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Abstract. The paper is devoted to study of the aerodynamic forces acting on flat plates 
performing free flexural vibrations in a viscous fluid. The study consists of two parts. In the 
first part the experimental investigation of the aerodynamic loads based on analysis of 
damped flexural vibrations of cantilever test samples is conducted. In the second part the 
aerodynamics of the oscillating plates is investigated using direct numerical simulation. 

 
1 INTRODUCTION 

The past few decades have witnessed a rising interest in the study of mechanical vibrations 
of thin plates in viscous static fluids. The motivations for these studies stem from different 
practical applications covering diverse fields of knowledge such as atomic microscopy [1], 
sensors and actuators based on micromechanical oscillators [2], cooling devices [3], marine 
and offshore equipments [4, 5]. Our interest in this research area is connected with the 
development of the approach [6, 7] for determination of the damping properties of materials 
based on the study of the damped flexural vibration of cantilever flat beams. 

When studying vibrations in air, it is necessary to accurately determine aerodynamic loads. 
In the general, the problem of evaluation of aerodynamic forces acting on a cantilever beam is 
extremely complicated, mainly because of the complexity of three-dimensional gas flows 
caused by vibrations of the beam. But when the length of the beam considerably exceeds its 
width and thickness at low structural vibration modes, the length of the vibrational wave is 
much greater than deviations of the beam, as a result it can be regarded as locally planar. In 
this case it is possible to use a simplified quasi-two dimensional model of interaction between 
the beam and a gas, according to which the aerodynamic forces acting on each cross section 
of the beam are caused by the planar flow around it. These assumptions form a theoretical 
core that is used for the study of aerodynamics around oscillating plates in the present 
research. 
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The study consists of two parts. In the first part the experimental investigation of the 
aerodynamic loads based on analysis of damped flexural vibrations of cantilever test samples 
is conducted. In the second part the aerodynamics of the oscillating plates is investigated 
using direct numerical simulation. 

2 THE PROBLEM STATEMENT 

Let us consider an elastic plate of length L, width b, and thickness h ( L h << b << ) (Fig. 
1). One of its ends is rigidly fixed and the second is free. As soon as the plate is disturbed 
from the equilibrium, it starts to vibrate harmonically in the surrounding air. The frequency of 
these vibrations ω weakly varies in the vicinity of the basic natural frequency ω0 of flexural 
vibrations of the plate, while the amplitude A weakly decays with time t because of air 
resistance and internal damping. The problem consists in determining the aerodinamic 
influence on this process. We will characterize the laws of slow variations of the amplitude 
and frequency by using the logarithmic decrement of vibrations (LD) δ(A) and the relative 
variation of frequency (RVF) Ω(A) as functions of the current amplitude of flexural vibrations 
of the plate: 
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Figure 1: Schemes for the full beam vibration problem (a) and for the associated 2D fluid-structure interaction 

problem (b). 

The equation describing vibrations of a plate according to a cylindrical flexural mode has 
the form  

 PHwbhwEbh IV  
12

3

. (1) 

Hereinafter, the Roman numerals designate differentiation with respect to spatial coordinate x 
and dots designate differentiation with respect to time t; w is the displacement of middle line 
of the plate along the z axis; H and P are the forces of internal friction and aerodynamic 
resistance; ρ and E are the effective density and Young’s modulus of plate material. The 
boundary conditions correspond to a rigid fixation at x = 0 and to a free end at x = L. 

The drag forces are smaller than the elastic one. Therefore, to a first approximation, we 
may assume that H = P = 0 .In this case, as is known, the basic vibration mode takes the form 
    LxWtAw /cos 0   (2) 
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The constants A and ω0 represent the amplitude and natural frequency of the basic mode, and 
the profile W of vibrations (W(1) = 1) is described by the formula 

   .sinsinh
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The value of k = 1.8751 is the smallest positive root of the characteristic equation
  k  k 1coshcos  , and the frequency of natural vibrations is 
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Owing to the presence of small forces (~ ε) in the right-hand side of equation (1), the 
vibration amplitude A and frequency ω0 in equation (2) do not remain constant, but slowly 
vary in time. An analysis of such a variation can be carried out by introducing, along with the 
fast time t, a slow time τ = ε t and performing a two-scale asymptotic expansion. Omitting 
details of this procedure, we present the final result: 
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Hereinafter, the angular brackets designate averaging over the spatial coordinate x, while the 
braces mean time averaging. 

