Provided by UPCommons. Portal del coneixement obert de la UPC

Metadata, citation and similar papers at core.ac.uk

Contention-aware Application Performance
Prediction for Disaggregated Memory Systems

Felippe Vieira Zacarias
Universitat Politécnica de Catalunya
Barcelona Supercomputing Center
fvieira@bsc.es

ABSTRACT

Disaggregated memory has recently been proposed as a way to
allow flexible and fine-grained allocation of memory capacity to
compute jobs. This paper makes an important step towards effective
resource allocation on disaggregated memory systems. Specifically,
we propose a generic approach to predict the performance degrada-
tion due to sharing of disaggregated memory. In contrast to prior
work, cache capacity is not shared among multiple applications,
which removes a major contributor to application performance.
For this reason, our analysis is driven by the demand for memory
bandwidth, which has been shown to have an important effect on
application performance. We show that profiling the application
slowdown often involves significant experimental error and noise,
and to this end, we improve the accuracy by linear smoothing of
the sensitivity curves. We also show that contention is sensitive to
the ratio between read and write memory accesses, and we address
this sensitivity by building a family of sensitivity curves according
to the read/write ratios.

Our results show that the methodology predicts the slowdown
in application performance subject to memory contention with an
average error of 1.19% and max error of 14.6%. Compared with state-
of-the-art, the relative improvements are almost 24% on average
and 33% for the worst case.

CCS CONCEPTS
« Computing methodologies — Modeling methodologies.

KEYWORDS

Performance degradation, Performance counters, Memory subsys-
tem, Memory bandwidth, Performance prediction

ACM Reference Format:

Felippe Vieira Zacarias, Rajiv Nishtala, and Paul Carpenter. 2020. Contention-
aware Application Performance Prediction for Disaggregated Memory Sys-
tems. In 17th ACM International Conference on Computing Frontiers (CF
’20), May 11-13, 2020, Catania, Italy. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3387902.3392625

1 INTRODUCTION

High performance computing infrastructures are built from a large
number of servers, each of which has a fixed set of computing re-
sources such as processor, memory and storage. Important ratios
including memory capacity per core are fixed at design time [19, 42].

CF 20, May 11-13, 2020, Catania, Italy

© 2020 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in 17th ACM
International Conference on Computing Frontiers (CF "20), May 11-13, 2020, Catania,
Italy, https://doi.org/10.1145/3387902.3392625.

Rajiv Nishtala
Norwegian University of
Science and Technology
rajiv.nishtala@ntnu.no

Paul Carpenter
Barcelona Supercomputing Center
paul.carpenter@bsc.es

Large HPC systems typically follow a rule of thumb that couples 2—
3 GB of main memory per x86 core or 1 GB per Blue Gene PowerPC
core. Nevertheless, HPC application memory requirements vary
dramatically due to intrinsic differences in application memory
requirements and the effects of strong scaling [29, 48]. Since appli-
cations must run on a number of self-contained servers, there is
often a mismatch between fixed resource proportionalities and the
needs of the workload [30], leading to underutilized resources [45].

More recently, disaggregated memory has been proposed in
order to allow a flexible and finer-grained allocation of memory
capacity to compute jobs [18, 19, 41]. In the disaggregated design,
individual components such as processor, memory and storage
are interconnected over a network [14, 21, 28, 36, 40] rather than
being restricted to a bus on a single board [33]. The EuroEXA
family of projects [14, 34], for instance, provides a global physical
address space in which cores can access remote memory via RDMA
and direct load-store instructions. In comparison with traditional
shared memory processors, the focus is on sharing of memory
capacity, rather than coherent sharing of data.

Each application requests a number of CPU cores and a given
memory capacity per core, and memory capacity is allocated as
a common resource [20]. Since applications running on different
nodes can share memory devices and interfaces, performance may
be affected by contention [37]. For this reason, coscheduling and
resource allocation decisions for disaggregated memory require
contention awareness in order to optimize application performance
and overall system throughput. Slowdown based methods have
been successful for single node coscheduling [12, 16, 23], but they
have not been applied to disaggregated memory.

This paper presents a slowdown based method for disaggregated
memory. It creates a family of sensitivity curves to relate comput-
ing demands for memory bandwidth to application degradation.
These sensitivity curves are built using a carefully curated set of
performance counters that correlate well with the memory band-
width of the application. Since HPC applications are generally batch
applications (rather than interactive services), performance is in-
versely proportional to runtime, which for a given application is
itself proportional to memory bandwidth. Our results show that
our slowdown methodology is a good approximation for predict-
ing the performance of applications under remote memory access
interference with an average error of 1.19% and max error of 14.6%.

In summary, we make the following contributions:

(1) A general approach to predict performance degradation due to
sharing of disaggregated memory.

(2) We propose a slowdown based method involving smoothed
sensitivity curves in order to increase prediction accuracy.

https://core.ac.uk/display/326218182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3387902.3392625
https://doi.org/10.1145/3387902.3392625

(3) We propose the use of a family of sensitivity curves to account
for varying ratios between read and write memory accesses.

(4) We demonstrate through experimental analysis that the pro-
posed approach delivers higher prediction accuracy than the
state-of-the-art, with relative improvements of almost 24% on
average and 33% for the worst case.

The rest of the paper is organized as follows. Section 2 provides
a brief background and distinguishes our approach from the large
body of related work. Next, Section 3 presents our developed ap-
proach in detail. Section 4 provides the experimental validation on
a specific platform, and finally Section 5 concludes the paper.

2 BACKGROUND AND RELATED WORK

This section briefly describes the background on shared memory
architectures, and it distinguishes our work from the large body of
related work.

2.1 Background

Enabled by the advances in network technologies, several approaches
have been proposed towards a general-purpose architecture to dis-
aggregate resources, as an alternative to the monolithic server-
centric approach. They aim to solve the problem of imbalance in

memory usage and expand memory capacity by exposing the global

memory to all machines.

Gu et al. [18] implement a scalable and decentralized remote
memory paging solution to enable memory disaggregation. It di-
vides the swap space of each machine and distributes the pages
across many remote machines using RDMA operations for all re-
mote I/O operations.

Lim et al. [20, 21] propose a remote memory blade that can be
used for memory capacity expansion to improve performance and
for sharing memory across servers. They developed a software-
based prototype by extending the Xen hypervisor to emulate a
disaggregated memory design wherein remote pages are swapped
into local memory through on-demand explicit direct memory ac-
cess transfers.

Shan et al. [37] propose a split kernel OS architecture to manage
disaggregated systems. It breaks the OS into pieces with different
functionalities, each running on and managing a hardware com-
ponent. All components communicate using a customized RDMA-
based network stack.

