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Abstract. A framework for obtaining adjoint gradients for coupled conjugate heat
transfer problems is presented. The framework is tailored to partitioned approaches in
which separate solvers are used for the fluid and solid domains. The exchange of sensitiv-
ities between adjoint fluid and solid solvers is necessary in order to obtain gradients and
how this is achieved is described. The effectiveness of the procedure is demonstrated by
solving a conjugate heat transfer problem using a gradient based approach. The presented
method can be extended to sensitivity analysis of multidisciplinary problems where both
solvers offer adjoint derivatives.

1 INTRODUCTION

Conjugate Heat Transfer (CHT) describes the process of transferring heat between a
fluid and solid and is ubiquitous in engineering applications, e.g the design of modern tur-
bine blades, water cooling of combustion engines, and the heating of vehicles in hypersonic
flow [1, 2].

CHT problems may be solved using a monolithic approach in which both fluid and solid
equations are solved simultaneously by a single solver. Typically however the segregated
or partitioned approach is adopted where separate solvers for the fluid and structure
are loosely coupled through boundary conditions. These conditions need to be updated
iteratively until the temperature and heat flux are continuous between the two domains
[3]. One advantage of the partitioned approach is the flexibility of using different existing
solvers for both domains [2, 3].

In this paper, we investigate an inverse heat transfer problem over a flat plate, in which
the temperature on the bottom of the flat plate needs to be inferred from the temperature
obtained at the interface between the flat plate and the fluid. Several examples of inverse
CHT problems exist, however these problems are usually simplified into either inverse
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conduction [4, 5] or convection problems [6, 7, 8]. Ahamad and Balaji [9] consider both
conduction and convection in their partitioned inverse problem. However, the problem is
solved using artificial neural networks. To the authors knowledge, there exist very few
inverse problems considering both conduction and convection which are solved with both
a partitioned and gradient based approach.

The inverse problem is solved by formulating an optimization problem, which allows
the use of classical direct methods to solve the physics involved. Here we use a partitioned
method to predict the interface wall temperature starting from a guessed bottom tem-
perature, while a gradient based method is used to reduce the deviation of this interface
wall temperature with the desired one. The gradients of the objective w.r.t the control,
i.e. the temperature specified on the bottom of the flat plate, are computed using an
adjoint approach. Methods for the computation of multidisciplinary gradients have been
proposed in [10, 11] and these methods are applied to two loosely coupled solvers leading
to a fixed-point formulation of the adjoint system.

This paper is organised as follows: Section 2 first describes the direct problem, rele-
vant equations, and the coupling procedure. The results of the direct problem are then
presented and compared to an analytic solution to demonstrate the accuracy of the cou-
pling procedure. Section 3 then describes the inverse problem, the derivation of adjoint
gradients for the partitioned approach, and verification of the obtained gradients. The
gradients are then used to solve the inverse problem using the steepest descent method.
Conclusions are discussed in section 4.

2 DIRECT PROBLEM

The conjugate heat transfer problem to be considered in this work is the laminar flow
over a flat plate with finite thickness. The free stream flow temperature is T∞, while the
bottom on the plate is maintained at a temperature Tb. Consequently, there is conjugate
heat transfer at the interface between the solid plate and the fluid. The aim of the direct
problem is to accurately compute the wall temperature Tw at the interface between the
fluid and solid, which is unknown a priori and can only be computed by considering the
coupled problem.

The fluid domain is governed by the Navier-Stokes equations for steady, laminar flow:

∂U

∂t
+

∂F j

∂xj

=
∂Gj

∂xj

. (1)

where t denotes pseudo time and xj, j = 1, 2, 3 are the cartesian coordinates. The sate
vectors U , and the inviscid and viscous flux vectors F j and Gj are defined as

U =




ρ
ρvi
ρe


 , F j =




ρvj
ρvivj + pδij
(ρe+ p)vj


 , Gj =




0
τij

vjτij − qj


 . (2)

where, ρ, p and v are the fluid density, pressure and velocity respectively, e the internal
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Figure 1: Description of the direct problem.

energy per unit mass, τij the viscous stress, and qj the heat flux. The solid domain is
governed by Fourier’s law

λs∇2T = 0, (3)

where λs is the conductivity of the plate. The values of geometry, boundary conditions,
and the Reynolds number of the case are shown in table 1.

Table 1: Table of parameters

Parameter Value units
b 0.01 m
L 0.2 m

M∞ 0.1
P∞ 1.03 · 105 Pa
T∞ 1000 K
λs 0.5555 Wm−1K−1

ReL 1.132 · 105

2.1 Coupling method

The problem is solved with a partitioned approach in which separate solvers are used for
both domains and where boundary conditions are exchanged at each iteration to achieve
continuity of temperature and heat flux across the domains. Different coupling methods
exist depending on which boundary conditions are exchanged between both domains. In
this work, we use the temperature forward flux back (TFFB) method [12], in which the
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wall heat flux distribution, q, is imposed as a boundary condition to the fluid domain,
which after invoking the fluid solver F results in a wall, resulting in a wall temperature
distribution, T (see equation 4). This temperature is subsequently imposed as boundary
condition on the solid domain and the solid conduction solver, S, then provides an updated
heat flux distribution. This loop is continued until there is no change in the boundary
conditions exchanged by both solvers.

