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Abstract. Continuing progress in the development of theoretical and computational
techniques in the field of biomolecular systems involving Ribonucleic acids (RNA) has
a very important impact in biomedicine and human health. Many essential biological
phenomena in these systems are on the time scale longer then the time it is possible to
simulate computationally using existing atomistic models. In this article we describe the
development of a continuum model based on atomistic scale parameters. We also present
initial results on the mechanical, as well as thermal properties of the RNA nanoclusters
obtained by using the finite element methodology. Specifically, using the elastic constants
available for the nucleic acid, we report the distributions of the displacement fields due to
stress and thermal effects along typical RNA nanotubes that are important for biomedical
applications.

1 Introduction

Since the ribonucleic acid (RNA) structures are flexible in nature, it is very easy to
create RNA nanoclusters of different sizes and shapes via their self assembly. The mo-
tivation for self assembling these RNA nanoclusters is their potential application in the
field of human health, biomedicine and bioengineering [1, 2, 3]. For these self assembled
RNA nanoclusters it is very important to study their properties in different environments
such as physiological solutions [4]. Studies of structural properties of RNA nanoclusters
have been performed using molecular dynamics and coarse graining modeling techniques
[5, 6, 7]. The building blocks used to model the RNA nanoclusters are the RNA strands
such as RNAi/RNAii which are taken from the protein data bank [8]. Up to date the me-
chanical properties of these ribonucleic acid nanoclusters has not been studied in details.
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Thermal stability of these nanoclusters is another issue of great importance. It is shown
that the thermal stability of the proteins is increasing in presence of the sugar and polyols
in aqueous solution [9]. The importance of such studies also follows from the fact that
there can be a change in the molecular structure of the cell, cell membrane and the cell
nucleus due to thermal effects. Based on the previous studies, in this paper we develop
a discrete-to-continuum model for the analysis of mechanical and thermal properties of
RNA nanoclusters. Studies on the mechanical properties have also been reported for
soft materials such as collagen fabril protein and polymers [10, 11, 12, 13]. For carbon
nanotubes (CNT), that have similar physical structures as RNA nanotubes, the atomistic
to continuum modeling has been performed using the finite element method [14, 15] to
calculate their elastic properties under stress.

The continuum and particle models of deoxy-ribonucleic acid (DNA) systems have
been studied by using discrete base-pair results and approximating the properties for a
continuum rod type model to analyze the mechanical properties [16]. The continuum
model can also be used to study the protein-protein interaction and protein-nucleic acid
interactions to understand the relative stability of A and B forms of deoxy-ribonucleic
acids (DNA) [17, 18].

In what follows, we describe the development of a model to study the elastic properties
of typical RNA nanoclusters and the effect of thermal change on them.

2 Theoretical Details

We consider the RNA nanotube as a cylindrical shell. This analogy is similar to the
continuum approximations used for carbon nanotubes. Therefore, the application of the
atomistic parameters of these systems in the development of continuum models can be
done in a way similar to the CNT [14, 15]

At the molecular level of consideration, the energy of the entire system is due to the
inter-atomic interaction of the atoms where the molecules perform a simple harmonic mo-
tion. Under this assumption the energy contribution from bond stretching, bond bending
and dihedral angle torsion can be related to the energies of their equivalent continuum
elements. From comparison we can relate the atomic parameters to the elastic parameters
of the continuum model as follows,

Vr =
1

2
kr(r − r0)

2, (1)

Vθ =
1

2
kθ(θ − θ0)

2, (2)

and

Vφ =
1

2
kφ(φ− φ0)

2, (3)

where kr, kθ and kφ are the bond stretching, bond bending and the dihedral angle torsional
force constant for the molecular system taken into consideration. In equations (1)-(3) r0,
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θ0 and φ0 are the distance, angle, and dihedral angle at equilibrium. In the continuum
model, let us take a small element of the RNA nanotube of length L and diameter d.
Suppose that ∆L, ∆θ, and ∆φ are the stretch, bending and the torsional displacement
in the cylindrical element of the tube. Now the corresponding types of energies in the
continuum model for this cylindrical shell can be expressed based on the following argu-
ments. Firstly, the energy due to the lateral stretching ∆L of the element of length L ,
with Young’s modulus Y and cross-sectional area A, is given by

UA =
1

2

Y A

L
(∆L)2. (4)

Next, to account for bending phenomena with moment of inertia I and with bending
angle α, the expression for the elastic energy is given by

UM =
1

2

Y I

L
(2α)2. (5)

Finally, the energy corresponding to the rotational motion of the cylindrical element can
be expressed as

UT =
1

2

GJ

L
(∆β)2, (6)

where ∆β is the twisting angle due to the elastic torsion, of the RNA nanotube, J is the
angular momentum, and G is the shear modulus.

The above values for the energy terms, Vr, Vθ and Vφ are the bond stretching energy,
bond bending energy and the torsional energies corresponding to the atomistic interactions
coming from the harmonic motion of the atoms. These quantities are similar to the energy
terms UA, UM and UT derived for a finite element representation of the RNA nanotube
under the continuum approximation. From comparison of the corresponding energies at
these two kind of formulations we find that

Y A

L
= kr,

Y I

L
= kθ,

GJ

L
= kφ. (7)

Using relations (7), the parameters of the atomistic scale can be used to determine the pa-
rameters to be built in into the continuum model. It is possible to calculate the quantities
kr, kθ, and kφ using the atomistic molecular dynamics simulation technique.