The EUROSERVER [14] project built a disaggregated system
architecture, which provides a global physical address space and
the ability for cores to access remote memory via RDMA or direct
load-store instructions. By appropriately configuring the cache
policy each remote memory access can be cached locally. This work
was continued in the ExaNoDe [34] and EuroEXA [31] projects. The
dReDBox project [4] also proposes a customizable low-power archi-
tecture comprised of hot-pluggable modules that provide compute,
memory and accelerators resources. Its software-defined global
memory and peripheral resource management offers fine-grained
resource allocation on-demand to improve utilization.

2.2 Related work

The most straightforward way to approach the problem of charac-
terizing performance degradation of an application in contention

is to perform a brute-force sweep. However, due to the O(N?) cost
it is not possible to be employed in a production environment. A
suitable alternative is to apply a method that analyzes each program
once and scales linearly with the number of applications.

Prior work predicted performance degradation when two applica-

tions run together using the concepts of sensitivity and contentious-
ness. These methods are decoupled into two steps: (1) to measure
the sensitivity curve, which quantifies the impact of different levels
of shared resource contention on the application’s performance; (2)
to measure the contentiousness value, which quantifies how much
shared resource contention is generated by the application. Then,
to predict application’s performance the contention is applied to
the sensitivity curve. In both cases, pressure may be quantified
in various ways, for example, in terms of cache capacity and/or
memory bandwidth. The rest of this section presents prior efforts
which identify, quantify or model the applications’ performance
due to shared resource contention.
Slowdown based methods — De Blanche et al. [12, 13] propose a
slowdown based characterization method to estimate the applica-
tions’ slowdown when sharing the memory bus. Their sensitivity
curve is obtained using synthesized memory traffic and the con-
tentiousness is found using performance counters. De Blanche et
al. use a fixed read or write ratio to create the sensitivity curve,
while, for better accuracy, we calculate the performance degrada-
tion using the sensitivity curve that best represents the interfering
application.

Bubble-Up proposes a generalisable methodology for predicting
performance degradation from contention for shared resources in
the memory subsystem [23]. For Bubble-Up, sensitivity and con-
tentiousness quantify occupancy of the last-level cache (LLC), but it
is pointed out that the methodology can be applied to other metrics.
Since Bubble-Up only considers cache occupancy, it cannot be ap-
plied in its original form to our problem, which has separate caches.

Bandwidth Bandit [16] proposes a quantitative profiling method

for analyzing the performance impact of contention for shared
memory resources to determine the application’s sensitivity to
latency and bandwidth. For performance prediction it uses a band-
width graph, which is a quantitative description of the application’s
sensitivity to bandwidth contention, then it finds the throughput
of a given number of co-running instances. Rather than stealing
cache capacity as it is done in the author’s previous work [15] (see
below), Bandwidth Bandit executes the applications in the same
socket using n instances of a single-threaded application.
Cache contention — Several works have been proposed to model
how applications’ performance is affected by changes in the amount
of available shared resources, especially cache capacity. Our work
does not consider using cache interference, as it is misleading when
coscheduling applications using separate cache hierarchies [12].

Eklov et al. [15] propose a methodology to measure application
performance and bandwidth as a function of the cache capacity
occupied by an interfering application. Zhao et al. [46, 47] capture
the aggregate cache and bandwidth utilizations of all cores and
characterize the performance degradation using a regression ap-
proach, which admits different sub-functions depending on which
contention factors are dominant. Casas et al. [8] present a method-
ology which quantifies an application’s utilization of the memory

hierarchy, specifically capacity and bandwidth of shared caches to
predict the application’s performance when the required memory
resources are not available. Casas et al. qualitatively demonstrate
that their validation methodology has higher accuracy than prior
work [15, 16].

Online mechanisms — The following works provide online meth-
ods to estimate performance of applications already running in
contention and using simulation. Subramanian et al. [38, 39] and
Xiong et al. [43] use, respectively, the memory request rate, cache
access rate and IPC to estimate the slowdown for individual appli-
cations. Their method involves giving high priority to the target
application for a short time to estimate the value of its respective
metric if the application were running alone, and then using this
value to calculate the experienced interference.

3 PREDICTING APPLICATION
PERFORMANCE

This section describes our solution to predict the relative slowdown
of the application due to remote memory access interference.

3.1 Problem definition

The model disaggregated architecture is shown in Figure 1, which is
inspired by the UNIMEM approach [14]. In this design, independent
computing units execute their own Operating System image, and
can access memory attached to it (local memory access) as well
as memory attached to another computing unit through a global
interconnect (remote memory access). The remote memory access
is performed through a common Global Address Space, either using
ordinary load-store instructions or using Remote Direct Memory
Access (RDMA) operations. The design supports two cache policy
configurations: caching the memory (locally) at the unit that re-
quested the access or (remotely) at the unit attached to the memory.

Interfering
Application A
Application B
A \}
Core Core Core Core
Cluster Cluster DMA Cluster Cluster DMA

L | | | ! !

Local interconnect

Local interconnect

] ¥ I [

Memory Interfacé to Int:en‘ace to Memory

' I

controller remot¢ Iiemote controllér

A LA .

0 : 0

Y \ & A 4 \B
| H

DRAM Global Interconnect DRAM

Figure 1: Model architecture for memory disaggregation
based on UNIMEM [14]. Remote memory accesses are routed
to the appropriate node through a global interconnect.

Since the concept of remote memory decoupled from processor
is not easy to implement in real prototypes and due to the absence

of an available prototype [7], we emulate a disaggregated shared
memory architecture, without the need for real hardware, using
a conventional multi-socket server, as shown in Figure 2. This ap-
proach takes advantage of a two-socket server and its separated
LLC to create pressure only in the desired shared resource. Accord-
ing to Molka et al. [26], cache coherence traffic is not a significant
bottleneck in a two-socket system. Thus, in our approach the pro-
cessor and cache resources are isolated from interference while
the effects of memory bandwidth contention can be observed on
the shared memory resource. In addition, the latency of the cross-
socket memory access for our experimental platform detailed in
Section 4.1, is similar to those presented in disaggregated works
such as [1, 45].

Application A Application B

‘ Socket 1 H Socket 2 ‘
l 1
m

\4
ory 1

Me

Hardware Configuration

Figure 2: Emulated disaggregated scenario applied in this
work.

As shown in Figure 2, all threads of the interfering application
(B) execute on the socket 2 while issuing memory requests exclu-
sively to the memory bank attached to socket 1 (remote access).
On the other hand, all threads of the target application (A) use
only its memory bank (local access), thus contending for memory
controller and memory bandwidth. Applying this scheme, the im-
pact of application B on application A can be modeled based in B’s
bandwidth interference. This model predicts the slowdown expe-
rienced by application A in the face of diverse remote bandwidth
requirements.

