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Sex and gender differences and biases in artificial intelligence
for biomedicine and healthcare
Davide Cirillo 1,10✉, Silvina Catuara-Solarz2,3,10, Czuee Morey3,4, Emre Guney 5, Laia Subirats 6,7, Simona Mellino3,
Annalisa Gigante3, Alfonso Valencia1,8, María José Rementeria1, Antonella Santuccione Chadha3 and Nikolaos Mavridis3,9

Precision Medicine implies a deep understanding of inter-individual differences in health and disease that are due to genetic and
environmental factors. To acquire such understanding there is a need for the implementation of different types of technologies
based on artificial intelligence (AI) that enable the identification of biomedically relevant patterns, facilitating progress towards
individually tailored preventative and therapeutic interventions. Despite the significant scientific advances achieved so far, most of
the currently used biomedical AI technologies do not account for bias detection. Furthermore, the design of the majority of
algorithms ignore the sex and gender dimension and its contribution to health and disease differences among individuals. Failure
in accounting for these differences will generate sub-optimal results and produce mistakes as well as discriminatory outcomes. In
this review we examine the current sex and gender gaps in a subset of biomedical technologies used in relation to Precision
Medicine. In addition, we provide recommendations to optimize their utilization to improve the global health and disease
landscape and decrease inequalities.

npj Digital Medicine            (2020) 3:81 ; https://doi.org/10.1038/s41746-020-0288-5

INTRODUCTION
Precision Medicine, as opposed to the preponderant one-size-fits-
all approach, attempts to find personalized preventative and
therapeutic strategies by taking into account differences in genes,
environment and lifestyle, throughout the lifespan. The value and
impact of this approach makes Precision Medicine one of the most
promising health initiatives in our society1.
Both biological (sex) and socio-cultural (gender) aspects (see

Supplementary Note 1 “Sex and gender”) constitute relevant
sources of variation in a number of clinical and subclinical
conditions, affecting risk factors, prevalence, age of onset,
symptomatology manifestation, prognosis, biomarkers and treat-
ment effectiveness2. Evidence of sex and gender differences has
been reported in chronic diseases such as diabetes, cardiovascular
disorders, neurological diseases3, mental health disorders4,
cancer5, autoimmunity6, as well as physiological processes such
as brain aging7 and sensitivity to pain8. Moreover, differences in
lifestyle factors that are associated with sex and gender, such as
diet, physical activity, tobacco use and alcohol consumption, also
correlate with the epidemiology of diseases9–11. Nonetheless,
there are still open questions regarding health differences across
the gender spectrum, reflected by the scarcity of studies
dedicated to intersex, transgender and nonbinary individuals12,13.
Initiatives, such as the Global Trans Research Evidence Map14,
foster research access in this area to improve our understanding of
the effects of medical interventions on health and life quality
across the gender spectrum. Additionally, such clinical differences
are accompanied by sex and gender gaps in the use and access of
medical services and tools as well as affordability to medical
costs15.

The study of sex and gender differences represents an
increasingly significant line of research16, involving all levels of
biomedical and health sciences, from basic research to population
studies17, and also fueling debate regarding its sociological
implications18,19. Observed sex and gender differences in health
and wellbeing are influenced by complex links between both
biological and social-economic factors (see Fig. 1), which are often
surrounded by confounding variables such as stigma, stereotypes,
and the misrepresentation of data. Consequently, health research
and practices can be entangled with sex and gender inequalities
and biases20.
In recent years, the social awareness of such biases has

increased and they have become even more evident with the
introduction of widespread advance in biomedical artificial
intelligence (AI). In this regard, one could argue that AI
technologies act as a double-edged sword. On one hand,
algorithms can magnify and perpetuate existing sex and gender
inequalities if they are developed without removing biases and
confounding factors. On the other hand, they have the potential
to mitigate inequalities by effectively integrating sex and gender
differences in healthcare if designed properly. The development of
precise AI systems in healthcare will enable the differentiation of
vulnerabilities for disease and response to treatments among
individuals, while avoiding discriminatory biases.
The purpose of this review is to highlight the main available

biomedical data types and the role of several AI technologies to
understand sex and gender differences in health and disease. We
address their existing and potential biases and their contribution
to create personalized therapeutic interventions. We examine the
sex and gender issues involved with the generation and collection
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of experimental, clinical and digital data. Furthermore, we review a
number of technologies to analyze and deploy this data, namely
Big Data Analytics, Natural Language Processing and Robotics.
Those technologies are becoming increasingly relevant for
Precision Medicine while being exposed to potential sex and
gender biases. In addition, we surveyed Explainable AI and
algorithmic Fairness, which ensure the trustworthy delivery of AI
solutions that can account for sex and gender differences in the
patient’s wellbeing. Finally, we provide a summary to incorporate
the sex and gender dimension into biomedical research and AI
technologies to accelerate the developments that will enable the
creation of effective strategies to augment populations’ health
and wellbeing.

