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Abstract. In this work the boundary element method (BEM) is applied to steady incom-
pressible viscous flow of Newtonian fluids. The boundary integral equation is derived from
the continuity and momentum equation and the primary variables involved are velocity
and traction. Due to the non-linearity of the governing differencial equation a volume
integral arise in the formulation of the final equation system. Thus, iterative techniques,
either a full or modified Newton-Raphson algorithm, are applied in the solution procedure.

The numerical discretisation is done in two different ways, firstly with the use of clas-
sical isoparametric continuous elements of linear and quadratic order. Using this type
of elements geometry- and mesh-generation is a significant portion of the overall compu-
tation effort. In contrast to this, in a second implementation, the discretisation is done
with the isogeometric analysis (IGA). With the IGA geometry data can be taken directly
from Computer Aided Design (CAD) programs, potentially eliminating the need for mesh
generation. The arising surface and volume integrals of the BEM are evaluated with both
techniques, the isoparametric application and with the IGA.

Computational results are shown for the two different numerical implementations based
on a 2D benchmark example. The accuracy of the results of both methods are compared
as well as the computational effort, such as numbers of degrees of freedom and internal
point calculations.
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1 INTRODUCTION

For the solution of viscous flow problems in many publications domain methods such
as the Finite Difference, Finite Elements or Finite Volumes are used. A widely used
benchmark example is the forced flow in a cavity and very accurate results are available
with a solution of a very fine finite difference discretisation by [1].

In this work we use the Boundary Element Method (BEM). The discretisation is done
with the classical isoparametric analysis and with the isogeometric analysis (IGA) [2].
With IGA geometry data can be taken directly from Computer Aided Design (CAD)
programs [3], potentially eliminating the need for mesh generation. With the BEM for
linear problems unknowns only exist at the domain boundary and the solution inside the
domain satisfies the governing differential equation. For the present non-linear problem
volume integrals arise.

2 THE BOUNDARY ELEMENT METHOD - BASIC FORMULATION

The laws of conservation of mass and momentum are the basis for the differential
equations for steady incompressible flow which are written in the form:

∂uj

∂xj

= 0 µ
∂2ui

∂xj∂xj

− ∂p

∂xi

− ρuj
∂ui

∂xj

= 0 (1)

where xi is the Eulerian coordinate, ui is the velocity vector, p is the pressure, ρ the mass
density and µ the viscosity. The non-linear Equation (1) is considered by the BEM by
treating the non-linear terms as body forces. Thus, Equation (1) is reformulated as:

∂uj

∂xj

= 0 µ
∂2ui

∂xj∂xj

− ∂p

∂xi

+ fi = 0 (2)

with

fi = −ρuj
∂ui

∂xj

(3)

We define fluid stresses as:

σij = µ

(
∂ui

∂xj

+
∂uj

∂xi

)
(4)

and the resulting tractions on boundary S:

ti = σij nj − p ni (5)

where ni is the unit vector normal to the boundary. Using the reciprocal theorem, the
following integral equation is obtained (for a full derivation we refer to [4]):

cij(y) u̇j(y) =

∫

S

[Uij(y, x) tj(x)− Tij(y, x) u̇j(x)] dS(x) +

∫

V0

Uij(y, x̄) fj(x̄)dV0(x̄) (6)

2

245



Christian Duenser and Gernot Beer

where cij(y) is an integral free term, depending on the shape of the boundary and u̇i is
the velocity perturbation, i.e. the total velocity can be written as:

ui(x) = u̇i(x) + u0
i (x) (7)

where u0
i is the free stream velocity and Uij(y, x) and Tij(y, x) are fundamental solutions

for the velocity and traction at point x due to a source at point y.
In Equation (6) fj appears involving derivatives of velocities. As has been shown in

[5] these derivatives can be computed by using finite differences or by taking derivatives
of an approximation of the velocity field. In both cases additional computational work
needs to be done and errors are introduced.

Alternatively, the requirement of computing derivatives can be eliminated by applying
the divergence theorem to the volume integral in Equation (6) resulting in:

cij(y) u̇j(y) =

∫

S

[Uij(y, x) tj(x)− Tij(y, x) u̇j(x)] dS (8)

−
∫

S0

Uij(y, x) t
0
j(x)dS0 +

∫

V0

Uij,k(y, x̄) b
0
jk(x̄)dV0

where Uij,k(y, x) is a derived fundamental solution and:

b0ik(x̄) = ρ uk(x̄) u̇i(x̄) (9)

t0i (x) = b0ik(x)nk(x)

3 ISOPARAMETRIC DISCRETISATION

As in the work of [4] for the surface discretisation Lagrangian elements of linear or
parabolic order are used to approximate the geometry and the boundary unknowns u and
t. For the volume integral in Equation (8) cells are used to evaluate the integral.