T i = F(qi), (4)

qi+1 = S(T i).

2.2 Simulation setup

The fluid domain is solved using the STAMPS flow solver, a vertex centered, finite
volume solver, which solves the 3-D compressible RANS equation using unstructured
grids. A second order accurate spatial discretisation is used with JT-KIRK implicit time
stepping and automatic CFL ramping [13]. Two different fluid meshes are used to solve
the direct problem in order to carry out a grid independence study. The coarser mesh is
shown in Fig. 2 and details on the number of nodes in both meshes are shown in Table 2.
The flat plate starts at position x=0 and ends at position x=0.2. The boundary conditions
are also indicated in Fig. 2. A small inlet piece is added to the numerical domain in front
of the flat plate to avoid inference of the boundary conditions on the results.

x[m]0 0.2

0.1

y[m]

Su
bs

on
ic 

in
le

t Subsonic outlet

Freestream

Viscous wallSlip wall

Figure 2: Mesh 1 and fluid simulation set up.

The solid domain is solved using a second order central spatial discretization and
explicit time integration is achieved using a first order Euler scheme. A node-centred,
structured grid with matching nodes at the interface between the fluid and solid domains
is used to avoid interpolation during the exchange of boundary conditions, but in general
the coupling procedure would allow for non-matching grids at the interface.
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Table 2: Table showing the number of grid points in each part of the mesh

Mesh Slip wall Viscous wall Fluid height
Mesh 1 24 113 97
Mesh 2 48 226 194

2.3 Direct problem results

The coupling procedure is first validated against the Luikov analytic solution for differ-
ential heat transfer to ensure the direct CHT problem is solved accurately. A comparison
of the obtained streamwise wall temperature and the analytic temperature profile derived
by Luikov [14] are shown in Fig. 3a. To check the convergence of the coupling procedure,
we define as residual as

Res =

√√√√
nNodes∑
j=1

(T i
jNode − T i−1

jNode)
2, (5)

where i denotes the coupling iteration. The plot of the residual is shown in Fig. 3b.
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Figure 3: Temperature distribution and residual convergence plots of the direct solution.

The obtained temperature distribution shows good agreement with the analytic profile.
The discrepancy between the obtained and the analytic temperatures may be because the
Luikov solution is only an approximate solution where lateral heat transfer in the solid is
not modeled. The results for both meshes also show grid convergence, therefore, in order
to reduce the computational cost, Mesh 1 is used to solve the inverse problem.
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3 INVERSE PROBLEM

In the inverse problem we seek the bottom temperature Tb which results in the best
match for a given the interface wall temperature Tw. We define an objective function
(J) as the difference between the given interface temperature (Ttarget) and the obtained
interface temperature (Tx) for an estimated bottom temperature (T̃b).

J =
1

2

∫ L

0

(Ttarget − Tx)
2dx. (6)

The objective function depends implicitly on the bottom temperature Tb through the
solution of the coupled problem. Each node at the bottom of the plate has an independent
value of Tb specified as boundary condition, and is used in this work as a control variable
(α) that needs to be changed to drive J to zero. As a result, the control variable α in the
discrete problem is an array of size N, being 113 in the present work with Mesh 1.

The objective is hence to minimise equation (6) subject to the constraints of satisfying
both the state equations of both domains (equations 1 - 3 ) and the convergence of the
partitioned coupling scheme Eqn. (4) which we can rewrite at steady state in residual
form:

Rf = T∞
w − F(q∞w ) = 0, (7)

Rs = S(T∞
w )− q∞w = 0,

where the superscript ∞ denotes the final coupling iteration.

3.1 Minimisation problem

The inverse problem can be solved using a gradient based approach by driving the
gradient of the objective w.r.t control variables to zero. Finite differences may be used to
obtain the required gradients, however, the accuracy of the method is dependent on the
step size, where a too large step size results in truncation errors due to the non-negligible
higher order terms, and a too small step size results in numerical imprecision due to round
off errors. Furthermore, the coupling algorithm would need to be run as many times we
have control variables to obtain the sensitivity with respect to each control parameter.

Alternatively, both the fluid and solid solvers as well as the coupling procedure can be
differentiated to obtain the gradients. The gradient of the objective function (sensitivity)
w.r.t the control variables, α, is given as

dJ

dα
=

∫ L

0

(Ttarget − Tw)
dTx

dα
dx, (8)

= −
N∑
j=1

(Ttarget − Tw)
dTx

dα
,

= gTu,
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where

gi = Ttargeti − Txi
(column vector),

ui =
dTx,i

dα
(column vector).