Desirable vs. undesirable biases
Despite the fact that the term “bias” has gained a negative
connotation due to its association to unfair prejudice, the
differential consideration and treatment to specific biomedical
aspects is a necessary course of action in the context of Precision
Medicine. Therefore, here we defined two main categories of sex
and gender biases: desirable and undesirable (see Fig. 2). The
difference between them is found in the impact that these biases
have on the patients’ wellbeing and healthcare access.
A desirable bias implies taking into account sex and gender

differences to make a precise diagnosis and recommend a tailored
and more effective treatment for each individual. This represents a
much more accurate approach than collapsing all sex and gender
categories into a single one, such as data generated from mixed
sex or gender cohorts16. Table 1 reports illustrative examples of
clinical conditions and biomedical techniques in which desirable
biases would be beneficial for both basic and clinical research as
well as diagnosis and treatment.
Conversely, an undesirable bias is that which exhibits unin-

tended or unnecessary sex and gender discrimination. This occurs
when claims are made in relation with sex or gender and medical
conditions despite the lack of exhaustive evidence to support
them or based on skewed evidence.
For instance epidemiological studies indicate that there is a

higher prevalence of depression among women, however, this
may result from a skewed diagnosis due to clinical scales of
depression measuring symptoms that occur more frequently
among women21. Another source of undesirable bias is the
misrepresentation of the target population, leaving minorities out.

An example of this is the case of the insufficient representation of
pregnant women in psychiatric research22.
There are multiple sources of undesirable biases that could

accidentally be introduced in AI algorithms23 (see Table 2). The
most common one is the lack of a representative sample of the
population in the training dataset. In some cases, a bias may exist
in the overall population as a consequence of underlying social,
historical or institutional reasons. In other cases, an algorithm
itself, and not the training dataset, can introduce bias by
obscuring an inherent discrimination or inducing an unreasoned
or irrelevant selectivity.

SOURCES AND TYPES OF HEALTH DATA
Experimental and clinical data
In the early days of biomedical research and drug discovery, sex-
specific biological differences were neglected and both experi-
mental and clinical studies were fundamentally focused on male
experimental models or male subjects24. Even nowadays, male
mouse models are overall more represented than female models
in basic, preclinical, and surgical biomedical research25. A recent
analysis of data on 234 phenotypic traits from almost 55,000 mice
showed that existing findings were influenced by sex26. The lack
of representation of female models and patients is partly due to
technical and bioethical considerations, such as the attempt to
reduce the impact of estrous cycle in experimental studies and
protective policies for women of childbearing age in clinical
research. Consequently, some of the treatments that currently
exist for several diseases are not adequately evaluated in
women27,28 who are likely to be underrepresented in clinical
trials29,30, especially in Phases I and II31,32.
Differences in the physiology of sexes33 might translate into

clinically relevant differences in pharmacokinetics and pharmaco-
dynamics of drugs. These differences, taken together with the
underrepresentation of women in clinical trials, can explain why
women typically report more adverse event reactions compared
with men34. An illustrative example of the discrepancy between
sexes in clinical trials is zolpidem, a sleep medication35, which
shows slower drug metabolization and high secondary effects in
women, increasing their health risks compared with men34,36,37. In
2013, the FDA recommended a weight-based dosing zolpidem for
women due to potential sex-specific impairments38, proving how
a stratified consideration of sexes enables a better understanding
of differential drug toxicity. The design of preclinical and clinical

Fig. 1 The key determinants of health. Health and wellbeing of individuals and communities are influenced by several factors, which include
the person’s individual characteristics and behaviours and the socio-economic, and physical environment, according to the World Health
Organization (WHO) (www.who.int/hia/evidence/doh/en/). Sex and gender differences interact with the whole spectrum of health
determinants.

