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Abstract. We present a fluid-structure coupling method designed to study capsules
flowing in a confined environment. The fluid solver is based on the Finite Volume Method
and is coupled to a Finite Elements solid solver using the Immersed Boundary Method. We
study the relaxation of a spherical capsule, initially deformed into an ellipsoid, and released
in a square cross-section channel within a quiescent fluid environment. We perform a
convergence study in order to validate the numerical method and consider the effect of
the inertial forces on the capsule relaxation.

1 INTRODUCTION

Encapsulation consists in protecting a substance from the surrounding medium with
a solid or flexible envelope. One of the main goals of encapsulation is the transport of
the substance and the control of its release, whether it is to be prevented or operated
at a desired location or rate [1]. Understanding the capsule dynamics provides the pos-
sibility to better control the potential release of the inner substance. Flexible capsules
find applications in various fields, particularly in biomedical areas (e.g. targeted drug
delivery) and food industry. Over the last decades, the flow around flexible capsules and
the resulting fluid-structure interactions have been studied experimentally [2, 3, 4], ana-
lytically [5, 6] as well as numerically [7, 8]. Small scale experimental setups can provide
results in various confined geometries and flow configurations, but the observations are
complex due to the scale of the microparticles. Analytical calculations give comprehensive
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accurate results but are restricted to simple flow configurations and small deformations
of the capsule shape. The advantage of numerical simulations is that they provide a good
approximation of quantities that are inacessible through experimental measurement (e.g.
membrane tension) and that would be difficult to model analytically (e.g. capsules flow-
ing in complex geometries). They can also simulate a wide range of properties for the
flow and capsule, and parameters for the case studied. The fluid-structure interactions of
the capsule wall deformation with the internal and surrounding fluid flows can be mod-
eled choosing between two approaches to treat the capsule and the fluids: Lagrangian
or Eulerian. The different existing fluid-structure solvers can thus be classified in three
groups: fully Lagrangian, fully Eulerian and the mixed Eulerian-Lagrangian. Among the
fully Lagrangian approaches, one can mention the Boundary Integral Method [7], which
is very precise, computationnaly efficient and robust but only applicable to Stokes flow.
On the other hand, fully Eulerian methods comprise the level-set method and Volume
Of Fluids (VOF) methods. The latter have the drawback of interface reconstruction,
which is hardly compatible with a continuous mapping. The level-set method is a rel-
evant choice: despite the fact that early implementations were neither able to conserve
the fluid enclosed mass [9] nor to treat the membrane elastic behaviors, these issues have
been solved since then [10]. Finally, the mixed Eulerian-Lagrangian approaches include
the Immersed Boundary Method (IBM) [11, 12], which is very popular thanks to its ex-
treme simplicity of implementation. It has the drawback of being typically unstable with
stiff membranes but this issue has been recently solved [13]. It is, however, stable in the
case of flexible membranes, but capsule flow simulations in complex confined geometries
remain challenging [13]. Our aim is to develop a tool able to compute the fluid-structure
interactions in confined geometries at potentially non-zero Reynolds numbers. The finite
elements solver of Caps3D [7] is coupled with the open-source finite volume solver Basilisk
that has been designed to solve multiphase flows [14]. The objective of the present paper
is to validate the numerical code by considering the relaxation of a pre-deformed capsule
within a confined environment.

2 PROBLEM STATEMENT

We consider an initially spherical capsule of radius a placed in a square cross-section
channel of length L and half-width [ (Figure 1). Let O be the center of the channel and
x the coordinate along the centerline longitudinal axis of the channel, so that it defines
the axis O,. Let y and z be the two other (transversal) coordinates. We respectively call
S;i, S, and S; the inlet, outlet and (four) lateral sections, the latter being the walls of
the channel. The capsule is constituted of a membrane enveloping an internal fluid. The
internal and surrounding fluids have the same density p and the same viscosity p. The
capsule membrane surface shear modulus is G (Figure 1). We neglect the wall thickness
and model the capsule wall as a 2D membrane. We thus neglect bending effects. The
objective of the fluid-structure solver will be to study the dynamical flow of the capsule
flowing in the channel under an average inlet flow velocity V' = 0.05%. We use as physical
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Figure 1: Schematic of the framework. A spherical capsule of radius a and surface shear modulus G4
is placed in a square cross-section chanel of length L and half-width [. The fluid inside and outside the
capsule both have a density p and a viscosity u.

