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Abstract. A model for multiplicative anisotropic growth in soft biological tissues, which
relates the growth tensor to the fibrous tissue structure, is combined with a fiber remode-
ling framework. Both adaptation mechanisms are supposed to be governed by the intensity
and the directions of the tensile principal stresses. Numerical examples on idealized
arterial segments, illustrating stress and fiber angle distributions as well as resulting
residual stresses in cases with and without fiber remodeling, are presented. It turns out
that all processes including growth and remodeling are necessary to obtain qualitatively
realistic distributions of fiber orientations, residual stresses, and stresses under loading.

1 INTRODUCTION

Being exposed to changes in its mechanobiological environment, arterial tissue conti-
nously strives to optimize its load-bearing capacities by adapting to altering conditions,
for example to a sustained elevation of the blood pressure. This optimization procedure
is characterized by growth and remodeling processes and is supposed to be the source of
residual stresses which are typically existent in externally load-free states. Since these
residual stresses are held responsible to reduce stress magnitudes and gradients in loaded
states, they have to be accounted for in numerical simulations, see e. g. [4, 14, 18]. Con-
stitutive equations for soft biological tissues commonly describe the anisotropic material
behavior by modeling the tissue as an isotropic matrix material with embedded fibers.
Based thereon, the reorientation of fibers and the addition of supplementary material
can be considered to model adaptation processes and to quantify the associated residual
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stresses. For both mechanisms, the intensity and the direction of principal stresses are
assumed to be of particular importance.

Starting with the modeling of growth processes, an anisotropic growth model based
on the multiplicative decomposition of the deformation gradient into a growth tensor
and a remaining elastic part [15] is presented. In existing approaches based on this
decomposition, e. g. in [8, 16], structural directions are used to incorporate growth in
specific directions, for instance the radial direction in an artery. Here, a general local
formulation is proposed, where the growth tensor is related to the fibrous tissue structure,
which again is supposed to be directly linked to the directions of the highest (tensile)
principal stresses. Establishing such a relation between the orientation of the fibers and
the growth directions, the consequential extension of the model is to take remodeling of
the fibers into account. A reorientation of the fibers ending up in a realistic arrangement,
as for example discussed in [9, 7], is then expected to have twofold effects: an advantageous
redistribution of the stresses and a direct influence on the growth directions, which are
automatically adapted such that a reduction of high principal stresses is promoted. The
basic assumption motivating both aspects of the combined framework is a symmetric
alignment of the two fiber families in arteries with respect to the tensile principal stresses,
which are supposed to be mainly located in the plane of the vessel wall. Following this
assumption, a growth tensor designed to reduce the tensile principal stresses and an
algorithm for the rearrangement of the fibers is proposed here.

2 BASICS OF THE COMPUTATIONAL MODEL

2.1 Growth model

A multiplicative decomposition of the deformation gradient F = FeFg is one of two
methods frequently adopted to describe growth in soft biological tissues [1, 6]. The growth
deformation arising from the growth part Fg is characterized by a stress-free volume
change increasing the reference volume with a factor Jg = det[Fg]. The second part of
the deformation gradient, the elastic part Fe = FF−1

g is linked with the deformation
from the intermediate, grown state to the actual configuration, which is accompanied
by the emergence of stresses. A polyconvex hyperelastic formulation for fiber-reinforced
soft biological tissues of Balzani et al. [3] is applied, where the stresses are computed
by differentiating a polyconvex strain energy function with respect to the deformation
tensor. The 2nd Piola-Kirchhoff stress tensor in the intermediate configuration is obtained
by Se = 2 ∂ψ/∂Ce with the elastic part of the deformation tensor Ce = F−T

g CF −1
g . The

growth tensor Fg can not be determined from equilibrium conditions [1] and thus has
to be postulated by means of assumptions regarding growth directions and evolution
equations. In the simplest case of isotropic growth with Fg = ϑI for instance, a single
growth factor ϑ is involved. Based on an evolution equation ϑ̇ = kϑ(ϑ)φ(Z), which is
formulated in terms of the growth-driving quantity φ(Z), and the growth function kϑ,
which includes time-dependency and prevents unlimited growth, the growth factor ϑ can
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be identified [11]. Due to their material composition including a multitude of fiber-
reinforced layers, the material behavior of soft biological tissues is highly non-linear and
anisotropic. From the mechanical point of view, the complex tissue structure can be
idealized by an isotropic ground matrix with embedded fibers, which are mainly arranged
in two directions. Based on this idealization, the stress-strain-relation of soft biological
tissues can be approximated by constitutive equations. Adaptation processes aim at
reducing strains or stresses or their gradients within the loaded tissue state, which are thus
governed by the microstructure, i. e. by the fiber reinforcement. It is therefore reasonable
to assume that the tissue composition plays an important role in the context of adaptation
processes as well, which leads to the conclusion that purely isotropic growth as mentioned
above may not be sufficient.