D. Cirillo et al.

2

npj Digital Medicine (2020)    81 Scripps Research Translational Institute

1
2
3
4
5
6
7
8
9
0
()
:,;

http://www.who.int/hia/evidence/doh/en/


studies should have a sex and gender-based approach in order to
reduce the time to translate research into clinical practice, as well
as to understand and implement precise pharmacological
guidelines39.
Accounting for sex and gender differences leads to a better

understanding of the pharmacodynamic and pharmacokinetic
action of a drug. It also carries substantial economic implications40

as conducting studies on large population-based trials is generally
more expensive41, and often requires post-trial analyses to identify
and categorise the factors that explain the varying drug response
across individuals.
In summary, although there is a significant gap between two

sexes on the availability of clinical data and the knowledge on the
effects of drugs, recent clinical guidelines and initiatives hint to a
fairer landscape that accounts for sex differences in biomedical
research and clinical practice.

Digital biomarkers
Digital biomarkers are physiological, psychological and behavioral
indicators based on data including human-computer interaction
(e.g. swipes, taps, and typing), physical activity (e.g. gait, dexterity)
and voice variations, collected by portable, wearable, implantable
or even ingestible devices42. They can facilitate the diagnosis of a
condition, the assessment of the effects of a treatment and the
predicted prognosis for a particular patient. In addition, some
digital biomarkers can inform on patient adherence to treatment.
There are many digital biomarkers that are currently being

developed or already approved or cleared by the U.S. Food and
Drug Administration (FDA) for use cases such as risk detection,
diagnosis, and monitoring of symptoms and endpoints in clinical
trials42 (see Table 3).
A particular therapeutic area where digital biomarkers are

becoming beneficial is that of neurological and mental health
disorders. Since digital devices can acquire health related data in
real-time, they can enable a continuous monitoring of an
individual’s health parameters in a cost-effective way that is more

granular, ecological and objective than the currently clinically
used self-reports, questionnaires or psychometric tests. Digital
biomarkers are becoming especially relevant for those clinical
conditions where small fluctuations in daily symptoms or
performance are clinically meaningful. This is the case, for
example, of early detection of neurodegenerative disorders such
as Alzheimer’s disease (AD), in which key indices of preclinical
stages are cognitive, motor and sensory changes that occur 10 or
15 years prior to its effective diagnosis43,44.
Despite the progress that has been made on digital biomarkers

in the last years, sex and gender differences in these indices of
health and disease have not been examined yet. Considering that
several studies have shown that there are significant sex
differences on neurodegenerative, physiological and cognitive
aspects during the preclinical stages of AD45, it is reasonable to
expect that further sex differences will be found in the digital
biomarkers for this and other clinical conditions.
In some cases the analysis of sex differences on digital

biomarkers is prevented by undesired biases in the datasets used
by the models that provide the health indicators. For instance,
current studies that test digital biomarkers are often performed
with small sample sizes in the range of tens to hundreds of
subjects and tend to show insufficient demographic information
on sex and gender46. For example, in a study assessing digital
biomarkers for Parkinson’s disease (PD), only 18.6% were
women47. As a consequence, if an algorithm is trained with a
dataset overrepresented by male patients, it may lead to a more
accurate detection of those symptoms that are more frequently
manifested by male PD patients (rigidity and rapid-eye move-
ment) in comparison to those symptoms that are more frequently
manifested by female PD patients (dyskinesias and depression)48.
In other cases, the undesired biases arise from the digital device

itself, such as in the case of a pulse oximetry which showed errors
in the predicted arterial oxyhemoglobin saturation associated with
sex and skin colour of the subjects49.
An additional source of undesired biases in digital biomarkers is

the unbalanced access, and use of digital devices among people

Fig. 2 Desirable and undesirable biases in artificial intelligence for health. Fair data generation and explainable algorithms are
fundamental requirements for the design and application of artificial intelligence to optimize for health and wellbeing across the sex and
gender spectrum. This will facilitate the reduction of undesirable biases that propagate inequity and discrimination, and will promote
desirable differentiations that help develop Precision Medicine.
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with different sexes and genders as well as education and income
levels and age50. In fact, in low and middle income countries,
women are 10% less likely to own smartphones (see Fig. 3) and
26% less likely to use the internet compared with men, and 1.2
billion women do not even have access to mobile internet51. This
creates uneven datasets that promote misrepresentation of digital
biomarkers. Awareness and efforts into the identification of sex
and gender differences in digital biomarkers will lead to more
accurate indicators for prevention and diagnosis of disease, as well
as more effective treatment monitoring.