Equation (9) requires a solve for u for every control variable. A perturbation of the
bottom temperature (α) perturbs the heat flux distribution, which in turns perturbs the
temperature distribution. This perturbation cascades through the entire coupling proce-
dure and leads to a perturbation in the solution to the coupled problem. Nevertheless,
upon convergence of the coupling method, equation (7) must be satisfied. Similarly, the
total derivative of the system w.r.t to any control variable must be zero. This leads to
the system of equations

∂Rf

∂T∞
w

dT∞
w

dα
+

∂Rf

∂q∞w

dq∞w
dα

+
dRf

dα
= 0 (9)

∂Rs

∂T∞
w

dT∞
w

dα
+

∂Rs

∂q∞w

∂q∞w
∂α

+
dRs

dα
= 0,




∂Rf

∂T∞
w

∂Rf

∂q∞w
∂Rs

∂T∞
w

∂Rs

∂q∞w







dT∞
w

dα
dq∞w
dα


 =



−∂Rf

∂α

−∂Rs

∂α


 .

This can be rewritten as

Au = f, (10)

u = A−1f,

where A is the extended Jacobian of the system. Solving this linear system once allows
to compute the sensitivity by substituting for u in equation (9), which gives

dJ

dα
= gTA−1f. (11)

However, since the problem has multiple control variables α, this exercise needs to be
repeated for each α, hence requiring N linear system solves (in this work 113). Addition-
ally, the Jacobian matrix in equation (9) is not explicitly computed in the TFFB coupling
approach used in the present work.

3.2 Adjoint equations

Regrouping the terms in equation (11) allows to introduce a new variable v as follows:
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dJ

dα
= (gTA−1)f,

= vTf, (12)

=
[
T̄w q̄w

]


−∂Rf

∂α

−∂Rs

∂α


 , (13)

where v represents the adjoint values of temperature and heat flux (T̄w, q̄w) and is the
solutions of the linear system



∂Rf

∂Tw

T ∂Rs

∂Tw

T

∂Rf

∂qw

T ∂Rs

∂qw

T




[
T̄w

q̄w

]
=




∂J

∂Tw

∂J

∂qw


 , (14)

ATv = g,

vT = gTA−1.

The advantage of computing the sensitivity through equation (12) is that only one solve
of the adjoint system (equation (14)) is required to obtain the adjoint variables regardless
of the number of control variables.

The adjoint approach can also be obtained using reverse mode automatic differentiation
and is the technique which is employed here. It results in an equivalent approach in which
the Jacobian is not computed explicitly, rather the full forward run is repeated in reverse
as illustrated in Fig. 4. The fluid state at each coupling iteration during the direct solve
is stored and used to initialise the adjoint solve in the reverse coupling iteration. The
accumulation of T̄b yields the gradient values which are the solution to equation (12).

3.3 Gradient verification

To ensure the adjoint method is implemented correctly, a typical test is executed which
compares the results with Finite Differences (FD). Although the accuracy of FD can be
a significant issue, it can provide a reasonable indication of whether the adjoint code is
implemented correctly. The obtained adjoint and FD gradients are compared in Fig. 5a.

The target temperature is obtained by solving the primal problem with a bottom
temperature of 600K and is denoted as Ttarget|Tb=600K . T̃b is taken as 400K and refers to
the estimated bottom temperature that should yield Ttarget .

The adjoint and FD gradients show good agreement to plotting accuracy. Fig. 5b
shows the convergence of the coupling procedure for the direct and adjoint solves. For the
adjoint convergence, the same residual defined in equation (5) is used with the temperature
values replaced by gradient values.
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Figure 4: Coupling iterations (Direct = red, Adjoint = blue).
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Figure 5: Gradient comparison and coupling convergence for T̃b = 400K vs. Ttarget|Tb=600K .

3.4 Results

The objective is minimised using the steepest descent algorithm which is run for 15
iterations. We define the difference between the temperatures obtained from the direct
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and inverse solution as

Terror = TTarget − TInverse, (15)

The obtained wall temperature distributions and the error for each node are shown in
figures 6a and 6b.
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Figure 6: Results of wall and bottom temperature distribution.
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Figure 7: Cost function and gradient plots for T̃b = 400K vs. Ttarget|Tb=600K .

Fig. 6 shows that the inverse solution is significantly closer to the target than the
initial values while Fig 7 shows that the values of the objective and sensitivities have
been reduced considerably. The results show that the gradient computation procedure
described Sec. 3.2 can be successfully utilised by optimisation algorithms. Consequently,
the described procedure can be used to obtain sensitivities using any two adjoint solvers
which provide the required multidisciplinary gradients.
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4 CONCLUSION

This paper discusses the use of a partitioned approach to solve an inverse conjugate heat
transfer problem. The partitioned method used is described in section 2 and validated
with and analytic solution. In section 3, adjoint methods have been used to solve an
inverse problem using a gradient based approach. The derivation of adjoint equations
for the partitioned system was presented and the exchange of sensitivity information
between the adjoint solvers in order to obtain multidisciplinary gradients was described.
The description shows a framework capable of combining any two adjoint solvers in order
to compute multidisciplinary gradients. The developed framework was successfully used
in an optimisation algorithm to demonstrate its effectiveness. Future work will include
the replacement of the simplified heat conduction solver with the reverse-differentiated
open-source solver, Calculix. Additionally, the presented framework could be extended to
shape optimisation problems involving CHT and multidisciplinary design optimisation.
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