Focusing on the reduction of principal stresses, an increase of the cross-section perpen-
dicular to the direction of the principal stress appears reasonable. Such a growth process
can be described by a growth tensor Fg = ϑI + (1− ϑ)A⊗A, where A is the direction
of the principal stress. Arteries are thick-walled and tube-like structures which transform
the internal pressure to tensile loads in the circumferential/axial plane of the wall. This is
the reason why in arteries mainly two collagen fiber families are found within this plane.
The particular orientation adapts to the stress state such that an improved load-bearing
behavior is obtained. It is assumed that the orientations of the two fiber families are
therefore defined symmetrically to the directions of the two highest principal stresses.
With these two positive principal stresses (denoted by index I and II) which are sought
to be reduced by growth, there are two directions which have to be taken into account
for an appropriate definition of the growth tensor. To realize this, the growth tensor is
multiplicatively decomposed into two parts Fg = F

(II)
g F

(I)
g related to the first and second

principal stress directions A
(I)
g and A

(II)
g , where each part is defined as

F
(a)
g = ϑ(a)

I +
(
1− ϑ(a)

)
A

(a)
g ⊗A

(a)
g with a = I, II. (1)

The simple case of isotropic growth can casually be enclosed in the framework by setting
the multiplicative parts of the growth tensor to F

(a)
g = ϑ(a)I with a = I, II, which allows

a comparison of both approachs. Due to the split of the growth tensor into two parts,
two independent growth factors ϑ(I) and ϑ(II) have to be derived from the two evolution
equations

ϑ̇(a) = kϑ(ϑ
(a))φ(a)(Z(a)), a = I, II. (2)

The growth function kϑ is identically adopted from [12] for both growth factors. The
growth-driving quantities φ(a) are chosen such that those stress components are included,
which are intended to be reduced, i. e. the principal stresses in the direction of the
vectors A

(a)
g . Based on the isotropic driving force φ(CeSe) = CeSe : I proposed in

e. g. [11, 8, 16], the projections

φ(a)(CeSe) = CeSe : M
(a)
e with M

(a)
e = A

(a)
g ⊗A

(a)
g , a = I, II (3)
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of the elastic part of the Mandel stress into the directions of the vectors A
(a)
g are presumed

in the context of anisotropic growth with the multiplicative parts of the growth tensor
given by eq. (1). In case of isotropic growth, the isotropic measure φ(a)(CeSe) = CeSe : I
(a = I, II) is used. In both cases, each evolution equation depends on both growth
factors ϑ(I) and ϑ(II) because strain and stress quantities in the intermediate configuration
are involved which depend on the overall growth tensor Fg. For the numerical treatment
of this coupled set of evolution equations see [21], where the procedure of computing the
growth factors is described for the case of anisotropic growth. Once the growth factors ϑ(a)

have been identified, strains Ce and stresses Se are known and the 2nd Piola-Kirchhoff
stress tensor S = F−1

g SeF
−T

g can be computed. Here, the tangent moduli C = 2∂S/∂C
are computed numerically using a complex-step derivative approximation scheme [19].
Note that alternatively such schemes can also be applied to the implementation of the
global tangent stiffness matrix [2].

2.2 Fiber remodeling

As another important mechanism in arterial tissue besides growth, fiber remodeling is
part of the adaptation processes which optimize the load-bearing behavior. The combi-
nation of growth and fiber remodeling thus might result in stress distributions which are
still more advantageous for the tissue.

In previous numerical examples, as e. g. in [21], the angles β(1) and β(2) between the
fiber vectors and the direction of the first principal stress have been defined as constant
over the wall thickness. This is however unrealistic since experimental observations show
that the fiber angle is rather distributed through the thickness in healthy arteries. For
atherosclerotic arteries, where a complex geometry of the artery is present and the ide-
alization as a cylindrical tube is not applicable anymore, it becomes even more complex.
Then, the circumferential, axial and radial directions, and thus the plane in which the
fiber families are situated, are difficult to be defined. Therefore, an automated procedure
to calculate realistic fiber directions is required, in particular for patient-specific analysis.
For the calculation of the fiber orientation vectors subjected to stress-driven remodel-
ing, the definition of the plane of the fiber families as the plane of the first two principal
stresses is not sufficient, since it does not allow the determination of the orientation within
the plane and thus, the fiber angles β(a). Therefore, an additional hypothesis postulated
by Hariton et al. [9] is accounted for. Their fiber remodeling mechanism is based on the
assumption that the fiber angles with respect to the principal directions are regulated by
the ratio of the tensile principal stresses. Then, the target orientation of the fiber vectors
in the actual configuration can be expressed by

