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Abstract. This document provides information about the analysis of effects coupling
the mechanical and the electrical phenomena going on inside a piezoelectric energy har-
vester. Two characteristics are exploited in energy harvesting: direct piezoelectric effect
where stress is resulting by the application of an electric field and reverse effect showing
an electric field resulting by stress application. Piezoelectric patches, bonded on beams
free to vibrate under a mechanical stimulus, can be used as active elements. Point-wise
material characteristics are described by symmetric matrices coupling together stress and
electric field to the strain and the electric polarisation leading to reciprocal direct and
reverse effects. Under operating conditions, the stress and electric field values applied to
the material patch are not uniform and do not have the same spatial pattern resulting in a
non reciprocal interaction. An explanation of this phenomenon is attempted by applying
the Euler-Bernoulli beam theory model that allows the computation of two geometrical
coefficients for direct and inverse interactions under uniform stress distribution. Com-
parisons versus experiments carried out on a Macro Fiber Composite piezoelectric patch
show that the model is able to estimate the effect.

1 INTRODUCTION

PiezoElectricity (PE) phenomenon can be used as sensor if the stress applied to a
sample can be measured by a voltage appearing on the material, or as actuator if the
material changes its shape due to the application of a electric field. In energy harvesting
applications both effects have to be exploited since power is converted from the mechanical
action, as for instance mechanical vibrations, to the electrical domain when power is
transferred to an external electric circuit. These effects are well known and have been
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used to recover part of the vibration energy applied to the material in an external electrical
circuit [1].

In all harvesting applications the estimation of the maximum power that can be ex-
tracted by some kind of excitation is of fundamental importance for the evaluation of
potential applications. In this respect the accurate simulation of all the components
present in the energy conversion chains is fundamental [2].

The energy conversion chain is composed by a direct effect where an elastic beam is set
in motion by a vibrating source. This primary action creates stresses on the PE material
and, in consequence, a voltage is generated. If an external circuit is connected to the
voltage a power is drained and dynamic of the system is modified by the appearance of
a force that is responsible for the power transferred from the mechanical to the electrical
domain. These effects are called direct effect for the actions going from the mechanical
to the electrical domain and reverse effect for the opposite.

If the vibrating beam is described by one degree of freedom, for instance the displace-
ment of the free end from its equilibrium position, these two phenomena can be modelled
by lumped parameters approach of the electromechanical model. Experimentally a non
reciprocity of the energies exchanged by the two domains, mechanic and electric, is mea-
sured. To explain this fact an analysis of the actual stresses acting on the structure must
be carried out and the model must be validated by experiments.

This paper is structured as: in the following chapter the analysis of the PE electromag-
netic conversion is described while the following one deals with the experimental setup
used to validate the model. Eventually a discussion of the obtained results is performed
and the comparison with experiments is carried out.

2 PIEZOELECTRIC MATERIAL MODELLING

In energy harvesting applications, the piezoelectric effect can be described by using the
linear constitutive equations of the piezoelectric materials [3]:

δp = sE · σ + dT ·E
D = d · σ + εσ ·E (1)

where δp is the mechanical strain, σ is the mechanical stress, D is the electrical dis-
placement (charge density), E is the electric field, sE is the compliance under a zero or
constant electrical field (indicated by the superscript E) and εσ is the dielectric permit-
tivity under a zero or constant stress (indicated by the superscript σ). d and dT are the
matrices for the direct and the reverse piezoelectric effect, where the superscript T means
the transposed matrix. All matrices are (3×3) and express the anisotropy of the problem.

In the present application the PE material is exploited by applying a single axis stress,
like in figure 1. As a result the constitutive equation (1) can be simplified in one dimension
as:

δ1 = sE11 · σ1 + d31 · E3

D3 = d31 · σ1 + εσ33 · E3
(2)
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Figure 1: Layout of the PE harvester.

When a force F is applied along the 1 direction, it causes the elongation ε along the same
direction. Due to the piezoelectric effect, a voltage Vp is generated in the 3 direction and,
if a circuit is connected, a current i is created.