Figure 2: Scheme of the validation case: a spherical capsule of radius a is pre-deformed into an ellipsoid
of axes (2a,a/v/2,a/+/2) in a square cross-section channel of length L and half-width I. The half-great
axis is along O, and the half-small axes are in the yOz plane.

kinematic scales [ to non-dimensionalize the lengths and Ty = [/V to non-dimensionalize
time. The dimensionless coordinates are 2’ = z/l, y' = y/l, 2/ = z/l, ' = t/T\,. The scale
used to non-dimensionalize the forces is pV?I2. The capsule motion and deformation are
governed by the two following dimensionless numbers: the capsule-to-channel size ratio ¢
and the Reynolds number Re = 24 which is the ratio of the inertial to viscous forces.
For the sake of simplicity, in the following the prime symbols are omitted. To validate
the code, we will consider the relaxation of a capsule pre-deformed into an ellipsoid of
half-great axis 2a along O, and half-small axes a/v/2 (Figure 2). In this case, the velocity
field is induced by the elastic deformation of the capsule. It is placed at time ¢ = 0 at the
center of the channel (the capsule center of mass being at O) in a fluid at rest.
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3 NUMERICAL METHODS
3.1 Meshing of the capsule and fluid domains

Triangular second-order finite elements are used to mesh the capsule wall. Let £ be
the Lagrangian configuration, which is the set of the Lagrangian nodes X = (X, X,, X,)
at time t. The meshing £ is built iteratively from an icosahedron [7]. The typical La-
grangian mesh size is h. Two different values of h are considered here: h = 0.039 and
h = 0.02, corresponding respectively to 10242 and 40962 Lagrangian nodes (card(L) €
{10242;40962}). The mesh size h = 0.078 has also been tested but the mesh is found
to be too coarse to provide good results. The fluid domain is meshed with a Eulerian
regular cartesian grid. Let £ be the set of the Eulerian cubical mesh centers (z,y, 2).
The non-dimensionalized length of the channel is set to L = 8. The Eulerian mesh size
is fixed and set to be Az = 1/32 = 0.03125. The number of Eulerian meshes is 1048 576
(card(€) = 1048576)). The mesh size Az = 1/16 = 0.0625 has also been tested but is
not presented here because it is too coarse to provide precise results. Four integration
timesteps are considered: dt = 1072, dt =5 x 107*, dt =2 x 10~* and dt = 10~*.

3.2 Membrane equilibrium equations

The membrane solver code, Caps3D, uses the Lagrangian configuration £ to compute
the non-dimensionalized Cauchy tension tensor T, which provides the non-dimensionalized
tension (lineic force) T exerted in a direction n by 7(n) = T'.n. This tensor is calculated

using the strain energy function w, describing the material constitutive law. In the present
study we model the capsule behavior using the Skalak et al. law [15]. For this law, the
non-dimensionalized surface energy w; is given by:

1
ws =7 (17 +2I, — 2L, + C13), (1)

where C' is a constant parameter that relates the surface shear modulus G, and sur-
face area dilatation modulus of the capsule. I; and I, are the first and second strain
invariants of the surface evolution. The Skalak et al. law is particularly adapted to
model the strain-hardening behavior of cells, such as red blood cells which have a quasi
surface-incompressible membrane (C;;1). The surface load ¢ exerted by the fluid on the
membrane is given by the membrane equilibrium law -

V.T+q=0 (2)

By the action-reaction principle, —q is the surface load exerted by the membrane on the
fluid. More details may be found in [7, 15].

3.3 Fluid dynamics equations

The fluid equations are solved over the Eulerian grid £ by the open-source code,
Basilisk. In order to compute the Eulerian velocity field, Basilisk [14] uses the incom-
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pressible (V.v = 0), three-dimensional Navier-Stokes equations

0 1
R AV v/ R

5 Au+ f, (3)

Re—

where v = (v,,vy,v,) is the fluid velocity, p = p(z,y, 2,t) the fluid density and p =
w(z,y, z,t) the dynamic viscosity. The Navier-Stokes equations are solved using a finite
volume approach based on a projection method [16]. For Stokes flows, the non-linear term
(v.V)v is set to zero. The spatial discretization is done using a octree cubic cell allowing
dynamic grid refinement in the lubrication film. The source-term f is the volumic force
exerted by the capsule on the fluid. Finally, the boundaries are that of a fluid at rest.
Basilisk uses Dirichlet and Neumann boundary conditions. For the speed v we set a zero
Dirichlet boundary condition on the inlet and lateral sections (S; and S;) and a zero
Neumann boundary condition on the outlet section S,. Additional optional boundaries
are set for the pressure p: a zero Neumann condition on S; and a zero Dirichlet condition

on S, [16].
3.4 Coupling strategy and method

The coupling strategy is based on the Immersed Boundary Method [11]. At each
timestep:

e the forces are transmitted from the capsule membrane to the fluid as source-terms.
e the membrane capsule is advected by the fluid towards a new configuration.