a
(1)
targ = �σI� eI + �σII� eII and a

(2)
targ = �σI� eI − �σII� eII, (4)

where eI and eII are unit vectors in the directions associated with the first and second
principal stresses σI and σII. These are in turn determined by solving the characteristic
equation det[σ − σI] = 0 of the eigenvalue problem. The use of the Macaulay brackets
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�•� = 1
2
(|| • ||+ •) guarantees that only positive principal stresses are taken into ac-

count. It hence embeds the case of only one tensile principal stress, which may occur
in arteries growing strongly in axial direction. Then, both fiber families will arrange in
circumferential direction, cf. the numerical examples. The formulation of the constitutive
equations often requires knowledge of normalized fiber orientation vectors in the reference
configuration, which are given by

A
(a)
targ =

F −1a
(a)
targ

||F −1a
(a)
targ||

, a = 1, 2. (5)

The algorithmic treatment of the fiber remodeling model within the framework of finite
elements is implemented as proposed by Fausten et al. [7]. There, at first an initial
boundary value problem is solved where the external loads and an initial fiber orientation
is prescribed. Then, the target fiber vectors are computed based on the assumptions given
above. Setting the fiber orientations to the target orientations will influence the stress
and strain distribution and thus, again equilibrium has to be accomodated by solving for
the resulting displacements. In the context of a nonlinear Finite Element implementation
this means that for large changes in the fiber orientation vectors the initial values for the
Newton iterations will not be suitable. For this reason, the fiber orientation vectors are
updated incrementally, applying only fractions of the whole difference vectorsA

(a)
targ,0−A(a)

in such a way, that the change in the fiber angle does not exceed a predefined value.
Further details concerning the fiber remodeling approach can be found in [7].

2.3 Combined approach

The presented framework for anisotropic growth in arterial walls relies on the assump-
tion that growth can effectively reduce stresses if it occurs in the planes whose normal
vectors are the directions eI and eII of the tensile principal stresses. Combining the growth
model with the fiber remodeling framework, it is ensured that the two included families
of collagen fibers are always arranged symmetrically with respect to the principal stress
directions. This allows an identification of the principal stress directions from the fiber
orientations, i. e.

eI =
A(1) +A(2)

||A(1) +A(2)||
and eII =

A(1) −A(2)

||A(1) −A(2)||
. (6)

The vectors A
(a)
g in eq. (1) are then trivially given by

A
(I)
g = eI and A

(II)
g = eII. (7)

With this relations at hand, it is possible to define an anisotropic growth tensor based on
the local tissue microstructure, and there is no need of computing structural, geometric
directions like the radial, circumferential or axial direction which do in general not coincide
with the global coordinate system in patient-specific geometries. In this contribution we
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propose to include a growth evolution as soon as the boundary value problem changes,
i. e. not only if time proceeds or the loading conditions change, but also if a new fiber
orientation is computed. However, we are rather interested in the final saturated state
of fiber orientation and stress distribution than in the time-evolution of this process and
thus, the growth velocities can be set rather arbitrarily. They will however, influence
to some extent the results since faster/slower growth would change the stresses within
each remodeling step. Therefore, these velocities can be considered as parameters to the
algorithm, which require further analysis. On the other hand, if one was interested in the
evolution of growth and remodeling instead of the final saturated state the values of the
growth velocities would rather be physical parameters.

2.4 Residual stresses

Residual stresses in arterial walls and the related deformations are three-dimensional
and thus strongly dependent on the radial and on the axial position within the vessel.
A single parameter is therefore not suitable to entirely characterize the residual stress
state [10]. However, since the early attempts of quantifying the magnitude of residual
stresses, see e. g. [20], the opening angle experiment is often picked up to explain and to
visualize the existence of residual stresses in arterial segments. It is therefore desirable
to provide the possibility of simulating such experiments numerically. In this context,
axial and radial cuts through the arterial wall have to be simulated in order to permit
the expected deformations, namely a contraction in axial direction and an opening of the
segment to a certain degree referred to as opening angle. Obviously, such a sudden change
of the boundary conditions of a residually stressed body is followed by large deformations
which can not be computed in a single step within a non-linear Finite Element framework.
Therefore, an alternative procedure, which enables a stepwise identification of the final
deformed state, has to be applied. This procedure, see [21] for details, is based on the
definition of a secondary boundary value problem using the grown and deformed geometry
of the residually stressed arterial segment with altered boundary conditions. In absence
of any external load, the stress tensor is updated internally in several steps, such that the
related deformation steps are small enough.