3.2 Overview

Figure 3 shows a high-level view of our slowdown methodology,
which is comprised of three components:

@ Interference phase — In the interference phase, a set of inter-
fering applications execute concurrently with the target Application
A, using only the remote bandwidth as the measure of pressure.
The interfering applications differ as they account for different
read/write ratios to create a family of distinct sensitivity curves
(see Section 3.3). In the model disaggregated memory architecture,
remote memory accesses do not create cache contention in the local
node as their cache hierarchies are separate (see Figure 1). Con-
tention induced by cache capacity can misrepresent the degradation
experienced by the applications in such scenario, so the metric of
interest is bandwidth usage and contention on memory controller.
@ Bandwidth calculator — The bandwidth calculator is respon-
sible for collecting hardware counters to calculate Application B’s

remote bandwidth (bwy,) and its read/write ratio (R/W Ratio). The
calculated values will be used to select the appropriate target’s
sensitivity curve to predict the performance degradation (see Sec-
tion 3.4).

@ Prediction methodology — In the prediction methodology,
we start by selecting application A’s sensitivity curve taking into
account Application’s B read/write ratio. Then, to mitigate the mea-
surement noise from the benchmark process and improve the pre-
diction accuracy, a smoothing function is applied to the sensitivity
curve. Linear and polynomial smoothing functions are considered,
as they are straightforward and commonly employed. This gives
the function (f,) that relates Application A’s slowdown to the total
interfering remote bandwidth. Finally, the Application’s B band-
width (bwy,) is applied to the function to predict Application A’s
performance (y) when Application B contends for remote memory
bandwidth (see Section 3.5). The prediction methodology has O(cN)
complexity (N as the number of applications and ¢ the number of
distinct read/write ratios), as it requires the application to be char-
acterized only once instead of every pairwise execution that would
be required in a brute force characterization scenario.

Hardware
Counters

Read/Write

("’Input for pair (a,b)
; ‘ R/W Ratio app
Ratio N

Socket 1 H Socket 2]
Application ; \ App A ;
PP " Interfjrence PP BWapp B i

Application B

Interference
Socket 1 Socket 2
@ Smooth Curve

Output

Performance
ApPa

Figure 3: High-level view of the slowdown methodology.

Hardware Configuration

3.3 Creating sensitivity curves

To create the sensitivity curves, we quantify the memory pressure
using the total remote bandwidth rate, and calculate the perfor-
mance degradation the application suffers when executing with an
interfering application. For this purpose, we use a synthetic bench-
mark, which is an adaptation of the STREAM benchmark [24],
modified to generate a variable requested bandwidth for the re-
mote memory. Then, we create a curve of the target application’s
performance, normalized to its performance running alone, on the
y-axis, versus the remote bandwidth generated by the interfering
application, on the x-axis. An example of the sensitivity curve for
the Triad workload from the STREAM benchmark is presented in
Figure 4.

Radulovic et al. [32] argue that the total bandwidth is misleading
because it combines into a single metric the aggregate bandwidth
of reads and writes, even though they are fundamentally different
operations. Distinguishing read and write bandwidths when creat-
ing the sensitivity curve not only accounts for the particularities of

— 50%RD 100% RD

~
o

I
©

.O
®

Target app performance (norm.)

0 5 10 15 20
Interfering app remote memory bandwidth [GB/s]

Figure 4: Family of sensitivity curves for Triad workload.

the memory subsystem, but also more accurately represents the be-
havior of real applications. Variable read/write ratios are supported
by the synthetic interfering benchmark [6].

We applied the slowdown based methodology by creating a fam-
ily of sensitivity curves that depend on the interfering application’s
remote memory bandwidth and read/write ratio. Previous works
rely on one single sensitivity curve, however in Figure 4 we show
the measured sensitivity curves for the Triad workload on our ex-
perimental platform (more detail in Section 4) while the proportion
of reads varies between 50% and 100%. In all our experiments, curves
created using a higher percentage of reads generally achieved a
higher sustainable bandwidth. As pointed out in [32], writes have
additional delays caused by the write recovery time, which is the
delay between a write and the next precharge command, and the
write-to-read delay time, which is the interval between a memory
write and the consecutive read.

An important aspect when creating a sensitivity curve is the rep-
resentation of pressure in its x-axis. When executing the synthetic
interfering benchmark and the target application concurrently, both
applications will be interfered. Intuitively, the reported interfer-
ing bandwidth will be lower than the expected bandwidth of its
execution alone.

In our methodology, we use all curves for Section 4 results with
the x-axis representing the bandwidth that the interfering applica-
tion would have had if it were executing alone instead of under con-
tention. This is similar to the Figure 4. We chose this methodology
because it is generic to any interference study, and it is appropriate
for the scenario where the known value is the actual bandwidth
usage that the interference application applies.

3.4 Measuring Contentiousness

In the second part, we characterize the application in terms of how
much remote bandwidth it requires throughout its execution by
running it solo. The value of remote memory bandwidth will be ap-
plied as the contention pressure. For this step, we use performance
counters to measure the read and write bandwidths.

Memory bandwidth is typically measured using one of the three
approaches: (a) Last Level Cache (LLC) miss [8, 44], (b) Off-core
response [17] and (c) uncore Integrated Memory Controller (IMC)
counters [3]. While the LLC miss counter accounts for neither the
prefetcher read memory traffic nor write memory traffic, off-core
response counters cannot detect write memory traffic due cache
line evictions, which is the major portion of the overall write traffic.

The uncore IMC counters, on the other hand, measure events in
the memory controller, including read and write Column Access
Strobe (CAS) commands [10]. These commands are sent from the
memory controller to the DRAM at every memory column access
and they include prefetching and eviction events. Each memory
access consists of a cache line of 64 bytes. As the counter measures
memory traffic at the memory channel, only the total read/write
traffic per channel is measured, which prevents further segmen-
tation of requests. Its broad range makes it suitable to compute
application bandwidth with higher accuracy than LLC misses, pro-
viding a complete bandwidth profile. Following the measurements,
the per-channel read and write application bandwidths are:

BW,eaq = CAS_COUNT,eaq X 64B/elapsed_time

1
BWyrite = CAS_COU NTyrite X 64B/elapsed_time)

and the total bandwidth is therefore:
BWiot = BWyead + BWarite (2)

3.5 Prediction Methodology

The penultimate step in predicting the application’s performance
is to calculate the read/write ratio of the interfering application.
This is done using Equation 1. As the last step, we select the target
application’s sensitivity curve corresponding to the read/write ra-
tio of the interfering application. The selected curve is smoothed
using a linear function so as to predict the degradation in the case
of missing points with higher accuracy and also to decrease the
influence of outliers in the collected data. Finally, we apply the
interfering remote memory bandwidth to the target interference
curve to obtain the expected target performance when running
under interference.

3.6 Key differences compared with
state-of-the-art

Our work is differentiated from prior work [12, 16, 23], and pro-
vides improvements for a singular reason: Our approach targets
performance prediction due to sharing of disaggregated memory,
while the prior works use application working set size or local band-
width as their measure of pressure to create the sensitivity curve.
As noted in Section 3.4, cache contention characterization method
is misleading for predicting the performance of applications using
separated cache hierarchies. For this reason, we proposed using a
family of smoothed sensitivity curves to account for varying ratios
between read and write memory accesses to increase accuracy and
decrease the effect of outliers.