The surface elastic load g is converted to fluid source-term volume forces f using the
following two steps:

e the surface load —g, defined at each X € L, is first integrated into a ponctual force
F(X). This integration is made using a 3 Hammer point scheme. This guarantees
the force conservation over each finite element.

e the ponctual force F'(X) is then spread into the source-term volumic force f by the
immersed boundary method. We use the classical cosine immersed boundary filter
de [11]):

fay= > E(Eg)g&(if)@ <y ;fy) 5C<Z;fz), (4)

X=(Xe, Xy,Xz)€

where
Vs € R,d.(s) = i (1 + cos (g)) Ijsj<2- (5)

This filter is theoretically of order 1 [12] but is found to be of an order between 1
and 2 in practice.
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The volumic force f is injected into equation (3), which is solved to provide the new
velocity field v(t 4 dt) and update the position of the capsule nodes:

ML X0 g et (1) 5 (1) (22
(6)

Vs € R, 6(s) = (1 — |s]) Ligj<1- (7)

(z,y,2)€E

where

This filter is of order 2 [12].

3.5 Parameters of the problem

The physical parameters are chosed to model an artificial microcapsule released in the
tube:

e Capsule-to-channel size ratio a/l = 0.85;
e Skalak law with C = 1.
3.6 Ciriteria to be observed

3.6.1 Convergence study criteria

The criteria for the convergence at the final time ¢ = 10 of the simulation are:

e the maximum error norm over £ of the difference of the position X for the timestep
dt of the considered simulation to that obtained with the smallest integration
timestep dt, = 107%:

Ny = ||th - thmin (8>

0o = Maxyer || Xy — thmin

e the maximum norm over &£ of the difference of the fluid speed to its theoretical value
at t = 400. In this asymptotical state, the relaxation is over and the fluid is at rest.
Thus, the criterion becomes:

VUmax = HQ”OO = maX(w,y,z)Ef,’Hy(ma Y, Z)H (9)

e the relative membrane surface difference between the Lagrangian configuration £

dSg _ Sc—Scg _ 2
Soe = S where S, = 4ma

and the reference spherical shape Ly: 5

0

e the relative membrane volume difference between the Lagrangian configuration £
vy _ Ve=Veg _ 4.3 :
Voo = —y, - Where Vg, = gma®. This

and the reference spherical shape Ly: v
variation is an error, since it should be zero.

0
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Figure 3: Shape evolution of the capsule relaxing in the channel at t =0 (a), t =5 (b), and ¢t = 10 (c)
for h =0.039 and dt = 5 x 1073 in Stokes flow.

3.6.2 Transient state study criteria

During the transient state i.e. ¢t €]0,10[, the characterization can be done with the
parameters of the inertia ellipsoid € of £. The Taylor parametrer is defined by D; o =
(Ly — Ly)/(Ly + Ly), where L, and L, are respectively the half-great and half-small
axis of e. Under Stokes flow, this approximation is valid: even though the capsule is
influenced by the confinement, its shape £ remains roughly ellipsoidal during the transient
state (Figure 3). On the contrary, under inertial flow conditions (i.e. solving the full
Navier-Stokes equations), the shape is too different from being ellipsoidal. We propose
to replace the D, parameter with a parameter Dyy = (L, — L,)/(L, + L,), where
L, = maxy(X,) — ming(X,) and L, = max;(X,) — ming(X,) are the differences of the
extremal coordinates of the Lagrangian grid respectively along O, and O,. This new
definition allows negative values for DLQ. For the sake of simplicity, in the following this
new parameter is also called ”Taylor parameter”.

4 RESULTS

4.1 Generalities

The capsule relaxes to its reference spherical geometry. Figure 3 shows the time evo-
lution of the capsule shape for h = 0.039 and dt = 5 x 1073 in Stokes flow. At time ¢t =5
one sees that the capsule shape is influenced by the walls of the channel, the capsule wall
becoming parallel to it.