A lumped parameter model of the structure can be defined if, instead of considering
equation (2), macroscopic variables F , ε, Vp and i are used. By taking into account
geometric dimensions defined in figure 1, and considering that all quantities are uniform
on the patch, the following relations can be written:

E3 = −Vp

hp

; q = D3bplp ; σ1 =
F

bphp

; δ1 =
ε

lp
; i =

dq

dt
(3)

and, by substitution in eq. (2), the following dynamic equations are obtained:{
F = kpε+ ΓVp

i = Γε̇− CpV̇p − Vp

R

(4)

where:

kp =
bphp

lp sE11
; Cp =

(
εσ33 −

d231
sE11

)
bplp
hp

; Γ =
d31bp
sE11

Eq. (4) has been derived from the constitutive equations of the piezoelectric material
in static condition so that no mechanical dissipative effects are present. Even if, in the
majority of cases, this effects are negligible at least in the modelling of the system it has
to be considered. Thus, in dynamic conditions, the term cpε̇ is added to the expression
of F , where cp is the mechanical damping of the piezoelectric patch.

3 BONDED PATCH DYNAMICS

The relations obtained in the previous section are the PE constitutive equations, that
is they are relevant to the material characteristics. Being the PE patch bonded to an
elastic beam the actual stress conditions applied to the material must be related to the
macroscopic variables of the beam and to the average non-uniform stress conditions.
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3.1 Relation between beam and PE variables

The clamped beam is free to move on one end and the relative vertical position zr of
the beam tip with respect to the clamped end is a quantity that can be measured. At the
same time, due to the deformation of the beam, the PE patch is subject to an elongation
ε that appears in the equation (4). In order to relate the two variables, the analysis of the
one dimensional dynamic of the structure must be performed. As a result, the 1d model
of the mechanical part will be defined in terms of the macroscopic variables żr and FT .

In a cantilever beam EH system, the piezoelectric force F acting on the patch along
the 1 direction, due to the characteristics of the system, produces a force FT applied to
the free-end of the cantilever beam along the z axis. In the same way, the displacement of
the free-end along the z axis, due to the characteristics of the system, induces elongation
along the 1 direction of the piezoelectric patch.

3.1.1 direct effect: A coefficient

When voltage is applied at the piezoelectric patch along the 3 direction, a force F is
produced along the 1 direction due to piezoelectric 31 effect. Being the patch neutral
surface at a distance ∆h along the 3 direction from the neutral surface of the support
beam, the piezoelectric layer imposes a moment M to the support beam. The equilibrium
of the system is achieved applying a force FT at the free-end of the support beam creating
a moment MT that balances M , Fig. 2a.
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Figure 2: Piezoelectric cantilever beam schemes for a) the calculation of A and b) B
coefficients.
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The coefficient that relates F and FT is derived as follows.

MT +M = 0 (5)

FT

(
L− lp

2

)
+ F∆h = 0 (6)

FT +
∆h(

L− lp
2

)F = 0 (7)

FT = − ∆h(
L− lp

2

)F = −AF (8)

⇒ A =
∆h(

L− lp
2

) (9)

where geometric variables are highlighted in figure 2a.

3.1.2 inverse effect: B coefficient

A displacement z imposed to the free-end of the piezoelectric beam induces a curvature
to the neutral surface, see figure 2b. In the hypothesis that the mechanical properties of
the piezoelectric material are negligible with respect to that of the support beam material,
the neutral surface of the support beam is not shifted, the curvature d2zr

dx2 of the neutral
surface of the cantilever beam loaded at the free end and its displacement are:

d2zr
dx2

=
FT

EsIs
(L− x) (10)

zr =
L3

3EsIs
FT (11)

⇒ d2zr
dx2

=
3

L3
zr(L− x) (12)

Being the patch at a distance ∆h from the neutral surface of the support beam, strain is
induced along the 1 direction. The average strain is obtained by integrating δ1(x) along
the PE patch:

δ1(x) = −∆h
d2zr
dx2

= −∆h
3

L3
zr(L− x) (13)

