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M. Papadrakakis, E. Oñate and B. Schrefler (Eds)

MOTION OF A CYLINDER RIGID BODY INTERACTING
WITH POINT VORTICES

Sokolov S.V.∗

∗Institute of Machines Science named after A.A.Blagonravov of the Russian Academy of
Sciences (IMASH RAN) 4 Maly Kharitonyevsky Pereulok, Moscow 101990, RUSSIA

e-mail: sokolovsv72@mail.ru, web page: http://www.imash.ru/

Key words: point vortices, Hamiltonian systems, stability of equilibrium

Abstract. The dynamical behavior of a heavy circular cylinder and N point vortices
in an ideal liquid is considered. The governing equations are presented in Hamiltonian
form. Integrals of motion are found. Allowable types of trajectories are discussed. The
stability of finding equilibrium solutions is investigated and some remarkable types of
partial solutions of the system are presented. The system demonstrate chaotic behavior
of dynamics.

1 INTRODUCTION

The problem of falling motion of a body in fluid has a long history and was considered
in a series of the classical [7, 15] and modern papers [5, 10, 11, 12, 9, 8]. Some of the
effects described in the papers, such as periodic rotation (tumbling), can be encountered
only in viscous fluids.

The fluid’s viscosity imposes resistive forces on the body. These forces manifest them-
selves not only through the skin friction but they also serve a source of vortex generation.
To evaluate a model which is a more or less realistic and at the same time amenable to
analytical treatment it is customary to assume the liquid to be ideal and add the vortic-
ity ad hoc meaning that we postulate the existence of, say, circulation, point vortices or
vortex sheets etc.

In previous works [14, 13] the problem of motion of the heavy cylinder under the action
of gravity and a single point vortex was investigated with non-zero circulation.

In this paper we study the influence of the vorticity on the falling body in a trivial
setting: a body (circular cylinder) subject to gravity is interacting dynamically with N
point vortices. The circulation around the cylinder is not necessarily zero. So the model
we consider here is exact and, at the same time, not so despairingly complex as most of
the existing models are.
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2 SETTING UP OF THE PROBLEM

Consider a circular cylinder subject to gravity moving in an unbounded volume of ideal
liquid at rest at infinity. The cylinders element is orthogonal to the flow; thus the problem
is essentially two-dimensional. There are N vortex filaments (point vortices) of strength
Γi parallel to the cylinders element, here i = 1, N . The circulation Γ of the flow around
the cylinder is, generally, different from zero (Fig. 1). Our goal is to detect and investigate
the main features of the system.

i

i

i

Figure 1: Circular cylinder and point vortices in the gravity field.

3 GOVERNING EQUATIONS

According to [13], the equations of motion for a cylinder and point vortices in the
presence of gravity can be written as

ṙ
i
= −v + ▽ϕ̃i(r)|r=r

i

,

ṙ
c
= v,

av̇1 = λv2 −

N∑
i=1

λ
i
( ˙̃y

i
− ẏ

i
),

av̇2 = −λv1 +
N∑
i=1

λ
i
( ˙̃x

i
− ẋ

i
)− ag,

(1)

Here rc = (xc, yc) is the radius-vector from the origin of a laboratory frame of reference
Oxy to the cylinders center, v = (v1, v2) is the velocity of the cylinder, the radius-vector

ri = (xi, yi) is from the center of the cylinder to the i-th vortex, and r̃i = (x̃i, ỹi) =
R2

ri

r2
i

is

the radius-vector from the center of the cylinder to the image of the i-th vortex (Fig. 1),
R — the radius of the cylinder, the constant a is the mass plus the added mass of the
cylinder, the constant ag is a gravity force applied to the cylinder, the constants λ and λi

are related to the circulation and vortexs strength λ = Γ
2π
, λi =

Γi

2π
. The density of the
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fluid is assumed to be 2π. The function ϕ̃i(r) represents that portion of the velocity
potential ϕ(r) which does not have a singularity at the point r = ri:

ϕ(r) = −
R2

r2
(r, v)− λ arctan

y

x
+

N∑
i=1

λi

(
arctan

(
y − ỹ

i

x− x̃
i

)
− arctan

(
y − y

i

x− x
i

))
. (2)

The equations (1) are similar to those from [13].
As in [13], one can note that the finite-dimensional system (1), which governs the

motion of a cylinder and vortices in the gravity field, preserves the standard measure and
can be represented in the Hamiltonian form.

