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Abstract. The simulation of certain flow problems requires a means for modeling a
free fluid surface; examples being viscoelastic die swell or fluid sloshing in tanks. In
a finite-element context, this type of problem can, among many other options, be dealt
with using an interface-tracking approach with the Deforming-Spatial-Domain/Stabilized-
Space-Time (DSD/SST) formulation [1]. A difficult issue that is connected with this type
of approach is the determination of a suitable coupling mechanism between the fluid
velocity at the boundary and the displacement of the boundary mesh nodes. In order to
avoid large mesh distortions, one goal is to keep the nodal movements as small as possible;
but of course still compliant with the no-penetration boundary condition. One common
choice of displacement that fulfills both requirements is the displacement with the normal
component of the fluid velocity. However, when using finite-element basis functions of
Lagrange type for the spatial discretization, the normal vector is not uniquely defined
at the mesh nodes. This can create problems for the coupling, e.g., making it difficult
to ensure mass conservation. In contrast, NURBS basis functions of quadratic or higher
order are not subject to this limitation. These types of basis functions have already been
used in the context of free-surface boundaries, in connection with the NURBS-enhanced
finite-element method (NEFEM) [2]. However, this method presents some difficulties
due to the fact that it does not adhere to the isoparametric concept. As an alternative,
we investigate the suitability of using the method of isogeometric analysis for the spatial
discretization. If NURBS basis functions of sufficient order are used for both the geometry
and the solution, both a well-defined normal vector as well as the velocity are available on
the entire boundary. This circumstance allows the weak imposition of the no-penetration
boundary condition. We compare this option with a number of alternatives. Furthermore,
we examine several coupling methods between the fluid equations, boundary conditions,
and equations for the adjustment of interior control point positions.
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1 INTRODUCTION

This paper can be placed in the field of free boundary problems. More specifically, it
considers fluid flow problems where the computational domain is part of the solution —
for example a computational domain that contains a free surface. Examples are sloshing
tanks — under a seismic load, the liquid stored in a tank begins to slosh — and rising
bubbles — a liquid bubble enclosed in a second fluid rises or falls due to the buoyancy
force.

2 GOVERNINGEQUATIONS FOR THE FREE-BOUNDARYVALUE PROB-
LEM OF FREE-SURFACE FLOW

For free-surface flow, three types of equations are relevant: (1) the Navier-Stokes equa-
tions in combination with an appropriate constitutive equation govern the fluid flow, (2)
the displacement of the free surface, which is governed by the no-penetration boundary
condition, and (3) the equations governing the possible displacement of interior parts of
the domain in order to maintain validity of the mesh. This section will discuss the relevant
aspects of these equations.

2.1 Governing equations for fluid flow: The Navier-Stokes equations

In the generic incompressible and isothermal fluid flow problem the unkowns are the
velocity, u(x, t), and the pressure, p(x, t). The computational domain at each instant in
time, denoted by Ωt, is a subset of Rnsd, where nsd is the number of space dimensions.
Then, at each point in time t ∈ [0, T ], the flow problem is governed by the Navier-Stokes
equations, which in our notation read:

ρ

(
∂u

∂t
+ u ·∇u− f

)
−∇ · σ = 0 on Ωt ∀ t ∈ [0, T ] , (1)

∇ · u = 0 on Ωt ∀t ∈ [0, T ] , (2)

with ρ as the density of the fluid. We consider only Newtonian fluids, meaning that
the stress tensor σ is defined as

σ(u, p) = −pI+ 2µε(u) on Ωt , (3)

with

ε(u) =
1

2
(∇u+ (∇u)T ) , (4)

where µ denotes the dynamic viscosity. f includes all external body forces with respect
to the unit mass of fluid. Note that the spatial domain is time-dependent, which is
indicated by subscript t.
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Figure 1: The figure shows an excerpt of a finite element mesh with the free surface indicated in blue.
For each FE node, the fluid velocity u is given. Together with the normal vector n, it serves as a basis
for the displacement velocity v.

2.2 Displacement of the free surface: The no-penetration boundary condition

We consider test cases in which the position of the full boundary Γ, or a portion
thereof, is not known in advance, but part of the flow solution. The boundary is then
defined as a free surface Γfree. In principle, there are two general methods to determine the
exact position of the free surface: interface capturing and interface tracking [1]. Interface
capturing means that in addition to the finite element mesh for the flow solution, a
separate indicator — e.g., a level-set function or particles — is employed to indicate the
position of the free surface. In interface tracking — as it is used here —, the computational
domain will adapt to the displacement of the free surface. This displacement in turn is
governed by the kinematic boundary condition

v(x) · n(x) = u(x) · n(x) . (5)

It contains the fluid velocity u and the displacement velocity v of the free surface.
Notice that several choices for v are valid (cf. Figure 1); the straightforward one being

v(x) = u(x) . (6)

However, there exist other choices that still comply with Equation (5), but suppress
certain components of the full velocity for the benefit of a higher mesh quality. Behr [11]
details two common alternatives: displacement with the normal velocity component with
v = (u ·n)n and displacement only in a specific coordinate direction d ( e.g., y-direction),

i.e., v = (u·n)d
n·d

.