For most of the materials of interest, there is a linear relationship between the strain
and stress. The components of the stress tensor in terms of the elastic coefficients and
the stress tensor for the linear and isotropic continuum systems can be expressed as [19]


σ11

σ22

σ33

σ23

σ13

σ12



=

Y

(1 + ν)(1− 2ν)




1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2
0 0

0 0 0 0 1−2ν
2

0
0 0 0 0 0 1−2ν

2







ε11
ε22
ε33
2ε23
2ε13
2ε12



+

Y α∆T

(1− 2ν)




1
1
1
0
0
0




(8)
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which in tensor form can be written as follows

σij =
Y

(1 + ν)

(
εij +

ν

(1− 2ν)
εkkδij

)
− Y α∆T

(1− 2ν)
δij i, j, k = 1, 2, 3, (9)

where Y is Young’s modulus, α is the coefficient of thermal expansion, ∆T is the increase
in temperature of the system, and ν is the Poisson ratio, given by the relations

ν =
3K − 2µ

(3K + µ)
. (10)

The rate-dependent phenomena can be described for the biosystems such as RNA nan-
oclusters by introducing viscoelasticity terms. In the constitutive relation described above
we can introduce the extra term of the stress that is proportional to the rate of change of
the strain as

σv
ij = η

∂εij
∂t

, (11)

where η is the coefficient of viscosity Therefore the general elastic constitutive equation
including rate-dependent term can be expressed as,

σij =
Y

(1 + ν)

(
εij +

ν

(1− 2ν)
εkkδij

)
− Y α∆T

(1− 2ν)
δij + η

∂εij
∂t

i, j, k = 1, 2, 3. (12)

In (12) the quantitiesK and µ are the bulk modulus and the shear modulus respectively.
Under the underlined assumptions, for the systems like our RNA nanotube the steady
state elastic equations can be expressed as

σij,j = 0 i, j = 1, 2, 3. (13)

with the Cauchy relationship connecting the displacement and strain:

uik =
1

2

(
∂ui

∂xk

+
∂uk

∂xi

)
i, k = 1, 2, 3. (14)

The strain-stress relationships are fully determined once the elastic parameters such as
Poisson’s ratio and the elastic moduli of the system are available. In our case we use the
elastic moduli calculated from the atomistic modeling and the experimental techniques
available in literature.

While in the general case (13) is augmented to account for time-dependency, in the
current study we calculate the steady-state elastic properties and the thermal effect on
them. In order to study the mechanical properties of the RNA nanoclusters in the presence
of thermal effect, we have used the finite element method implemented via COMSOL
multiphysics. The general partial differential equation representation has been used. We
have used the Dirichlet boundary condition at one end of the tube and the Neumann
boundary condition at the other end, i.e at z=40nm we set n · σ = 0.
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Figure 1: Approximated continuum geometry of the RNA nanotube as a hollow cylinder generated by
using COMSOL

3 Results and Discussion

In our current study under the above assumptions, we study the RNA nanotube as
a continuous system with the length and the radius equivalent to the size of the RNA
nanocluster modeled using the atomistic molecular dynamics simulation. The continuum
model of the RNA nanotube of the size 40nm with the 10 rings is presented in Figure 1.
Here for calculations of the elastic properties of RNA nanotube, we use the finite element
method. For these calculations we use the constitutive relations between strain and stress
accounting for the thermal effect in the system. Poisson’s ratio and Young’s modulus for
the nucleic acid system were 0.42 and 300 MPA i.e 3 ∗ 108 PA respectively. They were
taken from the literature and obtained by using experimental and atomistic calculations
[20]. The results for the displacement field at different positions for the entire volume
of the RNA nanotube of size equivalent to 10 rings, i.e 40 nm in length, obtained by
using the finite element method at 10 degree and 100 degree K are presented in Figure 2.
Corresponding displacements of the points along a line in the direction of the axis of the
10 ring RNA nanotube at these two temperatures are presented in Figure 3. Since the
values for the thermal expansion coefficient are not yet available for the bionanosystems
like RNA nanoclusters, we have used the average value of the coefficient calculated for the
protein system using the molecular dynamics simulation for a wide range of its densities
[21]. From our results for the displacement along the RNA nanotube, it is clear that the
displacement is increasing as the temperature is increased. During calculation of the
displacement field, due to stress and thermal effects in the RNA nanotube, we have fixed
one end by Dirichlet boundary condition and on the other end a force via Neumann’s
boundary condition has been applied. From the obtained results it is clear that there is
an increase in the displacement as the temperature is increases.

4 Conclusions and Outlook

We have studied the elastic properties and the effect of thermal changes on them
in earlier developed RNA nanotubes by using the finite element method. We have also
studied the effect of stress as a function of the temperature change along the entire volume
of the RNA nanotube. For calculating these properties of RNA nanoclusters we have used
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(a) (b)

Figure 2: Distribution of the displacement at different points along 10 ring RNA nanotube at (a) 10 K
and (b) 100K using finite element method.
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Figure 3: Displacement along the line in the direction of the axis of the 10 ring RNA nanotube at (a)
10 K and (b) 100K using finite element method.

a cylindrical shell representation of the size equivalent to the size of the RNA nanocluster.
The elastic and thermal coefficients have been taken from the literature and calculated
for the nucleic acid molecules and the protein systems. The experimental results of such
physical quantities are not yet available and we expect that our computational studies will
motivate experimentalists to shed new light on underlying problems for RNA nanoclusters.
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