TECHNOLOGIES FOR THE ANALYSIS AND DEPLOYMENT OF
HEALTH DATA
Big Data analytics
Big Data analytics is a body of techniques and tools to collect,
organize and examine large amounts of data. Common Big Data
analytics processes and approaches include the creation of data
management infrastructures and the application of data-driven
algorithms and AI solutions52. Biomedical and clinical Big Data
have the potential of providing deeper insights into health and
disease at an unprecedented scale. Moreover, the availability of
longitudinal health Big Data enables the characterization of the
transitions between health and disease states as well as their
similarities and differences among sexes and genders. Large
international research infrastructures, such as ELIXIR53 and NIH Big
Data to Knowledge (BD2K)54, provide robust, long-term sustain-
able biomedical resources that will enable identifying differential
patterns for health and disease transitions including the sex and
gender dimension.
For instance, data from GWAS targeting smoking behaviour

have shown sex-associated genetic differences that influence
smoking initiation and maintenance55. Interestingly, these differ-
ences complement the differential effectiveness of tobacco
control initiatives based on the sex of the individuals that receive
the preventative messages56. Similarly, genomic studies in large
human cohorts revealed chromosomal factors related to sex
differences in excess body fat accumulation57, interlinking recent

insights on obesity from different Big Data types such as social
media, retail sales, commercial data, geolocalization, transport and
digital devices58.
Big Data analytics focused on health under the sex and gender

lens are carried out worldwide by several initiatives such as Data2x
(www.data2x.org). This collaborative platform explores female
wellbeing through statistical analysis of data covering demogra-
phy, education, health, geolocation, in order to map indices
disaggregated by gender.
For instance, significant sex differences in behavioral and social

patterns related with communication such as the number and
duration of phone calls and the degree of social networking callers
have been observed59. Furthermore, quantitative analysis into sex
and cultural differences uncovered associations with mental
health and social networks60, showing men express higher
negativity and lower desire of social support on social media
compared with women.
Awareness of sex and gender differences through biomedical

Big Data could lead to a better risk stratification. For example, a
query of sex and gender differences in heart diseases revealed
that in women enhanced parasympathetic and decreased
sympathetic tones appear to be greater and also defensive during
cardiac stress61, while key reproductive factors associated with
coronary heart disease only modestly improve risk prediction62.
The caveat of these resources is that the exploitation of their

biomedical Big Data can magnify existing undesirable biases, for
instance by introducing inferential errors due to sampling,
measurement, multiple comparison, aggregation, and systematic
exclusion of information63. For example, biases may be introduced
in clinical decision support algorithms that rely on data obtained
from the large reservoirs of electronic health records (EHRs), which
may display missing data, unbalanced representation, and implicit
selectivity in patient factors such as sex and gender24.
In agreement with the Findability, Accessibility, Interoperability,

and Reusability (FAIR) recommendations for responsible research
and gender equality64, biomedical Big Data requires innovative
procedures for bias corrections65, including sex and gender bias,
as well as algorithm interpretability66 (see Valuable outputs of

Table 1. Illustrative examples of clinical conditions and studies in which desirable biases would be beneficial for both basic and clinical research as
well as diagnosis and treatment.

Clinical conditions and studies Current status without the desirable bias Utility of the desirable bias

Autistic spectrum disorder There is a current lack of consideration of the
demonstrated age-dependent sex differences in the
symptomatology related with impairments in social
communication and interaction, expressive behaviour,
reciprocal conversation, non-verbal gestures for diagnostic
purposes123.

Differential diagnostic criteria for males and females
could facilitate the identification of the clinical diagnosis
leading to appropriate treatment.

Cardiovascular disorders Although it has been documented that men and women
respond differently to many cardiovascular medications
such as statins, angiotensin-converting enzyme inhibitors
and β-Blockers among others, adopted treatments do not
consider sex differences124.

Making prescriptions according to the sex of the patient
could lead to improved health benefits.

Despite the fact that Coronary heart disease (CHD) is the
leading cause of death among women125, the majority
(67%) of patients enroled in clinical trials for cardiovascular
devices are male126.

The application of a desirable bias towards women
would lead to a more accurate representation of sex
differences in clinical research.

Genome-wide association
studies (GWAS)

Most of genome-wide association studies (GWAS) focus on
white male subjects127 and those that explore sex
differences in complex traits are scarce128.

The introduction of desirable biases to deliberately
include female subjects and other ethnicities in GWAS
could lead to better account for potential sex
differences in disease that are currently unknown
because of being overlooked.

Human immunodeficiency
virus (HIV)

The observed lower female representation in HIV clinical
trials depends, among other factors, from the
disadvantaged awareness about treatment and enrolment
options compared with men129–131.

Promoting empowerment initiatives in those patients
with disadvantages will increase their exposure to
treatment options and clinical trial enrolment.
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health data), facing mounting pressure in data processing and
privacy with the pursuit of “equal opportunity by design”67. Fair
big data analytics will facilitate the identification of sex and
gender differences in health as well as accurate indicators for
prevention and diagnosis, and effective treatment.