4 EXPERIMENTAL EVALUATION
4.1 Experimentation methodology

This section introduces the applications and hardware resources
used to evaluate the accuracy of the proposed approach. We simu-
lated the global shared memory architecture using a conventional
node (see Section 3.1). We normalize our results against a brute-
force sweep performed against the pair of applications.

Benchmarks — We used applications from several known bench-
marks suites, including a total of 44 applications from Parsec (8
applications) [5], Rodinia (5) [9], NAS Parallel Benchmarks (NPB)

Bl Read Write

N
[{e]

Memory bandwidth [GB/s]
n
=)

10
o/
Cache Offcore CAS
Miss Response

Figure 5: Calculated memory bandwidth for Triad workload
using three different hardware performance counter.

(8) [2], Splash (5) [35] and another 15 diverse publically available
applications. We selected applications to cover a variety of com-
putational patterns found in multithreaded and high performance
codes. All applications were compiled with GNU/Linux GCC 7.2
and multithreading enabled. We also used the Linux utility numactl
to apply affinity settings for both threads and memory placement,
and the Perf tool to collect the performance counters.

Hardware resource — We carried out the experiments on a server
equipped with two Intel Xeon SandyBridge-EP E5-2670 that to-
gether comprise 16 cores operating at 2.6 GHz. Each socket has
20 MB L3 cache (LLC) shared among all cores, single memory con-
troller, and two Quick Path Interconnect (QPI) links version 1.1
operating at 8.0 GT/s. It implements the home snoop cache coher-
ence with MESIF protocol [10]. The node has 64 GB of DDR3-1600
DIMMs main memory, theoretical bandwidth of 51 GB/s (37 GB/s
sustained) for local access and 38 GB/s (20 GB/s sustained) for re-
mote memory access. Its latency is 81 ns and 133 ns for local and
remote accesses respectively [26].

Performance Counters — To compare the accuracy for represent-
ing the bandwidth of an application, we collected the performance
counters listed in Section 3.4 during the execution of the Triad work-
load. Performance counters can track the occurrence of events with
negligible overhead, and there are commonly employed in many
related works [8, 22, 27] to measure resource utilization and demon-
strate effectiveness of any proposed method. Figure 5 summarizes
the calculated bandwidth derived from the collected performance
counters. As can be seen, LLC miss counter represents only a frac-
tion of the sustainable memory bandwidth (5 GB/s), confirming
that not only write traffic but part of the read traffic is neglected by
this performance counter. The off-core response counter displays a
bandwidth of about 27 GB/s which is roughly equal the read traffic
calculated using CAS counter. However, the difference between
both counters emerges in the write traffic captured by the later,
which differs by 30% of the overall bandwidth.

The bandwidth calculated by Triad during the tests was 30 GB/s
on average. According to McCalpin [25], the bandwidth values
assumed by Triad is based on the minimum data traffic that each
iteration will perform. For Triad workload this number is 24 B (two
floats read and one float write), however it does not account for
bytes transferred during write-allocate operations. As Triad kernel
requires 4/3 as much bandwidth as the benchmark generates when

100%

<
=
g o
w 'S 75%
° 5
o <
o ©
© Q
€ o 50%
[oye}
O®
2
o .
O ©
% 25%
>
’ II
0% __--------llllll
o
L T L LR
SCOSTES EQSOTEEESTS D= ESqos 3 O <€ Qo=
a® S00 SO CaNEGNGS= =350 = => =
gebges gr gpfgitey ¥ ges BE B0 OO
= = Q
) a5 » ORES fofetat T ®© <
g 57 “gs 2 2
. @

wal

Figure 6: Percentage of sustained memory bandwidth uti-
lization for each application in our study. Memory band-
width usage calculated using CAS performance counter.

Write . Read

2
g 100%
2
© 75%
o
I
e
Z 50%
o
S
© 25%
8
c
8
o 0%
5 o
o QunguxA st =) o e
T 2805528000 0P O BELEDLEOEYET 5 IWIFULIGCED
S EE= R IO R s tmReETOETE gy 250 ShE “§58
250505 £RZ28NESNESS 2= ESY 3 EE 83=
QTS50 S0E [opsgXcl=) %] =2 o9 S o 3 o
§eEgee §y g2rERLEs S8 g E g5 °@
& o §F © ¢gs Bbat S 5
=3 T Q0 2 o
e LL = =

wal

Figure 7: Percentage of read/write ratio for each application
considering their sustained bandwidth utilization.

write-allocate is included, the result must be multiplied by a factor of
1.33. After applying the correction factor, the sustainable bandwidth
is approximately 39 GB/s. The total bandwidth calculated for Triad
workload using CAS counter deviate by only about 5% of the scaled
bandwidth, which confirms its accuracy to be sufficient for the
proposed methodology.

Application characteristics — Figures 6 and 7 present the charac-
teristics of bandwidth usage for each application considered in our
experiments. The applications used in this study show a wide range
of memory bandwidth utilization. At least 40% of the applications
use 20% or more of the sustainable bandwidth. The sustainable band-
width for this work is calculated using the highest value achieved
among 5 executions. Figure 7 shows that the benchmark suite covers
a wide range of read/write memory traffic, with reads accounting
for between 50% and 100%. The figure also shows that the family of
curves (see Figure 4) correspond to the range that arises in practice.
Sensitivity curves — For our tests, the interfering application gen-
erates the sensitivity curve for remote memory bandwidth traffic
between 10% and the maximum sustainable bandwidth achieved.

Table 1: Prediction error for linear and polynomial smooth-

Method % of Mean SD Max Cost
Reads (%) (%) (x)

right curve 1.15 149 14.5 44

Polynomial 50 1.29 1.86 20.6 4
75 1.34 1.86 17.7 4

100 1.39 2.20 21.0 4

right curve 1.19 159 14.0 44

Linear 50 1.27 1.86 22.1 4
75 1.38 194 18.9 4

100 149 232 19.5 4

We then apply a linear function to smooth the curve before predict-
ing the application’s performance. We tried different smoothing
functions, and the linear function attained satisfactory results.

When applying pressure equal to the maximum sustainable re-
mote bandwidth, we noticed that the performance of the applica-
tions suffer considerable levels of degradation in face of an inter-
fering application issuing memory requests from a remote node.
This indicates that the resource allocation for new architectures
using global memory address must account for the degradation
of applications executing concurrently and sharing the memory
subsystem. Also as presented in the figure 4, we can notice the
difference in the performance when read/write ratio of the interfer-
ence application varies. Increasing read ratio, less interference the
benchmark causes to the target application, then more sustainable
remote bandwidth is used by the remote application. This pattern is
emphasized with high remote memory access when we can clearly
see the separation between curves.