Theorem 1. The equations of motion (1) can be represented as follows:

ζ̇i = {ζi, H} =
∑
k

{ζi, ζk}
∂H

∂ζk
, (3)

where ζi is the phase vector of the system (1), that is,

ζ = {x1, y1, . . . , xN
, y

N
, v1, v2, xc

, y
c
},

H is the Hamiltonian function, and the components of the skew-symmetric tensor of the

Poisson structure Jij(ζ) = {ζi, ζj} satisfy the Jacobi identity:

∑
l

(
Jil

∂Jjk

∂ζl
+ Jkl

∂Jij

∂ζl
+ Jjl

∂Jki

∂ζl

)
= 0, ∀i, j, k.

Proof. It is straightforward to check that the system (1) has a constant of motion which
can be interpreted as the energy integral

H =
1

2
av2+

1

2

N∑
i=1

(
λ2
i
ln(r2

i
−R2)− λ

i
λ ln r2

i

)
+
1

2

∑
i<j

λiλj ln
R4 − 2R2(ri, rj) + r2

i
r2
j

|ri − rj |2
+agy

c
.

(4)
Assuming H be the Hamiltonian of our system, we now choose the components Jij for
the equations of motion (3) to be identical with the equations (1). The non-zero tensor
components (as in [13]) read

{v1, xi
} =

1

a

r4
i
− R2(x2

i
− y2

i
)

r4
i

, {v1, yi} = −
1

a

2R2x
i
y
i

r4
i

,

{v2, xi
} = −

1

a

2R2x
i
y
i

r4
i

, {v2, yi} =
1

a

r4
i
+R2(x2

i
− y2

i
)

r4
i

,

{v1, v2} =
λ

a2
−

N∑
i=1

λ
i

a2
r4
i
− R4

r4
i

, {x
i
, y

i
} = −

1

λ
i

,

{x
c
, v1} = {y

c
, v2} =

1

a
.

(5)
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The check of the validity of the Jacoby identity for the components of (5) is a matter of
straightforward computation.

Thus, the fact that the equations (1) are Hamiltonian allows application of standard
tools (e.g. for the stability analysis) from the extensively developed theory of Hamiltonian
systems.

4 FIRST INTEGRALS AND REDUCTION

The presence of gravity breaks the rotational symmetry of the system, which implies
the absence of an additional integral of motion which existed in the case g = 0. However,
the system has two integrals of motion due to the translational symmetry: an autonomous
integral P — projection of the systems linear momentum on the horizontal axis and a
non-autonomous Q — projection of the systems linear momentum on the vertical axis:

Q = a(v2 + gt) + λx
c
−

N∑
i=1

λi(x̃i
− x

i
),

P = av1 − λy
c
+

N∑
i=1

λ
i
(ỹ

i
− y

i
).

(6)

Now we reduce the order of our system in the case N = 1. The system does not seem
to have any additional constants of motion which is confirmed by chaotic behavior of
solutions on the Poincaré section surface (Fig. 6, 7). A rigorous proof of non-itegrability
of the system consisting of a body (with unequal added masses) with non-zero circulation
around it falling in an ideal fluid is given in [2].

Using the autonomous integral P , one can reduce the original three-degree of freedom
system to a system with two degrees of freedom.

To do this, put P = 0. It is clear that for λ �= 0 (the case of λ = 0 will be addressed
elsewhere) this can be always achieved by shifting the origin of the laboratory reference
frame. Solving for yc from the equation P = 0, substituting the result into the Hamiltonian
(4) and excluding from (1) the equation in rc, we obtain the reduced system:

ẋ1 = −v1 +
∂ϕ̃

∂x

∣∣∣∣
r=r1

, ẏ1 = −v2 +
∂ϕ̃

∂y

∣∣∣∣
r=r1

,

av̇1 = λv2 − λ1( ˙̃y1 − ẏ1), av̇2 = −λv1 + λ1( ˙̃x1 − ẋ1)− ag

(7)

which remains Hamiltonian with the Hamiltonian function

Hc =
1

2
av2 +

1

2
λ2
1 ln(r

2
1 − R2)−

1

2
λ1λ ln r

2
1 +

ag

λ
(av1 + λ1(ỹ1 − y1))

and the bracket structure obtained from (5) by eliminating the rows and columns corre-
sponding to xc and yc.
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5 CLASSIFICATION OF MOTIONS