Natural Language Processing
Natural Language Processing (NLP) consists of computational
systems aimed at understanding and manipulating written and
spoken human language for purposes like machine translation,
speech recognition and conversational interfaces68.
In relation to biomedical research, NLP techniques allow

processing of voice recordings and transcripts as well as large
volumes of scientific knowledge accumulated in the textual forms,
such as biomedical literature, electronic medical records, clinical
trials and pathology reports. This automatic processing enables,
for instance, the creation of major knowledge bases such as NDEx
(https://home.ndexbio.org/), OncoKB (https://oncokb.org), and
Literome69.
As for Precision Medicine, these technologies allow to make

predictions that can contribute to clinical decisions, such as
diagnosis, prognosis, risk of relapse, and symptomatology
fluctuations in response to treatments. Examples of applications
of NLP to Precision Medicine comprise the identification of
personalised drug combinations70, the knowledge-based curation
of clinical significance of variants71, and patient trajectory
modelling from clinical notes72. Activities to overcome some of
the main challenges in NLP, such as complex semantics extraction
and reasoning, entail automated curation efforts, such as
Microsoft Project Hanover (https://www.microsoft.com/en-us/
research/project/project-hanover/), and evaluation campaigns,
such as BioCreative73.
The sex and gender dimension is crucial for the development of

effective NLP solutions for health since multiple sex and gender
differences have been documented in written and spoken
language74. In fact, major differences are observed in dialogue
structure75, word reading76, and even in children’s linguistic
tasks77. Although the reasons for the differential use of language
between men and women needs further investigations78, the
existence of such differences can either facilitate or complicate the
development of NLP technologies. For instance, while it is possible
to accurately categorize texts based on the author’s gender79,

performances of sentiment analysis of male- and female-authored
texts are extremely variable80 and potentially biased81. Thus,
knowing the sex and gender of the author enables a better
targeted prediction of symptoms conveyed through natural
language (text or speech). An example of this is the case of
personalised healthcare for transgender and gender nonconform-
ing patients based on EHRs analysis82.
In the context of NLP for voice recognition, the relevance of sex

differences is evident in applications such as the prediction of
suicidal behaviour83, especially considering the reported incon-
sistent and incomplete responses by popular conversational
agents (Apple, Samsung, Microsoft) to suicidal ideation84.
A case of undesirable biases in NLP is the use of text corpora

containing imprints of documented human stereotypes that can
propagate into AI systems85. For instance, dense vector repre-
sentations called word embeddings86 are able to capture semantic
relationships between words, such as sex, gender and ethnic
relationships87, thus absorbing biases existing in the training
corpus88. Methods for bias mitigation in NLP have been recently
reviewed, including learning gender-neutral embeddings and
tagging the data points to preserve the gender of the source89.
A flourishing area of NLP is that of medical chatbots, aiming to

improve users’ wellbeing through real-time symptom assessment
and recommendation interfaces. A dialogue of a chatbot can be
modelled with available metadata to adjust to features of the
replier in terms of gender, age, and mood90. In the context of
mental health, medical chatbots include Woebot, which proved to
relieve feelings of anxiety and depression91, and Moodkit, which
recommends chatting and journaling activities through text and
voice notes92. Although both proved to be effective in clinical
trials, the lack of data on their long-term effects is raising certain
concerns. These include the risk of oversimplifying mental
conditions and therapeutic approaches, without considering
potentially important factors such as sex and gender differences
in non-verbal communication.
Of note, affective computing (i.e. passively estimating human

emotional states in real-time) has started to be integrated in
automated systems for educational and marketing purposes93, as
well as voice-activated assistants for mental health support like
Mindscape (www.cultmindscape.com). In this regard, potential
undesirable biases may undermine the automatic detection of
sex-associated speech fluctuation in cognitive impairment94.

Table 2. Source of undesirable bias in Artificial Intelligence with examples in health research and practice.

Source of bias in artificial intelligence Description

Historical bias Arises even if the data is perfectly measured and sampled, when the world as it is leads a model to produce
outcomes that are not desired. e.g. incorrectly assuming that HIV is inherently linked to homosexual and
bisexual men as its prevalence is higher in this population132.

Representation bias Occurs when certain parts of the input space are underrepresented. e.g. European male populations are the
primary focus in genomics research and its derived clinical findings, neglecting other ethnicities and
populations133.

Measurement bias Occurs when measured data are often proxies for some ideal features and labels. e.g. the use of clinical, social,
and cognitive variables to detect the prodromal phase in schizophrenia and other psychotic disorders
despite of observed sex differences in the expression of those symptoms and their associated risk for
psychosis134.