It is obvious that, in view of linearity of the right-hand side parts of equations (3), the 
different components of forces can be calculated independently from each other. Thus we get 
the integral relationship between the aerodynamic forces and parameters of beam oscillations 
(LD and RVF). 

3 AN EXPERIMENTAL INVESTIGATION OF AERODYNAMIC FORCES 

3.1 Experimental setup 
To get a damping parameters of the flexural oscillation of cantilever beam in the 

surrounded air the experiments for measurement the damped oscillation caused by the initial 
deflection of the free end of the console from equilibrium was carry out. As experimental 
samples duralumin beams with the next geometrical parameters are used: thickness h = 1, 2 
mm, width b = 20, 30 mm and length L, which varies in the range from 200 to 400 mm with 
increments of 20 mm. The registration of vibrations is performed by the lightweight MEMS 
gyroscope mounted on the end of the beams. 

As a result of the procedure, approximate relations for the vibration amplitude A(t), 
frequency ω(t) ≈ ω0, LD δ(t) and RVF Ω(A) as functions of time are determined. From these 
approximation for each experiment in the range of the realized oscillation amplitudes the 
dependences δ(A), Ω(A) were built. 

3.2 Extraction of aerodynamic damping parameters and calculation of force coefficients 
In the general case, the parameters of the vibrations of the beam depend on the 

aerodynamic and mechanical components of damping. To separate of these components from 
each other in the experiments we use test samples of aluminum alloy. The internal damping of 
the beams of this material [8, 9] is almost independent of the oscillation amplitude up to very 
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high strain. The mounting method of samples [9] provides independence of structural 
damping from oscillation amplitude. Thus, the change of the LD from oscillation amplitude is 
a consequence of aerodynamic effects. 

The influence of the mechanical component of the damping on the RVF of the beam for 
the parameters of the present experiments is not known. In the subsequent discussion we 
assume that this influence is extremely small and RVF is completely determined by 
aerodynamic effects. 

Ignoring the three-dimensional effects, consider the impact of aerodynamic flow as a result 
of quasi-two-dimensional flow around the beam. Also consider that the aerodynamic forces 
P(x) at each cross section x of the beam can be described by approximation 
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. (4) 

Here u0(x, t) = ∂w/∂t is the velocity of displacement of the current beam cross-section, ρa is 
the air density, CM and CD are local coefficients of added masses and drag respectively. 
Substituting (4) into (3), we get the next equations 
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which connects the LD and RVF with the drag and added mass coefficients. It should be 
noted that the added mass force according to (5) affects only on the frequency of beam 
oscillations, while the drag force affects only on the amplitude of beam oscillations. 

For transition from the oscillation parameters to the aerodynamic characteristics the 
nonlinear integral equations (5) must be solved. For this purpose we used the analytical 
method proposed in [10]. Thus, each experiment allows finding the dependence of the drag 
coefficient CM and the coefficient CD of added mass from the oscillation amplitude of the 
beam for the fixed frequency value. 

4 NUMERICAL CALCULATION OF AERODYNAMIC FORCES 
As an alternative method for determining aerodynamic characteristics numerical 

simulation is considered. The aerodynamic coefficients CM and CD are found during solving 
the planar fluid flow problem caused by vibrations of an infinitely extended thin rigid plate 
(Fig. 1b). Such a plate plays the role of a mobile solid boundary for the air surrounding it. In 
each given cross section x, the velocity of displacement of the boundary is given as 

)/()()sin()(),( 00000 LxAWx, Utx-Utxu   . 
The fluid flow around the plate generated by its motion is governed by the Navier-Stokes 

system of equations. Normalizing the spatial coordinates, time and velocity by b , 0
1Ub  , 0U  

respectively, we get the dimensionless formulation of the governing system in the following 
form: 

 0
Re
1



 UUpUU

t
U  (6) 

Where )( vuU  is the dimensionless velocity, p  is the dimensionless pressure,  RU0Re  
is the Reynolds number.  