δ1 = −3∆h zr
L3

1

lp

∫ lp

0

(L− x)dx = −3∆h

L3
zr
(
L− lp

2

)
(14)
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The piezoelectric patch elongation is:

ε = lpδ1 = −lp
3∆h

L3

(
L− lp

2

)
zr = −Bzr (15)

⇒ B = lp
3∆h

L3

(
L− lp

2

)
(16)

(17)

3.2 Electromechanical PE equations in terms of beam variables

By the computation of the geometrical coefficients A and B it is now possible to relate
the beam and the patch quantities as:

FT = −AF (18)

ε̇ = −Bżr (19)

The coupling equations of the piezoelectric patch used in 31 mode, eq.(4), become the
equations of the piezoelectric transducer consisting of a the patch bonded on a cantilever
beam: {

FT = −AF = −A(cpε̇+ kpε+ ΓVT ) = cp eq żr + kp eq zr − αVT

iT = Γε̇− CpV̇T − VT

R
= −βżr − CpV̇T − VT

R

(20)

where coefficients are relevant to patch behaviour when it is referred to the relative dis-
placement of the tip mass and are:

• FT is the force acting on the tip mass along z direction due to the piezoelectric
patch;

• kp eq = ABkp is the equivalent mechanical stiffness;

• cp eq = ABcp is the equivalent damping;

• iT and VT are the output current and voltage of the transducer;

• α = AΓ and β = BΓ are the electromechanical coupling coefficients of the transducer
respectively for the reverse and forward piezoelectric effect;

• Cp and R are the clamped capacitance and the dielectric loss respectively.

4 GOVERNING EQUATIONS OF THE SYSTEM

Equations (20) describe dynamics of the patch but are not taking into account the
presence of the beam, whose mechanical characteristics must be considered in the overall
behaviour of the system. The mass, damping and elastic parameters of the two bonded
systems will be merged by considering that they are both contributing to the model
simulations formulated in terms of zr.
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Figure 3: Structure of the vibrating harvester.

The complete simulated structure is outlined in figure 3 where a tip mass is added to
enhance harvesting capabilities.

The parameters that must be combined together are:

• system mass : the overall mass is given by the combination of the mass mp of the
patch, ms of the supporting beam and mt of the tip mass. Since the position of the
beam and patch are not coincident with that of the tip, a geometric coefficient θ is
used to add them up correctly.

m = mt + θ(ms +mp) (21)

• system stiffness : the overall stiffness of the mechanical system km is given by the
contribution due to the bending stiffness ks of the cantilever beam and the contri-
bution due to the bonded piezoelectric patch kp:

km = ks + kp eq

ks =
3EsIs
L3

kp eq = AB kp

(22)

where Es is the elastic modulus of the cantilever beam and Is =
bsh3

s

12
is its second

moment of inertia.

• system damping : the overall damping of the mechanical system cm is given by the
sum of the contribution of the cantilever beam cs and the one of the piezoelectric
patch cp.

• coupling electromechanical coefficients : the two physical domains are coupled by
the force due to the electrical effects Fel = AΓVT = αVT . Physical dimensions
of α are N/V. The current generated by patch deformation along 1 direction is
ip = BΓżr = βżr. Physical dimensions of β are As/m;

7

128
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żin+
�

Fel ip
VT

RCp

FT

Figure 4: Equivalent circuit of the electromechanical conversion.

• system excitation: the system is free to vibrate when a displacement zin is applied
to the clamped end of the beam. The mass dynamic is written in terms of the
relative position z = zr + zin ⇒ mz̈ = mz̈r +mz̈in. The last term is known and can
be considered as the forcing term of the equation [4].

The governing equations of the system can thus be written as

{
mz̈r + cmżr + kmzr + Fel = −mz̈in

iT = ip − CpV̇T − VT

R

(23)

4.1 Electromechanical circuit model

Using these assumptions the system dynamics can be described by the electromechan-
ical circuit outlined in figure 4.