Aggregation bias Arises when a one-size-fits-all model is used for groups with different conditional distributions. e.g., for the
diagnosis and monitoring of diabetes, haemoglobin A1c (HbA1c) levels are routinely used, despite of
differences associated with ethnicities135 and gender136.

Evaluation bias Occurs when the evaluation and/or benchmark data for an algorithm does not represent the target
population. e.g. underperformance of commercial facial recognition algorithm in dark-skinned female faces
as most benchmark face image datasets come from white men137.

Algorithmic Bias Occurs when bias is introduced in the algorithm consciously or unconsciously in ad-hoc solutions. e.g. by
using health care cost as a proxy feature for health status without correcting for existing inequalities in health
access, a commercial algorithm to predict health care needs was found to exhibit significant racial
discrimination138.
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In the development and application of biomedical NLP systems,
awareness of sex and gender differences is a crucial step in our
understanding of women’s and men’s relative use of language,
which could lead to a better patient management and more
effective risk stratification.

Robotics
Robots can serve a diverse range of roles in improving a human’s
tasks, health and quality of life. In the context of Precision
Medicine robots are expected to provide personalised assistance
to patients according to their specific needs and preferences, at
the right time and in the right way. Robotics for health are
becoming increasingly impactful, in particular in neurology95,
rehabilitation96, and assistive approaches for improving the
quality of life of patients and caregivers97.
In a personalised robot-patient interaction both the gender of

the patient and the “gender” of the robot have to be taken into
account. While there is not a lot of research on how to personalise
the behaviour of a robot (e.g. speech style) to an individual’s
gender, several studies explored how the gendered appearance of
a robot differentially affects human-robot interactions. For
instance, a recent study revealed sex differences in how children
interact with robots98 with implications for their use in paediatric
hospitalization99.

The application of robots in human society makes the
discussion on humanoids’ gender extremely relevant and
significantly variable across cultures100,101. While some robots
are genderless, such as Pepper (Softbank), ASIMO (Honda), and
Ripley (MIT), others are designed to display explicit gendered
features, such as the females Sophia (Hanson Robotics), Sarah the
FaceBot102, and male Ibn Sina Robot, a culture-specific historical
humanoid103. This opened a strong debate regarding the
commonalities among humans and robots on physical, socio-
logical and psychological gender104.
It has been demonstrated that the outcome of a humanoid

robot’s task can be affected by its gender, as in the case of female
charity robots receiving more donations from men in comparison
to women100. Indeed, the fact that the traits of a gendered robot
are developed in accordance with the perceived gender role of
both the developer and the final user, could emphasize social
constructs and stereotypes. Gender representation in robots
should evade social stereotypes and serve functionally human-
robot interactions102. An illustrative effort towards gender
neutrality in robotics is the creation of a genderless digital voice
(https://www.genderlessvoice.com/), designed using a gender-
neutral frequency range (145–175 Hz).
Awareness of sex and gender differences in patients and in

robots could lead to a better healthcare assistance and effective
human-machine interactions for biomedical applications as well as
a better translation of ethical decision-making into machines105.

Table 3. Categories of digital biomarkers.

Category Definition Corresponding digital biomarker examples

Susceptibility and risk
biomarker

A biomarker that indicates the potential for developing a
disease or medical condition in an individual who does not
currently have clinically apparent disease or medical
condition.

aDetect cognitive changes in healthy subjects at risk of
developing Alzheimer’s disease using a video game
platform139.

Diagnostic biomarker A biomarker used to detect or confirm the presence of a
disease or condition of interest or to identify individuals with
a subtype of the disease.

aDiagnose ADHD in children using eye vergence
metrics140.

aDetect depression and Parkinson’s disease using vocal
biomarkers141.

aDiagnose asthma and respiratory infections using
smartphone-recorded cough sounds142.

Monitoring biomarker A biomarker measured serially for assessing the status of a
disease or medical condition or for evidence of exposure to
(or effect of ) a medical product or an environmental agent.

aQuantify Parkinson’s disease severity using smartphones
and machine learning143.

bTrack time and location of short-acting beta-agonist
inhaler use through an attached wireless sensor144.

aDetection of nocturnal scratching movements in patients
with atopic dermatitis using accelerometers and recurrent
neural networks145.

bMeasurements of sympathetic nervous impulses at the
skin and inference of parasympathetic activity from heart
rate variation to detect tonic-clonic epileptic seizures and
immediately alert care providers146.

bPortable electrocardiogram sensor associated to a
smartphone app to monitor atrial fibrillation, bradycardia,
tachycardia or normal heart rhythm and inform the
clinician147.

aMeasure adherence in treatment of schizophrenia and
bipolar disorder with an ingestible digital pill148.