4.2 Final time results

When comparing the capsule shape £ at time ¢ to Ly, we see that the infinite norm
| X — X/ has an order of magnitude ~ 1%, depending on the Lagrangian mesh size h
and time step dt. It is consistent with the evolution of £ towards L, over time. Since
the final time ¢ = 10 is far from the end of the relaxation process which is infinite, the
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relaxation is uncomplete and this infinite norm is minorated over (h, Az,dt) € (R**)? by
some constant K > 0. Figure 4 presents the values of the 4 criteria defined in subsection
3.6.1. The same orders of magnitude are obtained for the four criteria: they lie between
ds d
~0.1% and ~1% for Noo (4.2), Vmax (4b), G (4.c) and VL; (4.d):
e Values of (4.a) prove that the error of convergence has an order of magnitude ~ 0.1%
for the smallest timestep dtpm = 1074 ;

e Values of (4.b) show that the fluid is almost at rest, but not totally because the
final time is (¢t = 10);

e Values of (4.c) show that the area of £ always differ by less than 1% from that of
the reference shape Ly;

e Values of (4.d) show that the volume conservation error is always clearly lower than
1%. They are of the same order or smaller than those obtained by Caroll and Gupta
[17]. In the best case, the error is 0.02%, which is indeed much better than [17].

We observe the following effects of the numerical parameters:

e Figure 4.a shows that the errors are larger with A = 0.020 than with A = 0.039,
which appears to be more adapted to Ax = 0.03125 in this test. We can deduce
from this (and from the fact that the above mesh size is too coarse - see subsection
3.1) that Alx = 0039 _ 1948 is the ideal Lagrangian-to-Eulerian mesh size ratio

0.03125
for our tool and for this test.

e The convergence of N, while varying the timestep dt is of order ~1.5 for h = 0.039
(in Figure 4.a, the slope for h = 0.039 is ~1.5) and lower for A = 0.02. This
lower convergence speed confirms the above conclusion about the optimal ratio
h
- = 1.248.

Ax

4.3 Transient states results

We present in Figure 5a the Taylor parameter as a function of time for the Stokes flow
and in Figure 5b for a Navier-Stokes computation with Reynolds number Re = 10. We see
in Figure 5a a continuous decrease of D; 5 under Stokes flow: in Figure 5b the influence
of the inertial term appears through damped oscillations around the equilibrium state.

5 CONCLUSION

We have built and tested a tool which couples a finite volume fluid solver with a finite
element solid solver using the Immersed Boundary Method. On a simple relaxation case,
the coupled solver is shown to give satisfactory numerical precision under Stokes flow,
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the timestep convergence being of the order 1.5. When comparing the capsule relaxation
under Stokes and Navier-Stokes flow conditions, we find that oscillations in the capsule
shape already occur for a flow Reynods Number of 10. The oscillations are due to inertia.

The numerical precision is comparable to that of classical methods, which shows that
the immersed boundary method is adapted to solve transient problems. The present
approach is also interesting for the advantages of the fluid solver itself. It is massively
parallel (OpenMP and MPI) and can thus be used for large spatial simulations. Further-
more, the fluid solver also has an adaptative dynamic meshing that is useful to compute
numerical solution near walls. Finally the viscosity and mass density can be changed dy-
namically, which is interesting to model solid or non-Newtonian cores for capsules flowing
in a capillary. The novelty is that the fluid-structure code can resolve the flow of capsules
of aspect ratios greater than 1 and non-zero Reynolds numbers, which are required to
study capsules in microsystems. The fluid velocity field is also studied by considering the
changes in the streamlines when varying the capillary number, which is crucial for the
understanding of the fluid dynamics. The numerical model can be a useful complement
to experimental measurements, as it provides local field quantities (fluid pressure and ve-
locity, membrane tensions, ...), which cannot easily be evaluated experimentally, as well
as information on topographic changes in streamlines. It thus provides useful additional
information for the study of capsules in microsystems.
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C. d.

Figure 4: Convergence study: infinite norm error of the Lagrangian nodes positions to the case of the
smallest timestep dtpyin = 1074 (a); Maximum speed norm in the fluid (b); Surface variation of the
Lagrangian configuration compared to the reference spherical shape (c); Volume variation (d) (which is
an error since it should be zero). Four different timesteps (dt = 1072, dt =5 x 107%, dt = 2 x 10~*, and
dt = 107%) and two different Lagrangian meshes (h = 0.039 and h = 0.020) are tested.
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a. b.

Figure 5: Time evolution of the Taylor parametrer (a) for Stokes flow and for a Navier-Stokes compu-
tation with Re = 10 (b).
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