3.1 Discretisation - Equation system

We use the collocation method, i.e. we write the integral equations for a finite number
(N) of source points at locations yn. Changing to matrix notation, the integral equations
are re-written as:

c (yn) u̇ (yn) =

∫

S

U (yn,x) t (x) dS −
∫

S

T (yn,x) u̇ (x) dS

−
∫

S0

U (yn,x) t0 (x) dS0 +

∫

V0

U′ (yn, x̄)b0 (x̄) dV0

(10)

with n = {1, . . . , N}. In the above c (yn) is a matrix containing integral free terms,
u̇(x) and t(x) are vectors containing perturbation velocities and tractions at point x
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on the boundary. U (yn,x) and T (yn,x) are matrices containing fundamental solutions
described in [4]. b0 (x̄) is a body force vector at a point x̄ inside V0.

For the discretisation of the surface integrals over S the boundary is divided into
elements and we apply the isoparametric concept where the same basis functions are used
for the approximation of the geometry and the field values.

xe =
K∑
k=1

Nk(ξ)x
e
k u̇e =

K∑
k=1

Nk(ξ) u̇
e
k te =

K∑
k=1

Nk(ξ) t
e
k (11)

In the above equations the superscript e refers to the number of the element, Nk are
element basis functions with respect to the local coordinate ξ for the geometry, velocities
and tractions respectively. xe

k specify the location of the element nodes and u̇e
k and tek are

the parameters for velocities and tractions associated to the node k. K are the number
of parameters depending on the order of basis functions (linear or quadratic) for each
element.

Inserting the approximations into the integral equations the following discretised inte-
gral equations are obtained:

E∑
e=1

K∑
k=1

�Ue
nkt

e
k =

E∑
e=1

K∑
k=1

�Te
nku̇

e
k +

E∑
e=1

K∑
k=1

�Ue
nkt

e
0k −

C∑
c=1

K∑
k=1

�U′c
nkb

c
0k (12)

Furthermore

�Ue
nk =

1∫

−1

U (yn,x
e(ξ))Nk(ξ) J d ξ (13)

�Te
nk =

1∫

−1

T (yn,x
e(ξ)) ·Nk(ξ) J d ξ

�U′c
nk =

1∫

−1

1∫

−1

U′ (yn,x
e(ξ, η))Nk(ξ, η) J d ξ d η

In the above J is the Jacobian of the transformation from local ξ to global (x, y) coordinate
systems. The integral free term together with the strongly singular integral term of
Equation (10) is evaluated using the rigid body motion shown in [6]. After assembly the
following system of equations

[U] {t} = [T] {u̇}+ {F}0 (14)

is obtained, where [U], [T] are matrices assembled from element contributions (Equa-
tion (13)) and {t}, {u̇} are vectors that collect all traction and velocity components on
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points yn. {F}0 relates to the integrals involving body forces. Either t or u̇ must be
known on the boundary, so for a mixed boundary value problem we have

[L] {a} = {F}+ {F}0 (15)

where [L] contains a mixture of [U],[T] coefficients and {a} contains a mixture of unknown
tractions and velocities. {F}0 is a vector computed with known boundary values.

3.2 Results in the domain

The solution algorithm requires the evaluation of the perturbation velocities inside the
domain V0. The velocity vector v1 at any internal point yi can be computed by

v (yi) =

∫

S

U (yi,x) t (x) dS −
∫

S

T (yi,x) u̇ (x) dS (16)

−
∫

S0

U (yi, x̄)b0 (x)n (x) dS0 +

∫

V0

U′ (yi, x̄)b0 (x̄) dV0

After inserting the approximations for u̇, t and b0 the equation above can be written in
matrix notation as:

{v} = [A] {t} − [C] {u̇} + [D] {b0} (17)

where matrices [A] and [C] are assembled from element contributions of Kernel basis
function products and [D] =

(
[D]V − [D]S

)
.