Endpoint digital
biomarkers in
clinical trials

Endpoints generated by the use of mobile technologies in
clinical setting.

aAccelerometer-derived motor abnormalities for use in
Parkinson’s disease47.

bMonitoring of multiple sclerosis patients with digital
technologies by using active and passive tests
(ClinicalTrials.gov Identifiers: NCT03523858; NCT02952911)

bVirtual Reality Functional Capacity Assessment Tool as
co-primary and secondary endpoint in schizophrenia and
major depressive disorder139.

aDigital biomarker under development (in feasibility/exploratory stages).
bDigital biomarker in use in a clinical trial or an FDA cleared/approved digital health product, or a digital health app in use not requiring approval.
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VALUABLE OUTPUTS OF HEALTH TECHNOLOGIES
Towards explainable artificial intelligence
In the context of Precision Medicine, the expected outputs of AI
models consist of predictions of risk and diagnosis of medical
conditions or recommendations of treatments, with profound
influence in people’s lives and health.
Despite the progress of AI models in recent years, the

complexity of their internal structures has led to a major
technological issue termed the ‘Black box’ problem. It refers to
the lack of explicit declarative knowledge representations in
machine learning models106, meaning their inability to provide a
layman-understandable explanation and/or interpretation to
respond to “how” or “why” questions regarding their output.
Getting an explicable justification of how and why these AI

models reach their conclusions is now becoming more and more
crucial since there is an increasing need to understand the specific
parameters used to draw clinical conclusions with relevant impact
on patients’ lives. Indeed, the EU directive 2016/680 General Data
Protection Regulation (GDPR) states the “right to an explanation”
about the output of an algorithm107.
In regards to the scope of this review, explainability in AI would

help justify algorithms’ clinical predictions and recommendations
when they are differential for patients with different sex and
genders. On one hand, an explanation of the decisional process
would enable to find potential mistaken conclusions derived by
training an algorithm with misrepresented data. This will facilitate
the identification of undesirable biases generally found in clinical
data with unbalanced sex and gender representation. On the
other hand, an explanation of the decisional processes will help
the discovery of sex and gender differences in clinical data that is
representative, therefore promoting the desired biases for
personalised preventative and therapeutic interventions.
Different features such as interpretability and completeness

(see Supplementary Note 2 “Explainable Artificial Intelligence”) in

AI have been established as explainability requirements to
contribute to relevant aspects of general medicine such as
confidence, safety, security, privacy, ethics, fairness and trust.
The term explainable artificial intelligence (XAI) is used to refer

to algorithms that are able to meet those requirements. XAI is a
relatively young field of research and their applications so far have
not been particularly involved with sex and gender differences.
An example of XAI is a recent study where a machine learning

algorithm made referral recommendations on dozens of retinal
diseases, highlighting the specific structures in optical tomogra-
phy scans that could lead to ambiguous interpretation108. Another
example is a deep learning model for predicting cardiovascular
risk factors based on images of the retina, indicating which
anatomical features, such as the optic disc or blood vessels, were
used to generate the predictions109. XAI is also useful in basic
research, for instance, efforts in creating “visible” deep neural
networks that provide automatic explanations of the impact of a
genotypic change on cellular phenotypic states110.
XAI represents a promising technology to assist in the

identification of sex and gender differences in health and disease,
and to dissociate the underlying sources from biased datasets or
social inequalities.

Bias detection frameworks for fairness
One of the main challenges to develop trustworthy AI is to define
the meaning of fairness in the practice of machine learning111.
Indeed, many approaches have been proposed to achieve fair
algorithmic decision-making, some of which not always meet the
expected outcome.
For instance, a widely used approach to ensure fairness in data

processing is to remove some sensitive information, such as sex or
gender, and all other possible correlated features112. However, if
inherent differences exist in the underlying population, such as
sex differences in disease prevalence, this procedure is undesir-
able as the outcome would be less fair towards specific minorities.
Indeed, the learned patterns that apply to the majority group
might be invalid for a minority one.
On the contrary, the explicit use of sex and gender information

enables to reach an outcome that is fairer towards minorities,
which is a desirable procedure when inherent differences exist. A
theoretical implementation of such approach, also called fair
affirmative action, has been proposed as an optimisation problem
to obtain, at the same time, both group fairness (a.k.a statistical
parity) and individual fairness113.
Although affirmative action represents a remedy for unfair