For solving this problem numerically it is convenient to rewrite governing equations in a 
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moving (non-inertial) coordinate system associated with the plate. To retain the governing 
system in the form (6), we determine a new pressure as 

 zapp ~  
Here the first term is the pressure in the fixed coordinate system, the second term is the 
inertial contribution, a is the acceleration of the moving coordinate system. 

On the surface of the plate in the new coordinate system the no-slip conditions are 
fulfilled: 

  0plateplate vu  (7) 
At infinity, the variation of velocity is determined by the following harmonic law: 

   0),KC/sin( vtu   (8) 
Here KC is the second dimensionless control parameter of the problem - the Keulegan-
Carpenter number. A complex of two parameters (Re, KC) completely determines the flow of 
fluid near the oscillating plate. Sometimes it is also convenient to use their ratio 

KC
Re

  

which plays the role of the oscillatory Reynolds number and has approximately the same 
value along the x direction of the flexural oscillating plate. 

The forces acting on the plate by a viscous fluid in the dimensionless formulation are 
calculated as 

  ndspndsC
SSP   

where   is the viscous stress tensor, S  is the surface of the plate and n  is the surface normal 
vector. The force vector PC  can be expanded into a vertical component y

PC  (lift force) and a 
horizontal component z

PC , which consists of the drag force and inertia force: 


  uuC

dt
duCCC DFKM

z
P )(  

The inertial force acting on the plate due to the fluid acceleration can be split into two parts: 
the inertia force of added mass, arising due to the local acceleration near the cylinder, and the 
Froude-Krylov force ( FKC ), which is related to the pressure gradient created in the fluid by 
the flow oscillations (associated with the transition to the moving coordinate system). The 

FKC force coefficient for the considered case can be calculated as 

  zndsC
SFK 

1  

To determine the quantities CM and CD as functions of the parameters β, KC, it is necessary 
to carry out a numerical solution of problem (6)-(8). The corresponding numerical 
calculations were performed in the OpenFOAM software package of computational 
hydrodynamics, based on model presented in [12]. It should also be noted that in the 
numerical simulations we accurately reproduce the shape of the plates used in the 
experiments, especially the ratio of width b to thickness h and the form of ends of the 
samples, which have the rounded corners. 
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5 RESULTS  
As the main results of the study, we present here the dependences of the drag CD and added 

mass CM coefficients of flat plates on the dimensionless vibration amplitude KC.  
The functions CD(KC) are plotted in Fig. 2 for different values of β. Curves 1, 2, 3 

represent experimental data obtained for β = 430, 970, 1290 respectively. Solid line with 
cross-shaped markers corresponds to numerical results for β = 55. As can be seen, present 
results (both numerical and experimental) are well agreed with the data presented in previous 
researches [10], [13], [14]. 

 
Figure 2: Drag coefficient CD vs. dimensionless parameter KC. Black doted lines 1, 2, 3 represent experimental 
results and solid line with cross-shaped markers represent the numerical results of the present study. Gray doted 
lines a, b illustrate experimental results of [10]. Triangle markers correspond to experimental data of [13], black 

circles correspond to experimental data of [14] and white circles correspond to experimental data of [15].  

  
Figure 3: Added mass coefficient CD vs dimensionless parameter KC. . Black doted lines 1, 2 represent 

experimental results and solid line with cross-shaped markers represent the numerical results of the present 
study. Triangle markers correspond to experimental data of [13] and white circles correspond to experimental 

data of [15]. 
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The functions CM(KC) for different values of β are plotted in Fig. 3. Curves 1, 2 represent 
experimental data obtained for β = 430, 970 respectively. As it can be seen, the present 
experimental results (espesualy for high values of β) lies higher than data from [13], [15] and 
the data of numerical results (obtained for β = 55). This can be caused by the influence of the 
non-zero mechanical component of the damping (see section 3.2). 

Numerical part of research was supported by RSF (research project No. 15-19-10039), 
experimental part of research was supported by RFBR (research project No. 15-01-06029). 
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