3.3 Iterative procedure - Modified Newton-Raphson

There are two possibilities for the iterative procedure: modified Newton-Raphson or
full Newton-Raphson. In the former the left hand side of the system of equations is
not changed and only a new right hand side is computed at each iteration, whereas
in the latter the left hand side is changed at every iteration. The test examples is a
pure Dirichlet problem, i.e. {a} = {t} in Equation (15) and therefore the unknown
are boundary tractions {t} and the known values are perturbation velocities {u̇} at the
boundary. Without loss of generality, the algorithms are detailed for this special case
as the extension to mixed boundary conditions is trivial. The iterative procedure for
modified Newton-Raphson is essentially the same as used in [5] and described in more
detail in [6]. For the first iteration the unknowns are computed by

[U] {t}0 = {F} (18)

For the subsequent iteration we have

[U] {t}k = {F}+ {F}k−1
0 (19)

1The velocities at internal points are referred to as v to distinguish them from the boundary velocities
u̇.
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where k is an iteration counter. The velocities at internal points are computed by:

{v}0 = [A] {t}0 − [C] {u̇} (20)

for the first iteration and

{v}k = [A] {t} − [C] {u̇}+ [D] {b0} (21)

for the subsequent iterations. To ensure convergence for higher Reynolds numbers we
apply a relaxation scheme, i.e. the tractions and velocities are computed by a combination
of new and previous values, where β is a relaxation coefficient (0 < β < 1):

{t} = β {t}k + (1− β) {t}k−1 (22)

{v} = β {v}k + (1− β) {v}k−1

3.4 Numerical results - Isoparametric discretisation

The implementation of the theory is tested here on the standard problem of a driven
cavity. The results are compared with an available fine grained solution of [1] in order to
ascertain that good quality of results can be obtained. An incompressible fluid of uniform
viscosity (µ = 1) is confined within a square region of dimension H = 1 × 1. The fluid
velocities on the bottom, left and right are fixed at zero, while a uniform velocity ux = 1
is specified at the top, which is tapered off to zero very near the corners. The Reynolds
number is defined as Re = ρU H/µ. The example is tested for different Reynolds numbers
by changing the value of ρ.

3.4.1 Definition of geometry

The boundary of the problem is defined by either linear or quadratic boundary ele-
ments. The element lengths are graded towards the edges of the cavity. As shown in
Figure 1 three mesh densities are considered with 10, 20 and 30 elements along each edge
of the cavity. The volume of the domain is discretised with cells with basis functions of

Figure 1: Definition of Geometry with 10, 20 and 30 boundary elements at each edge of the cavity
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either linear or quadratic order, describing the geometry and the velocity in the interior.
In Table 1 the number of degrees of freedom associated to the nodes at the boundary and
the number of internal points are shown for the three meshes and the reference solution
of [1].

Table 1: Mesh statistics

Mesh Degrees of freedom No. of internal points
10 linear 80 81

10 quadratic 160 261
20 linear 160 361

20 quadratic 320 1121
30 linear 240 841

30 quadratic 480 2581
Reference [1] - 16641

3.4.2 Results and comparison

Results were computed for the three meshes with linear and quadratic elements for
Reynolds numbers 100, 200 and 300 with a modified Newton-Raphson method with re-
laxation. Figure 2 shows the velocity vectors for Reynolds numbers 0 and 300. A shift in
the vortex centre can be clearly seen. Figures 3, 4 and 5 show a comparison of the results
obtained for the different meshes. For Reynolds number 100 the variation of x-velocities
along a vertical line through the middle for all meshes agree well with the extremely accu-
rate published solution. For the results with Reynolds number 200 and 300 no reference
solutions were available. But, as shown in Figure 4 for Reynolds number 200 the results
of the different meshes agree well, even for the course meshes. The results for Reynolds
number 300 (Figure 5) deviate from each other. With the modified Newton-Raphson iter-
ativie algorithm with relaxation a solution was difficult to achieve and for higher Reynolds
numbers no converged results could be obtained.

Figure 2: Forced cavity flow: Resulting velocity vectors for Re=0 and Re=300
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Figure 3: Comparison of velocity in x-direction along a vertical line through centre for Re=100 for linear
(left) and quadratic elements (right) together with the reference solution
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Figure 4: Comparison of velocity in x-direction along a vertical line through centre for Re=200 for linear
(left) and quadratic elements (right)
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Figure 5: Comparison of velocity in x-direction along a vertical line through centre for Re=300 for linear
(left) and quadratic elements (right)
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4 ISOGEOMETRIC DISCRETISATION

For the discretisation of the surface integrals over the boundary S of Equation (10)
and Equation (12) the boundary is divided into patches and a geometry independent field
approximation approach is adopted for each patch, i.e. different basis functions for the
description of the geometry and for the field values are used.