4.2 Prediction Error

We evaluate the effectiveness of our methodology by predicting the
expected performance degradation of the applications in a pairwise
fashion. We consider the prediction error to be the absolute value
of the difference between the predicted performance and the real
normalized application performance under contention. In our tests,
we start both target and interfering application at the same time
on different sockets. When the interfering application finishes, we
restart it to keep the target application in contention during its
entire execution. All pairwise combinations were executed in such
way that the target application completed at least 10 times. We
recorded the actual performance degradation (increasing in run-
time) when the applications executed together, in order to compare
with the predicted performance. Degradation for the target appli-
cation is calculated using its normalized performance alone in the
system without interference and its performance under contention.

Table 1 summarizes the predicted error for all applications us-
ing two different functions to smooth the interference curve. The
smoothing functions applied to create the curves are: linear and
polynomial function with degree two. It also shows the predic-
tion error using the smoothed specific curve for the interfering
application read/write ratio (called right curve) and the smoothed
sensitivity curves produced with the static values of 50%, 75% and
100% read/write ratio. The column Cost indicates the profiling cost

’ B rRightcurve [l 50%RD [O] 75%RD [] 100% RC

20%

15%

Error

10%

5% J

0% k
Figure 8: Distribution of error using polynomial smoothing
function.

needed by the method compared to previous works that rely on 4
different levels of pressure and a static read/write ratio to create
their sensitivity curve.

We achieve the lowest mean and variance prediction errors using
the curve corresponding to the actual read/write ratio of the inter-
fering application. In the best case, the right curve using polynomial
smoothing attains a mean error of 1.15%, and a relative improve-
ment of 18% compared with predictions using static read/write ratio.
In addition, it also has the lowest worst case with around 14% max
error and relative improvement between 19% and 31%. The linear
smoothing method achieves mean error of 1.19%, which is similar
to the polynomial smoothing results, and relative improvements
between 26% and 37% for the worst case.

Figure 8 presents the distribution of prediction error using the
polynomial smooth function (best result so far). In the Figure we
can note that the density of the prediction error using the correct
read/write ratio is more concentrated in the base of our chart and
the majority of the values is below 5%. Using static curves we
note predictions with high variance and the presence of a longer
tail, denoting the occurrence of higher values for errors. Using
fixed read/write ratio curves the max error is higher than 15%,
however the max error using the right curve is lower. The results
confirm that the read/write ratio play an important role to predict
the performance degradation.

To further evaluate the influence of noise and outliers on our
predictions, we compared the smoothing results against the non-
smoothed interpolation method used in previous works. We as-
sessed the method using all data points (16 distinct values) collected
during the interference benchmark and a sampled version using
four distinct interference values (25%, 50%, 75% and 100%) to create
the interference curve. Table 2 summarizes the overall result. We
do not see an overall improvement compared to the smoothing
values when using all data points and right curves. Even though it
has mean error similar to linear smoothing and better results than
the static curves, its worst case prediction increases. This can be
viewed as a side effect of the noise intrinsic to the collected data
for all sensitivity curves calculated.

Sampling the data points and using the right curve, the inter-
polation maintains the lowest mean error compared to its static
counterparts. However, it increases the worst case prediction error
compared to the smoothing methods and decreases compared to

Table 2: Prediction error for smoothing functions and sam-
pled data.

Method # of %of Mean SD Max Cost
Points Reads (%) (%) (X)

Polynomial All points right curve 1.15 149 145 44
Linear All points right curve 1.19 159 14.0 44
right curve 1.19 1.63 24.2 44

. . 50 134 189 183 4
Interpolation All points 75 134 182 194 B
100 143 219 210 4

right curve 1.35 1.62 18.1 11
50 147 191 181

(Memgen) 75 156 194 21.6
100 158 218 247

Interpolation ~ Sampled

[EN

using all data points. A positive side effect of sampling the data for
the right curve results is that part of the noise is removed and the
interpolated values provide a more stable result, which explain its
results compared with the other methods. This aspect illustrates
that the overall accuracy is affected by the data points and smooth-
ing function, which decreases the effects of outliers and improves
the worst case predictions.

Another important point to be considered is the effective cost to
achieve the results. In Table 2 for our initial approach the high cost
of using the right curve can be broken down into two components:
the number of read/write curves and the number of data points
collected. In our tests we analyzed 11 different read/write ratio
curves and we also sampled 12 supplementary points in addition
to the default 4 points used in previous works. Even though the
polynomial smoothing has the best results so far, it also has the
highest cost to compute. The cost is 44 times higher than using a
single sampled static curve due to the additional curves collected
and the number of points.

To investigate the effects of the trade-off between accuracy and
cost, we reduced the cost of our methodology by estimating the
values for the right curve based in two sampled curves. For this
test we used the values of 50% and 100% sampled sensitivity curves
collected for the previous test, and we estimated the performance
of the target application based on the read/write ratio proximity of
the interfering application to both curves. The process is shown in
equation 3. First we calculate the proximity (scale) of the interfering
application read/write ratio to 100% ratio. Then, we predict the per-
formance of the target application for 50% (P 50%) and 100% (P 100%).
In the end, we apply a weighted mean estimation to determine the
estimated performance (P_est).

scale = (inter f _ratio — 50)/(100 — 50)
P_est = (P50%) X (1 — scale) + (P100%) X (scale))

Table 3 summarizes the overall result reducing the cost of the
methodology. Sampling the data points decreases to 11 times the
cost of using the right curve for the smoothing methods and also
keeps the mean and maximum prediction errors lower than the
sampled static curve. However, we achieve the best trade-off be-
tween cost and error estimating the values for the right curve. We
reduce the cost to only 2 times and the results are similar to those
using a higher number of curves and data points. The linear method

is better than the polynomial one with 1% of difference for max
error, thus we chose it to compare with the state of the art.

Table 3: Prediction error for estimated curves.

Method #0of Mean SD Max Cost
Points (%) (%) (X)

All data 1.15 149 145 44

Polynomial Sampled 121 143 154 11
Estimated 1.19 148 15.6 2

All data 1.19 159 140 44

Linear Sampled 121 148 137 11
Estimated 1.19 150 14.6 2

Interpolation (Memgen) 75 1.56 194 21.6 1

4.3 Comparison with Memgen

In this section, we compare our methodology to the state-of-the-
art slowdown based methodology, Memgen [12]. Memgen uses
a modified version of the Triad workload to generate a specific
amount of traffic, then creating contention for the target application.
Memgen creates four reference points which are 25, 50, 75 and 100%
of the sustainable bandwidth as its interference pressure. To create
the sensitivity curve, Memgen relies on linear interpolation between
the reference points in order to estimate the performance, and
defines the contentious pressure as the memory bandwidth usage
of an application. To evaluate the applications’ memory bandwidth
usage, Memgen uses the bus_trans_mem.self performance counter.