2.3 Retaining mesh quality: Mesh update for inner nodes

As the boundary Γfree is modified, usually the discretization of the interior of the
domain needs to be adapted as well. For this purpose, we employ the Elastic Mesh
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Update Method (EMUM) [12]. In this method, the computational mesh is treated as
an elastic body reacting to the boundary deformation applied to it. The linear elasticity
equation is solved for the mesh displacement υ, which relates to the mesh velocity v as
υ = v∆t:

∇ · σmesh = 0 , (7)

σmesh(υ) = λmesh (tr εmesh(υ)) I+ 2µmeshεmesh(υ), (8)

εmesh(υ) =
1

2

(
∇υ + (∇υ)T

)
. (9)

λmesh and µmesh — in structural mechanics the Lamé-parameters — have no physical
meaning within the mesh deformation. They can be chosen freely for each element in
order to control its respective stiffness.

3 ISOGEOMETRIC ANALYSIS

Initiated by Hughes at al. [3], a recent trend in the finite element analysis is the use of
isogeometric methods. The key idea is to use Non-Uniform Rational B-splines (NURBS)
as finite element shape functions. Compared with classic Lagrange polynomial shape
functions, this concept has distinct advantages — ranging from higher geometrical accu-
racy to higher stability of the numerical solution. Details of Isogeometric Analysis can
be found in a vast number of sources, e.g., [4]. It has been applied to a variety of appli-
cations, e.g., in the context of the phase field method for the Cahn-Hillard equations [5],
brittle fracture [6], and topology optimization [7]. In connection with level-set, IGA has
been utilized to compute the dam break problem [8, 16] or as a boundary indicator within
the finite cell method [9]. Another free-surface-related application is the computation of
wave resistance on a ship hull using the isogeometric boundary element method [17]. To
the knowledge of the authors, IGA has not been utilized in conjunction with interface
tracking of free surfaces.

To achieve an application to interface tracking, one difference between IGA and the
standard finite element method becomes crucial: In IGA, the unkown velocities are not
stored at points, which lie on the free surface. Instead, the unknown values — termed
control variables — can be associated with the control points of the spline.

4 DISPLACEMENT OF THE FREE SURFACE

In Section 2.2 we discussed the importance of displacement conditions that do not
involve the full velocity vector, but only a portion of it, pointing in a certain direction.
The section named displacement in normal and in vertical direction as examples. Bear
in mind that both the vertical and the normal direction vector — but also any other
directional vector one could imagine — are all associated with a specific point on the
surface. As indicated in the previous section, however, IGA stores the unknowns — in
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Figure 2: The figure shows a free surface represented by a NURBS curve. The fluid velocity is stored
as a control variable, whereas the normal vector is computed on the free surface.

our case velocity information — at the control points. This entails that the kinematic
boundary condition, Equation (5), now contains two components — the velocity unknowns
and the directional vector — which are evaluated at different locations. It can no longer be
directly evaluated and much less directly fulfilled (cf. Figure 2). As a remedy, we propose
two displacement methods for the free surface; one based on strong imposition and one
on weak imposition of the kinematic boundary condition. The first option entails moving
the control points with normal vectors that are computed at the Greville abscissae. The
second option considers the weak fulfillment of the no-penetration boundary condition —
meaning that an additional equation system will need to be solved.

4.1 Displacement based on the normal vector at the Greville abscissae

As detailed before, there is no notion of a normal vector at a control point. One point
on the spline, whose normal vector might come close to a vector that might be considered
a normal vector at a specific control point, is the normal vector at the corresponding
Greville abscissa. The Greville abscissa is the point on the surface the control point
converges to in case of refinement. The Greville abscissa can be computed as the average
of the knot values relevant for a control point, excluding the first and last value [18].
Typically, this is also close to the point where the associated basis function is maximal
(this is exactly fulfilled for uniform knot vectors). The normal vector of, e.g., a NURBS
curve, at any parametric coordinate θ can then be computed as [19]:

n(θ) =

(
−ty
tx

)
, with t(θ) =

(
tx
ty

)
=

C
′(θ)

|C ′(θ)|
. (10)

The formula requires C
′(θ), the first derivative of the curve with respect to the local

parameter θ, for the definition of which we refer to [13].
Based on the fluid velocity at any given control point Pi, we define its displacement

(or control point coordinate increment) ∆Pi as:

∆Pi = (ūi · n)n ·∆t , (11)
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with ūi the fluid velocity connected to control point i averaged over the time step and
n the time-averaged normal vector evaluated at the ith Greville abscissa.

4.2 Displacement based on a weak formulation of the kinematic boundary

condition

In a finite element context, the kinematic boundary condition can also be imposed
weakly. The respective formulation reads:

∫

Γfree

wF (v,u) dx = 0 ∀w ∈ V, (12)

with Γfree as the spatial free surface boundary, the test functions w in a suitable test
space V, surface displacement velocity v(θ) and the fluid velocity u(θ) both at a given
surface point . After discretization, this yields a system of equations that can be solved for
new control point coordinates Pi. The fulfillment of the kinematic boundary condition,
and thus mass conservation, now depends on how closely the correct boundary x(θ) can
be interpolated by the spline basis functions. In addition, the exact choice of F influences
mass conservation when using discrete basis functions. F (v,u) can contain any expression
that fulfills the kinematic boundary condition.
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