Though our system is (comparatively) trivial, very few results concerned with the
classification of the possible types of the cylinder and vortex trajectories can be obtained
analytically. Numerical evidence show that there exist three types of motion (Fig. 2):

1) the cylinder and vortex are moving close to each other in a horizontal strip of finite
width (Fig. 2a);

2) the cylinder “abandons” the vortex and then moves as in the previous case (Fig. 2b);

3) the cylinder “abandons” the vortex and travels down without bound (yc → −∞)
(Fig. 2c).

Figure 2: Motion of the cylinder (solid line) and the vortex (dashed line) in the field of gravity: (a) the
cylinder and the vortex are moving in a bounded horizontal strip, the vortex is captured by the cylinder;
(b) the cylinder moves in a bounded horizontal strip, the vortex is left behind; (c) the cylinder abandons
the vortex and falls down without bound (λ = λ1).

Thus, we have the capture of the vortex by the cylinder as in [4] and motion in a
horizontal strip as described in [6].

So we hypothesize (but cannot prove it) that in the course of motion the cylinder is
always confined to a horizontal strip, except, maybe, for the case λ = λ1. If the cylinder
falls down without bound (the function yc(t)) tends to −∞) the vortex cannot be captured
with the cylinder.

6 RELATIVE EQUILIBRIA AND THEIR STABILITY

The stationary solutions of the reduced system (7) are the relative equilibria for the
original system (1).

To find the equilibria we equate the right-hand sides of (7) to zero and thereby imme-
diately obtain v2 = 0, v1 = −ag

λ
. From hydrodynamical considerations it is clear that x1 is

necessarily zero meaning that the vortex and the cylinders center lie on the same vertical
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line. (There are two other equilibria lying on the cylinders surface for which x1 �= 0; but
this case is of little interest as the vortex merely annihilates with its image, so we will
not consider it). Substituting the found x1, v1, and v2 into the right-hand side of the first
equation (7) yields

y41 + (λ̃2 − λ̃λ̃1)y
3
1 − λ̃2y1 − 1 = 0. (8)

Here the following notation is used y1 = y1

R
, λ̃ = λ√

agR
, λ̃1 = λ1√

agR
. It is interesting to

note that a similar polynomial equation was obtained in [4] where advection of a point
vortex in the field generated by an oscillating cylinder was studied.

Thus, the stationary solution of (7) is given by (x1, y1, v1, v2) =
(
0, y1, −

ag

λ
, 0

)
, where

y1 = y1R and y1 is a root of (8). For these solutions the cylinder and vortex are moving
horizontally along parallel lines at a constant rate. For a hydrodynamically asymmetric
body (the added masses are different) the stability of such rectilinear horizontal motions
was investigated in [6].

Figure 3: Cylinder and vortex in the state of relative equilibrium.

Physically, it is clear that for a cylinder to move with a constant speed the external
forces applied to it must sum up to zero: the gravity must be compensated with the lift,
which is due to the circulation. The vortex placed at the stagnation point C (Fig. 3)
(at this point the velocity of the fluid particle relative to the cylinder is zero) does not
move relative to the cylinder and therefore neither does its image. In this case the vortex
exerts no force on the cylinder and therefore cannot prevent the cylinder from moving
rectilinearly. The stream lines for this equilibrium case are depicted in Fig. 3.

It follows from (8) that the ordinate of the vortex relative equilibrium depends on the

two parameters λ̃ and λ̃1 (normalized circulation and vortex strength). For some value of

(λ̃, λ̃1) there are up to 4 equilibria (Fig. 4). Here an important restriction |y1| > R must
be obeyed for the vortex to be outside the cylinder. Without loss of generality we assume
λ̃ > 0. A schematic of the many-leaved surface (8) is given in Fig. 4. Consider the main
features of the surface.
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1. In the second quadrant of the plane (λ̃1, λ̃), where λ̃1 < 0, λ̃ > 0, there is only one
equilibrium below the cylinder (the lower leaf of the surface (8)).

