφs

p
Hφs

puU̇. (17)

Rewriting the dynamical system (7) in H-matrix form with equation (17) based on
previous developments, the equation to be solved by a time integration method is stated:
[
Muu 0
0 0

]{
Ü

Φ̈f

}
+

[
Cuu −GsKuφa

p
Iφa

p
Iφs

p
Hφs

pu 0

GsKφfφa
p
Iφa

p
Iφs

p
Hφs

pu 0

]{
U̇

Φ̇f

}
+

[
Kuu Kuφf

K�
uφf

−Kφfφf

]{
U
Φf

}
=

{
F
0

}
.

(18)

Therefore, equation (18) is the FE system for the transient velocity feedback analysis.

3 THE TOM FOR AN AVF CONTROL LAW

The TOM has been employed to design smart structures based on piezoelectric material
such as actuadors [13] and transducers [14] for a static or quasi-static analysis. In the field
of intelligent structures, the topology optimization has been first applied in combination
with a velocity feedback control by Zhang [2] and [5], who implemented an objective
function based on the measurements of the displacement on a target degree of freedom.

In this work, TOM aims to extremize an objective function for a structure under a
transient load and a velocity feedback control. It employs a material model concept [15]
to distribute void and solid within a design domain aiming to extremise a cost function,
and uses the FEM for systematic structure analysis. The SIMP is the material model
employed in this work.

For the vibration suppression purpose, the objective function defined in this work
considers the minimization of a energy function involving the velocity of a target point,
u̇dof. The design variables vector is the pseudodensity ρ of the host layer at each finite
element, while a volume constraint Vmax limits the material distribution for the design of
a lightweight flexible structure with joints optimally located as to condense the ceramics
displacements.

Therefore, the objective function defined monitors the vibration response over a given
time interval [0, tf ] as follows:

f =

∫ tf

0

g(U̇ (t,ρ)) dt. (19)

The function g(U̇(t,ρ)) may be defined to monitor several types of structural be-
haviour, but here the objective function is to reduce the structure vibration by spanning
in time the velocity u̇dof of a target degree of freedom:

g(U̇ (t,ρ)) = U̇�BU̇ , (20)
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where B = B� is used to specify the target degree of freedom. It is a null matrix where
its diagonal equals 1 only at the target dof.

The optimization problem is stated bellow for the modified damping matrix of the
system (18) represented by Ctm:

mi
ρ
n f(ρ) =

∫ tf

0

U̇�BU̇ dt

s.t.





M(ρ)Ü+Ctm(ρ)U̇+K(ρ)U = F(t)

U̇|t=0 = U̇0

U|t=0 = U0
Ne∑
e=1

ρeVe ≤ Vmax

0 < ρmin ≤ ρe ≤ 1

(21)

As a solid and void profile is desired, the penalization factor q of the SIMP model
accounts with smooth increments along each iteration of the TOM. Denominated the
continuation approach, this procedure prevents a premature convergence to a local min-
ima.

Therefore, the element elasticity tensor cnijkl, for a basic isotropic metallic material cEijkl
and void-property material c0ijkl, is given by

c(ρn) = ρqn(xc, yc)c
E + (1− ρqn(xc, yc))c

0, (22)

where (xc, yc) is the finite element Cartesian centroid coordinate pair.

4 NUMERICAL IMPLEMENTATION

The steps involved in the topology optimization algorithm are described in the flow
chart shown in Figure 3.

The software was implemented in MATLAB with an optimization solver based in the
Sequential Linear Programming (SLP), which has proved to be efficient for the kind of
problem therein proposed. As a gradient-based mathematical programming algorithm,
the SLP needs the sensitivity analysis of the objective function with respect to the design
variables, which is calculated through the adjoint function in place of the original objective
function as stated below:

L(U̇ ,λ) =

∫ tf

0

g(U̇ (t,ρ)) dt+

∫ tf

0

λ�(t)
[
M(ρ)Ü +Ctm(ρ)U̇ +K(ρ)U − F (t)

]
dt.