The dynamic of the mechanical part of the model is described in terms of the concept
of across or effort variables and of through or flow variables. An across/effort variable is a
variable determined by measuring the difference of values acting at the two extreme points
of an element or in a specific point. A through/flow variable is a variable transmitted
through an element without modification. The product of the two must be a power. By
using the Firestones analogy, the mass m is substituted by a grounded capacitor C = m,
and the spring km by an inductor L = 1/km. The inertial force imposed by the kinematics
is substituted by a current source and the electric force by the transducer terminals [5].

The network is shown in open circuit conditions but a RL load resistor can be connected
at the terminals so that it is subject to the electric variables VT and iT .
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4.2 Power considerations

By multiplying the first of eq. (23) by żr and the second by VT , the power balance of
the mechanical part and of the electrical side is derived:

−mz̈inżr︸ ︷︷ ︸
input

= mz̈rżr︸ ︷︷ ︸
kinetic

+ cmż
2
r︸︷︷︸

damping

+ kmżrzr︸ ︷︷ ︸
elastic

+(−αVT żr)︸ ︷︷ ︸
piezoelectric

VT iT︸︷︷︸
output

= (−βżrVT )︸ ︷︷ ︸
converted

− CpV̇TVT︸ ︷︷ ︸
capacitance

− V 2
T

R︸︷︷︸
piezo losses

(24)

The input power of the system, namely the power extracted from the mechanical source
and injected in the harvester, consists of the kinetic power of the floating mass, the
elastic power stored in the mechanical spring, the power wasted through the mechanical
damper and the overall power delivered to the the electric part of the system through
the piezoelectric element. The output power, namely the electric power provided to the
electrical part of the system, consists of the converted power from the mechanical domain
minus the power stored in the clamped capacitance of the piezoelectric patch and that
lost by the dielectric.

It is worth noting that the input power of the electrical part, the converted power, is
different from the power outgoing the mechanical system due to the piezoelectric coupling.
As α > β, the input power in the electrical part, namely the maximum recoverable, is
lower than the power outgoing the mechanical part.

The electromechanical coupling coefficients β and α describe how the transducer re-
lates the mechanical variable żr to the electrical variable i and how the electrical variable
VT is related to the mechanical variable Fel. β and α extend the meaning of Γ when a
mechanical transformer is interposed between the vibrating system and the transducer
piezoelectric patch. In this case the mechanical transformer is represented by the can-
tilever beam that relates the 1 direction of the piezoelectric patch to the 3 or z direction
of the vibrating system through the coefficients A and B.

4.3 Behaviour in short and open circuit conditions

The behaviour of the system can be highlighted in two extreme operating conditions:
if output terminals are short circuited the voltage VT is null and so are the converted
power and the direct effect. On the other hand if output terminals are left open all the
power is transferred to the conservative element Cp and resulting in an increase system
stiffness.

Considering open and short-circuit condition of the electric terminals of the transducer,
Fig. 4, two different resonance frequencies exist.
In short circuit, VT is null, thus no energy is transferred to the electric load and no
electrical feedback force acts to the mechanical part. The resonance frequency of the
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system depends only on its mechanical properties:

kSC = kmωSC =

√
kSC
m

(25)

In open circuit, iT is null and VT is in phase with zr. Thus, the controlled force generator
acts as a spring kel or, according to the mobility analogy, it can be replaced with an
inductor Cp

αβ
. It follows a stiffer mechanical system:

kOC =
1

LOC

= kSC +
αβ

Cp

> k (26)

where an electric stiffness is defined as:

kel =
αβ

Cp

(27)

Higher resonance frequency results:

ωOC =

√
kOC

m
= ωSC

√
1 +

αβ

kSCCp

(28)

It is worth noting that, in both open and short circuit conditions, the damping effect due
to the electric load (RL = ∞ and RL = 0 respectively) is null.

5 EXPERIMENTAL VALIDATION

The model developed in the previous sections has been validated on an experimental
setup and evaluation of the accuracy of direct and inverse coefficients has been checked.

5.1 Experimental setup

The support cantilever beam is a stainless steel beam which geometrical features are
summarised in figure 5. The patch is 28 mm long and beam is 100 mm long, 25 mm
wide, 0.5 mm tick, and consists of two parts: a clamped portion of 40 mm that is locked
in the shaker fixture and a free portion of 60 mm that represents the effective oscillating
elements. Considering standard stainless steel, Es = 180 GPa, the first flexural mode
occurs at 109 Hz.