2. In the first quadrant (λ̃1 > 0, λ̃ > 0) there is an equilibrium above the cylinder (the
upper leaf of the surface (8)). The lower leaf has a fold singularity, therefore, as
indicted in Fig. 5, there may occur three equilibria: two below and one above the
cylinder.

3. The upper leaf of (8) is truncated along the axis λ̃1 = 0 by the condition y1 > R,
meaning that the equilibria positions tend to the cylinders surface from above.

4. As in the previous case, the lower leaf and the fold stitched to it are truncated with
the condition y1 < −R meaning that below the cylinder the equilibria exist in any
small neighborhood of its surface.

5. Since (8) is unaltered under the transformation λ̃1 → −λ̃1, λ̃ → −λ̃, it is clear that
in the third and fourth quadrants the surface (8) can be constructed via rotation
by 180◦ about the y1-axis of the surface from Fig. 4.

6. In Fig. 4 the stable equilibria defined by (8) dwell only on the intermediate leaf and
are shown with dark-grey shading. The unstable equilibria form the entire upper
and lower leaves (light-grey shading); the unstable equilibria on the intermediate
leaf form the hatched region.

Figure 4: Equilibrium position y
1
of the vortex depending on the parameters λ̃, λ̃1: 1 — unstable

equilibria (ind = 1), 2 — unstable equilibria (the form d
2
Hc is degenerate, the instability can be deduced

from the linearized equations), 3 — stable equilibria of the center-center type (ind = 2), 4 — unstable
equilibria of the focus-focus type (ind = 2), 5 — resonance curves.

For the stability analysis of the equilibria found we will use the methods and approaches
developed in [1]. It is well known that to investigate the stability of an equilibrium
solution of a Hamiltonian system the two invariant characteristics of such a solution must
be obtained:
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1. the index of the quadratic form d2Hc

(
i.e. the index of the symmetric (4×4)-matrix∥∥∥ ∂2Hc

∂ζk ∂ζj

∥∥∥
)
, which can vary from 0 to 4;

2. the type of the equilibrium solution depending on the eigenvalues of the linearized

vector field
(
i. e. the eigenvalues of the symplectic (4× 4)-matrix

∥∥∥∥
∑
k

Jik
∂
2
Hc

∂ζk ∂ζj

∥∥∥∥
)
.

This type can be one of the following: center–center, saddle–center, saddle–saddle,
focus–focus.

Like in [1], we mark off the eigenvalues of the linearized vector field, which are the
roots of the characteristic polynomial

χ(µ) = det

(∑
k

Jik

∂2Hc

∂ζk ∂ζj
− µE

)
= µ4 + aµ2 + b, (9)

on the plane (a, b) of the polynomial coefficients. In Fig. 5a from [1], one can see stable and
unstable regions, the index of the form d2Hc, and the types of the equilibrium solutions.

In Fig. 4, the upper and lower leaves are comprised of unstable solutions of the saddle–
center type because here the index of d2Hc is 1. These solutions correspond to the region
b < 0 in Fig. 5a. The points on the intermediate leaf (except for the resonance curves)
are either unstable of the focus–focus type or stable of the center–center type; on this leaf
the index of d2Hc is 2.

Consider in greater detail the region in the first quadrant of the plane (λ̃1, λ̃) where
there are three equilibria. A close up of this part of the surface (8) is given in Fig. 5b.
As in Fig. 4, the lower and upper leaves of the surface (8) represent unstable solutions
with of the saddle–center type with ind = 1; the leaves correspond to the region b < 0
in Fig. 5a. The intermediate leaf contains two types of points: stable (center-center) and
unstable (focus–focus); everywhere on this leaf ind = 2. The stable solutions correspond

to the region
(
a > 0, 0 < b < a2

4

)
in Fig. 5a. The unstable points form the region b > a2

4
.

In Fig. 5a and Fig. 5b the third- and fourth-order resonances, defined by the equations
b = 4a2

25
and b = 9a2

100
, are shown. The resonances lie within the stable area. The analysis

of the stability of the solutions on the boundaries b = 0, b = a2

4
and the resonance curves

is not performed here as it entails a great amount of computation.
Finally, consider the equilibria corresponding to λ̃1 = 2.1 and λ̃ = 4. The Hill domains

in the vicinity of these equilibria are depicted in Fig. 5c. The upper and lower equilibria
are seen to be unstable and the intermediate one is stable.