To apply the Memgen methodology to our environment, we
adapted some unavailable features that will be discussed hereafter.
Their triad version code is not available on-line, so we could not
use the same interference application to create the sensitivity curve.
However, as their version is based on the triad algorithm from
STREAM, we applied our interfering application that generates
75% read/write ratio. Using this specific configuration to create the
sensitivity curve, we maintain the same static read/write ratio and
computing characteristics used by the authors in their work. An-
other point regarding the sensitivity curve is that [12] and [13] do
not specify whether the values of the x-axis are the maximum band-
width or the interfering bandwidth in contention. We assumed the
same approach applied in our work, using the maximum bandwidth
achieved during the interfering test.

Another adapted feature concerns using the bus_trans_mem.self
performance counter [11] to compute the application’s memory
bandwidth. This counter is unavailable in the Sandy Bridge proces-
sor architecture [10] which is used in our experiments. As conse-
quence, to calculate the contention pressure we applied the CAS
performance counter to measure the application’s memory band-
width. This performance counters calculate with high precision the
actual bandwidth for applications keeping the comparison fair. The
result of the comparison with Memgen is shown in Figure 9.

In the Figure we can see that the error for the Memgen method-
ology is higher than using our methodology. For our approach the
distribution of errors are more concentrated in the base, which
means that it has the majority of its predictions close to the true
value. The Memgen methodology has a relative mean error increase

20%

15%

Error

10%

5%

0%

Memgen Method Our approach

Figure 9: Distribution of error for Memgen methodology
and our approach.

of almost 24% (see Table 3 Interpolation method). This is also true
for the worst case, where the max error is 21.6% using the Memgen
approach and 14.6% using our approach. These results highlights
that distinguishing the interference caused by different ratios of
read/write and increasing the number of points collected, the slow-
down method can be improved.

5 CONCLUSION

In this work, we have proposed a slowdown based methodology to
predict the performance degradation that results from contention
in remote memory access. We also added to the methodology the
concepts of smoothing and read/write memory access ratio to cre-
ate the correct sensitivity curve, in order to increase the accuracy
and similarity with real executions. Using the characterization of
an application’s sensitivity to contentious pressure from remote
access to the memory subsystem, we were able to predict an appli-
cation’s performance in a pairwise execution with 1.19% prediction
error on average and 14.6% in the worst case. Compared with the
state of the art, the relative improvements are almost 24% on av-
erage and 33% for the worst case. Interesting avenues to build on
this work in future including taking account of multiple execution
phases in a single run and reducing the need to profile the appli-
cations in advance. We believe that the approach in this paper is
of particular importance for novel and upcoming global shared
memory architectures and future resource allocation decisions for
such platforms.

ACKNOWLEDGMENTS

This work is part of a project that has received funding from the Eu-
ropean Union’s Horizon 2020 research and innovation programme
under grant agreement No 754337 (EuroEXA); it has been sup-
ported by the Spanish Ministry of Science and Innovation (project
TIN2015-65316-P and Ramon y Cajal fellowship RYC2018-025628-I),
Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-
1272), and the Severo Ochoa Programme (SEV-2015-0493).

REFERENCES

[1] Bulent Abali, Richard J Eickemeyer, Hubertus Franke, Chung-Sheng Li, and
Marc A Taubenblatt. 2015. Disaggregated and optically interconnected memory:
when will it be cost effective? arXiv preprint arXiv:1503.01416 (2015).

[2] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V.

[10

[11

[12]

[13

[14]

[15]

(16]

[17]

[18]

[19]

[20]

[21]

[22]

Venkatakrishnan, and S. K. Weeratunga. 1991. The NAS Parallel Benchmarks:
Summary and Preliminary Results. In SC. ACM, New York, NY, USA, 158-165.
https://doi.org/10.1145/125826.125925

Tirtha Pratim Bhattacharjee. 2013. Data Movement and Workload characterization:
Intel Sandy Bridge Core and Uncore PMU features.

Maciej Bielski, Ilias Syrigos, Kostas Katrinis, Dimitris Syrivelis, Andrea Reale,
Dimitris Theodoropoulos, Nikolaos Alachiotis, D Pnevmatikatos, EH Pap, George
Zervas, et al. 2018. dReDBox: Materializing a full-stack rack-scale system proto-
type of a next-generation disaggregated datacenter. In 2018 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 1093-1098.

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC Benchmark Suite: Characterization and Architectural Implications. In
PACT. ACM, 72-81. https://doi.org/10.1145/1454115.1454128

BSC. 2009. PROFET: Analytical model that quantifies the impact of the main
memory on application performance and system power and energy consumption.
https://github.com/bsc-mem/PROFET Accessed: 2019-10-16.

Dhantu Buragohain, Abhishek Ghogare, Trishal Patel, Mythili Vutukuru, and
Purushottam Kulkarni. 2017. DiME: A performance emulator for disaggregated
memory architectures. In Proceedings of the 8th Asia-Pacific Workshop on Systems.
1-8.

Marc Casas and Greg Bronevetsky. 2015. Evaluation of HPC applications’ memory
resource consumption via active measurement. IEEE Transactions on Parallel and
Distributed Systems 27, 9 (2015), 2560-2573.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A Benchmark Suite for Heterogeneous
Computing. In IISWC. IEEE, Washington, DC, USA, 44-54. https://doi.org/10.
1109/IISWC.2009.5306797

Intel Corporation. 2012. Intel® Xeon® Processor E5-2600 Product Family Uncore
Performance Monitoring Guide. tech. rep. (March 2012).

Intel Corporation. 2018. Intel® 64 and IA-32 architectures software developer’s
manual combined volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4.

Andreas De Blanche and Thomas Lundqvist. 2014. A methodology for estimating
co-scheduling slowdowns due to memory bus contention on multicore nodes. In
International conference on parallel and distributed computing and networks.
Andreas De Blanche and Thomas Lundqvist. 2015. Addressing characterization
methods for memory contention aware co-scheduling. The Journal of Supercom-
puting 71, 4 (2015), 1451-1483.

Yves Durand, Paul M Carpenter, Stefano Adami, Angelos Bilas, Denis Dutoit,
Alexis Farcy, Georgi Gaydadjiev, John Goodacre, Manolis Katevenis, Manolis
Marazakis, et al. 2014. Euroserver: Energy efficient node for European micro-
servers. In 2014 17th Euromicro Conference on Digital System Design. IEEE, 206—
213.

David Eklov, Nikos Nikoleris, David Black-Schaffer, and Erik Hagersten. 2011.
Cache pirating: Measuring the curse of the shared cache. In 2011 International
Conference on Parallel Processing. IEEE, 165-175.

David Ekl6v, Nikos Nikoleris, David Black-Schaffer, and Erik Hagersten. 2013.
Bandwidth Bandit: Quantitative Characterization of Memory Contention. In CGO
2013, 23-27 February, Shenzhen, China. IEEE Computer Society, 99-108.

Josué Feliu, Julio Sahuquillo, Salvador Petit, and Jose Duato. 2016. Perf&Fair: A
Progress-Aware Scheduler to Enhance Performance and Fairness in SMT Multi-
cores. IEEE Trans. Comput. 66, 5 (2016), 905-911.

Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G
Shin. 2017. Efficient memory disaggregation with infiniswap. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17). 649-667.
Vamsee Reddy Kommareddy, Amro Awad, Clayton Hughes, and Simon David
Hammond. 2018. Exploring Allocation Policies in Disaggregated Non-Volatile
Memories. In Proceedings of the Workshop on Memory Centric High Performance
Computing. ACM, 58-66.

Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K
Reinhardt, and Thomas F Wenisch. 2009. Disaggregated memory for expansion
and sharing in blade servers. In ACM SIGARCH Computer Architecture News,
Vol. 37. ACM, 267-278.

Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin AuYoung, Jichuan Chang,
Parthasarathy Ranganathan, and Thomas F Wenisch. 2012. System-level im-
plications of disaggregated memory. In IEEE International Symposium on High-
Performance Comp Architecture. IEEE, 1-12.

Zoltan Majo and Thomas R Gross. 2011. Memory system performance in a
NUMA multicore multiprocessor. In Proceedings of the 4th Annual International
Conference on Systems and Storage. ACM, 12.

[23] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa.

2011. Bubble-up: Increasing utilization in modern warehouse scale computers
via sensible co-locations. In MICRO. ACM, 248-259.

[24] John D. McCalpin. 1995. Memory Bandwidth and Machine Balance in Current

[25]

[26]

High Performance Computers. IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter (Dec. 1995), 19-25.

John D. McCalpin. 2019. SC16 Invited Talk: Memory Bandwidth and System Bal-
ance in HPC Systems. https:/sites.utexas.edu/jdm4372/tag/stream-benchmark/.
Accessed: 2019-09-18.

Daniel Molka, Daniel Hackenberg, and Robert Schéne. 2014. Main Memory and
Cache Performance of Intel Sandy Bridge and AMD Bulldozer. In Proceedings of
the workshop on Memory Systems Performance and Correctness. 1-10.

[27

(28]

[29

'S
RS

[31

[32

[33

[34

[35

[36

[37

[38

w
20,

[40

(41

[42

[43

[44]

[45

[46

[47

Daniel Molka, Robert Schéne, Daniel Hackenberg, and Wolfgang E Nagel. 2017.
Detecting memory-boundedness with hardware performance counters. In Pro-
ceedings of the 8th ACM/SPEC on International Conference on Performance Engi-
neering. ACM, 27-38.

Héctor Montaner, Federico Silla, Holger Froning, and José Duato. 2011. Mem-
scale™: A scalable environment for databases. In 2011 IEEE International Confer-
ence on High Performance Computing and Communications. IEEE, 339-346.
Rajiv Nishtala, Paul Carpenter, and Xavier Martorell. 2019. Performance effects
on HPC workloads of global memory capacity sharing. In MULTIPROG.
Antonios D Papaioannou, Reza Nejabati, and Dimitra Simeonidou. 2016. The
benefits of a disaggregated data centre: A resource allocation approach. In 2016
IEEE Global Communications Conference (GLOBECOM). IEEE, 1-7.

EuroEXA project. 2009. H2020 project number 754337. https://euroexa.eu/
Accessed: 2019-10-16.

Milan Radulovic, Rommel Sanchez Verdejo, Paul Carpenter, Petar Radojkovic,
Bruce Jacob, and Eduard Ayguadé. 2019. PROFET: Modeling System Perfor-
mance and Energy Without Simulating the CPU. In Abstracts of the 2019 SIG-
METRICS/Performance Joint International Conference on Measurement and Model-
ing of Computer Systems (SIGMETRICS ’19). ACM, New York, NY, USA, 71-72.
https://doi.org/10.1145/3309697.3331502

Pramod Subba Rao and George Porter. 2016. Is memory disaggregation feasi-
ble?: A case study with Spark SQL. In Proceedings of the 2016 Symposium on
Architectures for Networking and Communications Systems. ACM, 75-80.

Alvise Rigo, Christian Pinto, Kevin Pouget, Daniel Raho, Denis Dutoit, Pierre-
Yves Martinez, Chris Doran, Luca Benini, Iakovos Mavroidis, Manolis Marazakis,
et al. 2017. Paving the way towards a highly energy-efficient and highly inte-
grated compute node for the Exascale revolution: the ExaNoDe approach. In 2017
Euromicro Conference on Digital System Design (DSD). IEEE, 486-493.

Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto Ros. 2016.
Splash-3: A properly synchronized benchmark suite for contemporary research.
In ISPASS. IEEE, 101-111.

A Saljoghei, V Mishra, M Bielski, I Syrigos, K Katrinis, D Syrivelis, A Reale, DN
Pnevmatikatos, D Theodoropoulos, M Enrico, et al. 2018. dReDbox: Demon-
strating Disaggregated Memory in an Optical Data Centre. In 2018 Optical Fiber
Communications Conference and Exposition (OFC). IEEE, 1-3.

Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018. Legoos:
A disseminated, distributed OS for hardware resource disaggregation. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
69-87.

Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and Onur
Mutlu. 2015. The application slowdown model: Quantifying and controlling
the impact of inter-application interference at shared caches and main memory.
In Proceedings of the 48th International Symposium on Microarchitecture. ACM,
62-75.

Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, and Onur Mutlu.
2013. MISE: Providing performance predictability and improving fairness in
shared main memory systems. In 2013 IEEE 19th International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 639-650.

Dimitris Syrivelis, Andrea Reale, Kostas Katrinis, and Christian Pinto. 2018. A
Software-defined SoC Memory Bus Bridge Architecture for Disaggregated Com-
puting. In Proceedings of the 3rd International Workshop on Advanced Interconnect
Solutions and Technologies for Emerging Computing Systems. ACM, 3.

Dimitris Syrivelis, Andrea Reale, Kostas Katrinis, Ilias Syrigos, Maciej Bielski,
Dimitris Theodoropoulos, Dionisios N Pnevmatikatos, and Georgios Zervas. 2017.
A software-defined architecture and prototype for disaggregated memory rack
scale systems. In 2017 International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS). IEEE, 300-307.

Carlos Vega, Jose Fernando Zazo, Hugo Meyer, Ferad Zyulkyarov, Sergio Lopez-
Buedo, and Javier Aracil. 2017. Diluting the Scalability Boundaries: Exploring
the Use of Disaggregated Architectures for High-Level Network Data Analysis.
In 2017 IEEE 19th International Conference on High Performance Computing and
Communications; IEEE 15th International Conference on Smart City; IEEE 3rd
International Conference on Data Science and Systems (HPCC/SmartCity/DSS).
IEEE, 340-347.

Dongliang Xiong, Kai Huang, Xiaowen Jiang, and Xiaolang Yan. 2017. Providing
Predictable Performance via a Slowdown Estimation Model. ACM Transactions
on Architecture and Code Optimization (TACO) 14, 3 (2017), 25.

FV. Zacarias, V. Petrucci, R. Nishtala, P. Carpenter, and D. Mossé. 2019. Intelligent
Colocation of Workloads for Enhanced Server Efficiency. In 2019 28th International
Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD).