It is worth mentioning that the proposed method is also applicable to compute layer-
specific opening angles in multilayered arterial segments. The numerical examples in the
following section are nonetheless restricted to idealized, one-layered arterial segments and
focus on the effect of adding a fiber remodeling formulation to the preexistent growth
model, which has also an effect on the residual stresses and deformations. The mentioned
opening angle is defined to be the angle between one of the cut edges and the symmetry
axis which divides the opened segment into two equal halves. Axial strain in the opened
segments is computed with respect to the residually stressed geometry before applying the
cuts. It is dependent on the radial position and therefore averaged over the wall thickness.
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3 NUMERICAL EXAMPLES OF IDEALIZED ARTERIAL SEGMENTS

For the evaluation of the combined approach for growth and remodeling, idealized
arterial segments with material and growth parameters according to Tab. 1 are loaded by
an internal pressure of 16 kPa (120mmHg) and by axial displacements of 8% or 10% of the
initial length. Five different arterial segments are considered for each load case: a reference
segment without growth and remodeling as well as an isotropically and an anisotropically
growing segment, each of them with and without remodeling. The initial fiber orientation
vectors of two reinforcing fiber families are defined such that they enclose ± 30◦ with the
circumferential direction. Within the first second of the simulation time, the loads are
simultaneously applied and afterwards held constant until t = 20 s. During the entire time
period, depending on the considered case, growth is enabled and remodeling is performed
in each time step.

An overview of the resulting stress distributions at t = 20 s is given in Fig. 1 (a) for
isotropic and Fig. 1 (b) for anisotropic growth. The dashed lines refer to the non-adapting
reference segments, whereas solid lines are used for the growing segments (luscious colors)
and for the segments where growth and remodeling is taken into account (light colors).
Several observations concerning remodeling can be noted. Remodeling strongly reduces

Table 1: Material parameters for arterial tissue [5] and (dimensionless) parameters of the function kϑ

from [12] used in the numerical examples.

c1 [kPa] ǫ1 [kPa] ǫ2 [-] α1 [kPa] α2 [-] ϑ
+

k
+
ϑ

m
+
ϑ

ϑ
−

k
−
ϑ

m
−
ϑ

17.5 499.8 2.4 30 001.9 5.1 1.1 1.0 3.0 0.9 1.0 3.0
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Figure 1: Radial, circumferential and axial stresses in the arterial segments at t = 20 s for (a) isotropic
and (b) anisotropic growth with and without remodeling at different levels of axial displacement. In each
diagram, the reference stresses of the non-growing and non-remodeling artery are given as dashed lines.
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Figure 2: Development of the fiber orientation angles over time at (a) the inner surface and (b) the
outer surface of the arterial segment for axial displacements of 8% and 10% and for isotropic (solid lines)
and anisotropic growth (solid lines with markers). The number of dataset divided by 2 corresponds to
time in s. At t = 20 s, remodeling is deactivated and no more change of the fiber angles takes place.

the axial stresses, especially if isotropic growth is active. This implies that the axial
stresses, which are already strongly reduced by growth alone, may fall below zero and
become compressive depending on the growth model and the value of the axial displace-
ment. The impact of remodeling on the circumferential stresses varies from case to case.
In combination with anisotropic growth, remodeling induces a slight increase of the cir-
cumferential stress peak and gradient, the differences between arterial segments with 8%
and 10% axial displacement are marginal. In contrast to that, positive effects of re-
modeling on the circumferential stress distributions can be stated in combination with
isotropic growth. The circumferential stress peaks are even lower than in the correspond-
ing anisotropically growing segments without remodeling. Moreover, the dependence of
the circumferential stresses on the axial displacement is more pronounced if isotropic
instead of anisotropic growth is considered.