xe =
K∑
k=1

Rk(s)x
e
k u̇e =

Ku∑
k=1

Ru
k(s) u̇

e
k te =

Kt∑
k=1

Rt
k(s) t

e
k (23)

In the above equations the superscript e refers to the number of the patch, Rk, R
u
k and

Rt
k are NURBS basis functions with respect to the local coordinate s for the geometry,

velocities and tractions respectively. xe
k specify the location of control points and u̇e

k

and tek are the parameters for velocities and tractions. K, Ku, Kt are the number of
parameters for each patch. The advantage of using NURBS is that they are much better
suited than Lagrange polynomials for describing smooth boundaries and that superior
refinement strategies such as order elevation, knot insertion and k-refinement, can be
used. By manipulating the knot vector one can easily influence the continuity of the basis
functions for the approximation of unknown values. Inserting the approximations into the
integral equations the same final equation system arise as shown in Equation (15). For
the evaluation of the domain integral the domain V0 is described by a mapping method
introduced recently for 2D in [7] and extended to 3D in [8]. In this approach the domain
is defined by two NURBS curves and a linear interpolation between them as shown in
the Figure 6. A detailed description of the evaluation of the volume integral has been
recently submitted by Beer et al. [6].

x

y

 0

 0.5

 1

 0  0.5  1

t

s

Figure 6: Example of definition of volume V0 surrounding half of an airfoil in (left) global x,y and
(right) local s, t coordinate system. The red curve defines the boundary of the airfoil as well as the
bottom boundary of the domain V0. The green curve defines its top boundary. The associated control
points are depicted by hollow squares. Note that only 5 control points are required to accurately define
the shape of the airfoil and 5 more control points the surrounding domain.
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4.1 Iterative procedure

Additionally to the the modified Newton-Raphson with a relaxation scheme described
in section 3.3 a full Newton-Raphson is implemented in the NURBS based code. With
this the left hand side of Equation (15) is modified at each iteration. The theory and
implementation is described in [6].

4.2 Numerical results - Isogeometric discretisation

For the described driven cavity problem of section 3.4 the boundary is defined by
4 linear NURBS patches. The approximation of the boundary unknown was achieved
by inserting knots and by order elevating the basis functions for describing the geometry
(from linear to quadratic). Three different refinements were investigated and the resulting
locations of collocation points computed using Greville abscissa [9] are shown in Figure 7.

x

y

x

y

x

y

Figure 7: Refinement of solution: Location of collocation points for 3, 7 and 15 knot insertions for each
patch

The domain for the volume integration was defined by 2 NURBS curves. The refinement
of the boundary values was accompanied by an increased number of internal points as
shown in Figure 8. Quadratic interpolation between the points was assumed.

x

y

x

y

x

y

Figure 8: Definition of domain for volume integration with two NURBS curves marked red and green
and location of the internal points for the three refinement stages
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The number of degrees of freedom and the number of internal points for the different
meshes is shown in Table 2.

Table 2: Mesh statistics

Mesh Degrees of freedom No. of internal points
mesh1 64 81
mesh2 128 289
mesh3 256 1089

Reference [1] - 16641

Compared to the isoparametric results with the isogeometric approach a solution for
Reynolds number Re=400 with the modified Newton-Raphson as well as with the full
Newton-Raphson iteration is possible. There is very little difference between the results
obtained with modified and full Newton-Raphson as shown in Figure 9. However, as shown
in Table 3 there is a large difference with respect to the number of iterations required to
achieve convergence to a tolerance of 10−4 with the modified Newton-Raphson requiring
a significant higher number of iterations.
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mesh3
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mesh2
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 N-R: mesh2
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Figure 9: Comparison of velocity in x-direction along a vertical line through centre for Re=100 (left)
and Re=400 (right) together with the reference solution

Table 3: Number of iterations required for convergence

mesh 1 mesh 2 mesh3
Re=100 modified Newton-Raphson 15 19 18

full Newton-Raphson 3 3 3
Re=400 modified Newton-Raphson 24 39 100

full Newton-Raphson - 5 5
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5 Conclusion

A comparison of isoparametric and isogeometric BEM discretisation is shown for the
benchmark example of the driven cavity problem in 2D. Excellent results for moderate
Reynolds numbers could be obtained for both discretisation methods even for coarse
meshes. For increasing Reynolds numbers it seems that isogeometric discretisation leads
to a better convergence behaviour then isoparametric discretisation. With respect to
iterative techniques a full Newton-Raphson method is necessary to achieve results for
higher Reynolds numbers with a moderate number of iterations.
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