(23)

Taking the derivative of the Lagrangian (23) with respect to the design variables ρ we
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Figure 3: Flowchart of the implemented optimization procedure.

get the final valued adjoit problem




Mλ̈�(t)−Ctmλ̇
�(t) +Kλ�(t) = d

dt

(
∂g

∂U̇

)∣∣∣
t

λ�(tf ) = 0

λ̇�(tf ) = M−1 ∂g

∂U̇

∣∣∣
tf

, (24)

and to obtain the initial value primal problem, a change of variable is applied τ(t) = tf−t:




MΛ̈�(τ(t)) +CtmΛ̇
�(τ(t)) +KΛ� (τ(t)) = 2BÜ

∣∣∣
τ(t)

Λ�(0) = 0

Λ̇�(0) = −2M−1 Bu̇|tf

. (25)

Recalling that Λ̇(τ(t)) = −λ̇(t), the sensitivity expression for the transient problem
reduces to:

∂L(U̇ ,Λ)

∂ρe
=

∫ tf

0

Λ�(tf − t)

[
∂M(ρ)

∂ρe
Ü +

∂Ctm(ρ)

∂ρe
U̇ +

∂K(ρ)

∂ρe
U − ∂F (t)

∂ρe

]
dt. (26)

As it is seen by equation (26), the sensitivity analysis of this transient optimization
problem involves the solution of two second order linear equations, one in Λ and the other
one in U . Their numerical solutions are obtained by the a-form of Newmark’s numerical
integration scheme [16].
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Figure 4: Optimized topology design for Gs = 0

5 PRELIMINARY RESULTS

Given a solid initial domain of 2cm × 0.4cm, this domain is discretized by a 80 × 16
finite elements with a pseudodensity vector initially set to ρ = 1 at the metallic layer,
restricted to Vmax = 0.7. The optimization problem, equation (21), was evaluated for a
null feedback gain and for a feedback gain Gs = 10000.

Figure 5: Target displacement for Gs = 0 optimized topology

Figure 6: Optimized topology design for Gs = 10000

For both simulations, the objective function converged, and from figures 5 and 7 it can
be seen that the transient finite element analysis results in a lower vibration amplitude
in the presence of a control gain. However, the attenuation obtained for the topology
resulted from the optimization that is coupled with a control gain, Figure 6, is increased
when compared with the topology resulted from the optimization with null gain, Figure
4, what in terms of objective function values represents an improvement of 1.65%.

6 CONCLUSIONS

The TOM was applied to the design of a vibrational structure controlled by two piezo-
ceramic layers aiming to reduce its displacement in time. The SIMP material model was
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Figure 7: Target displacement for Gs = 10000 optimized topology

adopted and the optimization problem was solved with a Sequential Linear Programming
(SLP) algorithm. The results show that to the velocity feedback gain chosen the opti-
mization problem converges, and the final topology indicates a better improvement in
response attenuation for the gain to which the structure was designed. In future work,
formulation will be revised in order to obtain even grater vibration suppression in the
presence of an active control feedback.
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[13] Kögl, M., and Silva, E. C. N. Topology optimization of smart structures: design
of piezoelectric plate and shell actuators. Smart materials and Structures, Vol. 14,
(2005) 2:387–.

[14] Silva, E. C. N. and Kikuchi, N. Design of piezoelectric transducers using topology
optimization. Smart Materials and Structures, Vol. 8, (1999) 3:350–.

[15] Rozvany, G. I. N. Aims, scope, methods, history and unified terminology of computer-
aided topology optimization in structural mechanics. Structural and Multidisciplinary
Optimization, Vol. 21, (2001) 2:90–108.

[16] Hilber, H. M., Hughes, T. J. R. and Taylor, R. L. Improved numerical dissipation
for time integration algorithms in structural dynamics. Earthquake Engineering &
Structural Dynamics, Vol. 5, (1977) 3:283–292.

12

858