The tip-mass is obtained clamping the free-end of the beam with two �15 × 3 mm
magnets in attraction. It results a cylindrical shape mass of 7.95·10−3 kg whose application
point on the support beam, with respect to the free-end, is shifted half of the diameters
toward the joint. It follows a shorter effective oscillating length of the support beam.
The first flexural mode of the system is at 56 Hz, that falls in the frequency range of
interest.

10
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Figure 5: Experimental setup and measurement points connected to the external software
LMS TestLab.

5.2 Experimental validation of the coupling coefficients

In order to assess experimentally the two coefficients of direct and inverse coupling,
the structure is stressed in two extreme conditions: short and open circuit. These two
operating conditions allow to highlight the power transfer between the two domains of
the energy conversion.

The direct coupling coefficient β has been evaluated in steady state condition following
the procedure proposed in [6]. A short circuit configuration is emulated by connecting the
piezoelectric patch terminals to a low resistor, RL = 110.5 Ω. The electrical feedback on
the mechanical part αVT is almost cancelled. The load resistor impedance is, in fact, at
least two orders of magnitude lower than that of the clamped capacitance at the involved
frequencies and, thus, the current through Cp is negligible. The induced current βżr flows
almost entirely through the load resistor so that:

iT =
VT

RL

∼= βżr ⇒ β =
VT

żrRL

(29)

Measuring the amplitude of the output voltage VT and of the mass relative velocity żr, the
direct coupling coefficient β is derived. Vibrating mechanical input is applied at the short
circuit resonance frequency ωSC considering two acceleration amplitude levels, 0.5 and
0.8 m/s2. Two slightly different values derive for the direct coupling coefficient, but with
relative difference lower than 3%. The mean value is considered and β = 7.993 10−4 As/m
results.

The reverse coupling coefficient α has been evaluated considering the definition of kel,
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eq. (27):

α =
Cpkel
β

(30)

α = 8.353 10−4 N/V results. A second evaluation of α has been performed considering
static condition in order to cancel the direct piezoelectric effect. Constant voltage is
applied to the transducer terminals. The first of eq. (23) becomes:

kzr + αVT = 0 ⇒ α =
kzr
VT

(31)

and by measuring the mass displacement zr at equilibrium, α is derived. When VT =
15 V is applied, zr = 9.4447 10−6 m is measured and α = 8.418 10−4 N/V follows. The
difference between the two values obtained for α results lower than 1%. The mean value
α = 8.386 10−4 N/V is considered. The ratio between the two values is:

α

β
= 1.049 (32)

the ratio between α and β is a pure number.
By computing the geometrical coefficients A and B it is possible to evaluate the same

ratio that turns out to be:
A

B
= 1.162 (33)

6 DISCUSSION

The evaluation of the direct and inverse effect of the piezoelectric energy conversion
is important to evaluate the potential of energy harvesting. The asymmetry between
direct and inverse effect is experimentally observed and its explanation is attempted by
addressing the different stress conditions created by electric potential and strain. The
direct effect, that is the strain created by the application of electric field, is in fact applying
a distributed load on the beam, while the vibration is loading the beam at its tip. Different
strain patterns arise and this is explained in terms of the Euler-Bernoulli beam theory.
The model obtained is one dimensional as the only geometric variable is the relative tip
elongation with respect to the clamped end zr.

The theoretical model is evaluated versus a experimental mock-up and ratios between
the computed and experimental direct and inverse coefficients are evaluated. The theo-
retical model is able to point out a difference between the α and β values but its estimate
is larger than the one obtained experimentally.

This effect can be attributed to some restrictive hypotheses that have been adopted in
the theoretical treatment. In particular the uniformity of stresses and properties within
the PE patch are to be investigated in deeper details. Also boundary conditions of the
bonded patch on the beam could be not ideal as supposed. These aspects will be investi-
gated in future researches.
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