In Fig. 2 (a) and (b), the development of the angles over the remodeling process between
the fiber orientation vectors and the circumferential direction at the inner and at the outer
surface of the remodeling arterial segments is shown. Significant differences indicate that
the remodeling results are fairly sensitive with respect to the chosen growth model and/or
the height of the axial displacement. In isotropically growing segments, where the axial
component of growth is larger than in anisotropically growing ones, compressive axial
stresses result in an alignment of both fiber families in circumferential direction over the
whole wall thickness. For the anisotropically growing segments, the level of axial strain is
high enough to obtain two tensile principal stresses. Then, the fibers arrange with angles
that are distributed over the wall thickness and lie between 4◦ and 9◦ or 9.5◦ and 16.5◦

for axial displacements of 8% or 10% at the end of the simulated time period, which is
rather in line with experimental observations [13, 17].
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Figure 3: (a) Circumferential residual stresses and (b) axial stresses arterial segments subjected to
isotropic or anisotropic growth with and without remodeling at t = 20 s after removal of the internal
pressure while retaining the axial displacement.

The effect of remodeling on the residual stresses is illustrated in Fig. 3, where the cir-
cumferential and the axial stress distributions after the removal of the internal pressure
are given. The axial displacement is retained in order to be able to simulate radial and
axial cuts in the segments afterwards. Therefore, the axial stresses in Fig. 3 (b) are no
residual stresses in the classical meaning since axial loading is still present. Without re-
modeling, the circumferential residual stresses are almost independent on the two different
axial displacements, which can also be seen at the corresponding opening angles given in
Tab. 2. This changes drastically if remodeling is included. In combination with isotropic
growth, remodeling increases residual stresses and opening angles. In contrast to that,
the opposite happens in combination with anisotropic growth. For the considered axial
displacements, axial stresses are influenced by remodeling only in case of isotropic growth.
Contradicting experimental observations, most of the arterial segments extend after re-
lease of the axial boundary, see Tab. 2. However, this could be resolved by applying larger

Table 2: Opening angles and mean axial strain in (residually) stressed arterial segments after simulation
of radial and axial cuts.

axial dis- reference isotropic isotropic anisotropic anisotropic
placement case growth growth + rem. growth growth + rem.

8% 0.18◦ 6.94◦ 32.59◦ 11.54◦ 6.15◦

10% 0.45◦ 5.09◦ 21.28◦ 11.12◦ 8.68◦

8% −7.8% 5.5% 7.3% 0.5% 0.5%
10% −9.9% 4.5% 5.4% −0.9% −0.9%
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Figure 4: Comparison of the growth deformation of (a) isotropically growing, (b) isotropically growing
and remodeling, (c) anisotropically growing and (d) anisotropically growing and remodeling arterial
segments subjected to an internal pressure of 16 kPa and an axial displacement of 8%.

axial displacements which indicates that there may be rather large axial average loads in
arteries. In Fig. 4, the determinant Jg of the growth tensor is illustrated to clarify the
effect of remodeling on the growth deformation. Arterial segments with activated fiber
remodeling manifest lower volume increases than the corresponding segments with fixed
fiber orientation vectors. This also holds for axial displacements of 10%.

4 CONCLUSIONS

A combined approach for growth and remodeling was proposed. Besides the enclosed
possibility of simulating isotropic growth, anisotropic growth relating the growth tensor to
the local fiber orientation vectors is the main feature of the growth model. In this regard,
an automated computation of reasonable fiber distributions is an important enhancement
of the model, which has been designed based on the assumption that the two dominating
fiber families in arterial tissue arrange symmetrically with respect to the directions of the
local tensile principal stresses.

The effects of remodeling on the stress and fiber angle distributions in simulated grow-
ing arterial segments were dependent on the chosen growth model and on the ratio be-
tween radial and axial loadings. It can be stated that circumferential stress peaks and
gradients were reduced for the considered examples of isotropic growth and slightly in-
creased if growth is anisotropic. In each example, remodeling provoked a reduction of
axial stresses. As apparent here and also in [21], circumferential residual stresses result-
ing from isotropic or anisotropic growth were comparatively insensitive with respect to
the intensity of the axial displacement. If remodeling was included, the sensitivity of the
circumferential residual stresses and opening angles with respect to the axial displacement
increased, which was probably caused by the fiber angle distribution with its dependence
on the ratio between pressure and axial loading. Summarizing, qualitatively reasonable
distributions of residual stresses and fiber orientations were obtained for the anisotropic
growth model. Furthermore, it appears that this model does require less growth to enable
these stress-regularizing distributions. The knowledge of the obtained fiber orientation
vectors was the only necessity for the definition of the anisotropic growth tensor, which
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is therefore a local property of the material point and does not depend on external geo-
metric parameters which are difficult to obtain for patient-specific diseased arteries. The
effect of the parameters of the growth model, which have been set rather intuitively and
identically for each variation of the simulations so far, should be analyzed.
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