Suppose that the circulation around the cylinder increases and the strength of the vor-
tex is fixed. This can be imagined as if a vertical line moves along the λ̃-axis in Fig. 5b.
When this line crosses the boundary that corresponds to the parabola b = a

2

4
the type of

the solution switches from center-center to focus-focus. The Hill domains in the vicinity
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Figure 5: Equilibrium solutions and their stability. (a) Stable and unstable regions in the (a, b) plane of
the characteristic polynomial coefficients. The third- and fourth-order resonance curves are shown. (b)

The relative equilibrium position of the vortex versus the parameters λ̃, λ̃1. Depending on the value of λ̃,
λ̃1 there can be a single equilibrium or even three equilibria. (c) The Hill domain for the three-equilibrium
case. (d) The Hill domain for the single equilibrium case. In (c) and (d) the unstable equilibria are marked
with crosses and the stable equilibria with circles.
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of these solutions are analogous to those depicted in Fig. 5c. The intermediate solution
becomes unstable.

Now let the circulation be fixed and the vortex strength grow. The imaginary vertical
line moves along the λ̃1-axis. The stable center–center solution approaches the unstable
focus–focus solution and they finally merge on the curve that corresponds to b = 0. As
the vortex strength increases further there remains only one equilibrium (which is unsta-
ble) of the saddle–center type and located on the upper leaf (above the cylinder). The
schematic of the Hill domain is given in Fig. 5d.

It should be noted that the boundaries that separate the stable solutions with ind = 2
from the unstable solutions with ind = 2 are very sensitive to the choice of the mass and
radius of the cylinder a and R. At the same time, the surface (8) is independent of a
and R. The type of the equilibria in Figs. 4 and 5 was determined for a = 1, R = 1.

7 POINCARÉ SECTION AND CHAOTIC BEHAVIOR OF THE DYNAM-

ICAL SYSTEM

It is known that a system with insufficient number of conserved quantities (first inte-
grals) is usually characterized with chaotic behavior of its trajectories. A strict proof of
the property of non-integrability usually involves highly non-trivial mathematical argu-
mentation. On the other hand, the chaotic dynamics of the system’s solutions (that can
be easily revealed via simulations) indicates the lack of first integrals.

Let us apply this line of reasoning to the system of equations (7), which is a Hamil-
tonian system with two degrees of freedom. To better understand its dynamics we plot a
few Poincaré sections.

The phase vector of the system reads

ζ = {x1, y1, v1, v2, }.

We fix y1 = 0.9 thus picking a section plane in a neighborhood of the vortex’s relative
equilibrium. For Hc = −17 the Poincaré section is shown in Fig. 6. The other parameter’s
values a = 1, R = 0.5, g = 10, Γ = 10, Γ1 = 8.4375.

In Fig. 6 points of the phase plane x1v1 which lie outside the region of allowable motion
are shown with grey shading. We can see areas of regular dynamics which appear as inter-
section of the energy level surface and invariant tori. A stochastic layer is presented in the
area surrounding second order tori. The appearance of this layer is a striking illustration
of chaotic behavior of our system.

We can also build a Poincaré section on the energy level, which permits a spacial separa-
tion of points whose projections onto the plane x1v1 coincide. Section is depicted in Fig. 7.

In Fig. 7 we can also see regular and chaotic dynamics of the system for the given
parameter values. The chaos is evidence of the absence of an additional integral of mo-
tion and confirm the hypothesis about non-integrability of our system. It seems to be
curious to further explore the dynamics’ evolution and possible scenarios of transition to
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Figure 6: Poincaré section of the reduced cylinder-vortex system for Hc = −17; the system exhibits
chaotic behavior.

Figure 7: Poincaré section on the energy level Hc = −17 of the reduced cylinder-vortex system (the
other parameter values are as those in Fig. 6). The small square marker indicates the position of the
hyperbolic fixed point.

chaos. Poincaré sections of the reduced cylinder-vortex system are presented. The system
exhibits chaotic behavior, which confirms the hypothesis [14, 13] about non-integrability
of the system.
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