algorithmic discrimination, ensuring the quality of the data used
for algorithm training is also crucial. For instance, a study found
that only 17% of cardiologists correctly identified women as
having greater risk for heart disease than men114. Indeed,
physicians are typically trained to recognise patterns of angina
and myocardial infarction that occur more frequently in men,
resulting in women being typically under-diagnosed for coronary
artery disease115. Consequently, training an algorithm on available
data on diagnosed cases could be influenced by an implicit sex
and gender bias.
Fairness is highly context-specific and requires an under-

standing of the classification task and possible minorities.
Awareness and deep knowledge of sex and gender differences
as well as the related socio-economical aspects and possible
confounding factors are of paramount importance to establish
fairness in algorithmic development.
The development and application of fair approaches will be

critical for the implementation of unbiased and interpretable
models for Precision Medicine106,116. In this regard, the use of
visualizations, logical statements, and dimensionality reduction
techniques can be implemented in computational tools to achieve
interpretability23.

Fig. 3 The digital divide in access to mobile technology around
the globe. The bar plot reports how less likely a woman is to own a
mobile phone than a man, according to a survey analysis on mobile
ownership conducted by the Global System for Mobile Commu-
nications Association (GSMA) in low- and middle-income countries
(LMIC) in 2019, by geographical area (source: GSMA “The Mobile
Gender Gap Report 2020”51). For instance, in South Asia women are
23% less likely than men to be the owner of a mobile phone, while
in Europe and Central Asia women are 1% more likely to be the
owner of a mobile phone. Across LMICs (“Overall”), women are 8%
less likely than men to own a mobile phone.
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Mitigating undesirable bias to achieve fairness might require an
explicit instruction to the artificial learning engine including rules
of appropriate conduct, as proposed in the domain of cognitive
robotics117. In addition, caution should be used particularly with
the unsupervised learning components of AI given the wide
availability of biased data sets and self-learning algorithms. Recent
developments in bias detection and mitigation also include
methods such as adopting re-sampling118, adversarial learning119,
and open-source toolkits such as IBM AI Fairness 360 (AIF360)
(aif360.mybluemix.net) and Aequitas (dsapp.uchicago.edu/pro-
jects/aequitas).

DISCUSSION
Technological advances in machine learning and AI are transform-
ing our health systems, societies, and daily lives120. In the context
of biomedicine, such systems can sometimes either neglect
desired differentiations, such as sex and gender, or amplify
undesired ones, such as reinforcing existing socio-cultural
discriminations that promote inequalities.
The ambitious goals set by Precision Medicine will be achieved

using the latest advances in AI to properly identify the role of
inter-individual differences. This will include the impact of sex and
gender in health and disease, as well as eradicating existing
undesirable sex and gender biases from data sets, algorithms and
experimental design. The proper use of innovative technologies
will pave the way towards tailored and personalised disease
prevention and treatment, accounting for sex and gender
differences and extending towards generalized wellbeing. Actions
that foster the effective utilization of AI systems will not only
enable the acceleration towards Precision Medicine, but most
importantly, will significantly contribute to the improvement of
the quality of life of patients of all sexes and genders.
Ethical standards will have to continue to be considered by

governments and regulatory organisations to guarantee the
preservation of personal data privacy and security as well as to
determine the way new technological tools should be employed,
data should be collected, and models improved121,122. Govern-
ments and regulatory organisations are establishing the guide-
lines for actions in this direction, such as the case of AI-WATCH
(https://ec.europa.eu/knowledge4policy/ai-watch), an initiative of
the European Commission to monitor the socio-economic, legal
and ethical impact of AI and robotics.
Based on the information surveyed in this work, we provide the

following recommendations to ensure that sex and gender
differences in health and disease are accounted for in AI
implementations that inform Precision Medicine:

1. Distinguish between desirable and undesirable biases and
guarantee the representation of desirable biases in AI
development (see Introduction: Desirable vs. Undesirable
biases).

2. Increase awareness of unintended biases in the scientific
community, technology industry, among policy makers, and
the general public (see Sources and types of Health data
and Technologies for the analysis and deployment of
Health data).

3. Implement explainable algorithms, which not only provide
understandable explanations for the layperson, but which
could also be equipped with integrated bias detection
systems and mitigation strategies, and validated with
appropriate benchmarking (see Valuable outputs of Health
technologies).

4. Incorporate key ethical considerations during every stage of
technological development, ensuring that the systems
maximize wellbeing and health of the population (see
Discussion).
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