Georgios Zervas, Hui Yuan, Arsalan Saljoghei, Qianqiao Chen, and Vaibhawa
Mishra. 2018. Optically disaggregated data centers with minimal remote memory
latency: technologies, architectures, and resource allocation. Journal of Optical
Communications and Networking 10, 2 (2018), A270-A285.

Jiacheng Zhao, Huimin Cui, Jingling Xue, and Xiaobing Feng. 2015. Predicting
cross-core performance interference on multicore processors with regression
analysis. IEEE Transactions on Parallel and Distributed Systems 27, 5 (2015),
1443-1456.

Jiacheng Zhao, Huimin Cui, Jingling Xue, Xiaobing Feng, Youliang Yan, and
Wensen Yang. 2013. An empirical model for predicting cross-core performance
interference on multicore processors. In Proceedings of the 22nd international

https://doi.org/10.1145/125826.125925
https://doi.org/10.1145/1454115.1454128
https://github.com/bsc-mem/PROFET
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC.2009.5306797
https://sites.utexas.edu/jdm4372/tag/stream-benchmark/
https://euroexa.eu/
https://doi.org/10.1145/3309697.3331502

conference on Parallel architectures and compilation techniques. IEEE Press, 201-
212.

Darko Zivanovic, Milan Pavlovic, Milan Radulovic, Hyunsung Shin, Jongpil
Son, Sally A. Mckee, Paul M. Carpenter, Petar Radojkovi¢, and Eduard Ayguadé.
2017. Main Memory in HPC: Do We Need More or Could We Live with Less?
ACM Trans. Archit. Code Optim. 14, 1, Article 3 (March 2017), 26 pages. https:
//doi.org/10.1145/3023362

[48]

A ARTIFACT APPENDIX
A.1 Abstract

This artifact is intended to demonstrate the process of using the
Slowdown based method proposed in the paper.

A.2 Artifact check-list (meta-information)

e Algorithm: Slowdown Based Method to predict performance
degradation from contention in remote memory access

e Program: Stream Benchmark

e Compilation: GCC compiler and Intel MPI

e Binary: Synthetic stream benchmark with different read and
write ratio for the interference test. To run it is necessary Intel
MPI version 2016.3.067

e Data set: Set at compiling time

e Run-time environment: Any Linux distribution with Linux per-
formance monitoring tool Perf and Numactl installed. The Intel
MPI version must have the libmpigf.so and libmpi.so libraries.
To collect certain counters either root access is required or set
perf_event_paranoid to 0. Additionally, all processing scripts
require the R environment

o Hardware: Dual socket Intel Sandy Bridge architecture 16 cores
and 32 GB memory RAM with access to CAS and OFFCORE
response performance counters for benchmarking

e Metrics: Execution time in s, Bandwidth GB/s

e Output: Results in CSV files and graphs

e Experiments: The scripts provide an example of workflow to
collect execution time and performance counters using native
and/or interfered modes (real or synthetic). R scripts process the
output data and create the final results

e How much disk space required?: ~1 GB

e How much time is needed to prepare workflow?: ~1h

e How much time is needed to complete experiments?: The bench-
mark can finish in ~10h

e Publicly available?: Yes

e DOI: 10.5281/zenodo.3749249

A.3 Description

A.3.1 How delivered — The artifact package can be download
through this hyperlink. It includes all scripts to set up a small
example to exemplify the methodology applied in the paper.
A.3.2 Hardware dependencies — It is necessary to use a dual
socket machine with Intel Sandy Bridge processors with at least
32 GB of memory to emulate the interference in disaggregated re-
mote memory access. It requires the presence of CAS and OFFCORE
response performance counters to be used as the applications’ con-
tentiousness metric.

A.3.3 Software dependencies — The target application is com-
piled using GCC compiler. For the interfering application that issues
remote bandwidth pressure at the sensitivity curve step, the process

uses a synthetic benchmark which is an adaptation of the Stream
benchmark. It is executed using the Intel MPI. After executing the
benchmark, the final outputs are processed using R scripts. The
environment to run this final step can be different from the one
used during the benchmarking because it does not require too much
processing power. In order to generate graphs and tables, it requires
R software environment with the following packages: readr, plyr,
dplyr, tidyr, ggplot2, zoo.

A.3.4 Data sets — Defined at compile time.

A.4 Installation

Extract the artifact package file and enter in the created artifact/
folder. The folder sources/ contains the binaries and source code
of the application that will be used in the following workflow. The
script start_benchmark.sh executes the workflow and compiles the
application will be used.

A.5 Experiment workflow

By executing the start_benchmark.sh it will run the following steps:
1) Compile the target application, 2) Collect the application’s execu-
tion time without interference using the script native.sh, 3) Collect
the application’s performance counter to define its contentious-
ness using the script perf_script.bash, 4) Execute the application
in pairs to collect the application execution time in contention in
order to compute its real degradation due remote memory access
interference using the script degradation_pair.sh, 5) Collect data to
build the application’s sensitivity curve. It is carried out executing
sensitivity_benchmark.sh script. The application is profiled using
the interfering stream — sent within the artifact — by varying the
read/write ratio and the inference intensity

After every step, a complementary script is called to format the
intermediate files and generate a final csv file. If there are enough
resources, all steps can be executed separately. Check inconsisten-
cies on the output files with the verify_files.sh script. For the last
step, execute the R scripts through (run_r_scripts.sh) which will use
the generated files from previous steps to generate the final output.
To reproduce the outputs from the paper, execute run_r_scripts.sh,
located in paper_files folder. The process can take less than 30 min.

A.6 Evaluation and expected result

The scripts will create sub-folders to store intermediate files in
results/ folder. The final formatted files are native_time.csv, re-
sult_pairs.csv, counter_complete_miss_off_uncore.csv and curve_fi-
nal.csv. They will be stored in the artifact home folder after the
execution of each step.

The R scripts will generate graphs similar to the ones presented
in the paper, and tables using the previous generated csv files for
the prediction step. Tables will be exported to csv files named pre-
diction_diff.csv and estimated_curve_prediciton_diff.csv. Note that
this artifact is intended to show the process of predicting degrada-
tion using the concepts of sensitiveness and contentiousness

A.7 Experiment customization

All scripts can be customized to increase the number of iterations,
as well as adding new benchmarks. The places are signalized in the
scripts.

https://doi.org/10.1145/3023362
https://doi.org/10.1145/3023362
https://zenodo.org/record/3749250/files/artifact.tar.gz?download=1

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related work

	3 Predicting application performance
	3.1 Problem definition
	3.2 Overview
	3.3 Creating sensitivity curves
	3.4 Measuring Contentiousness
	3.5 Prediction Methodology
	3.6 Key differences compared with state-of-the-art

	4 Experimental Evaluation
	4.1 Experimentation methodology
	4.2 Prediction Error
	4.3 Comparison with Memgen

	5 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Experiment customization

