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Abstract. Interpolation based on radial basis functions (RBF) is a standard data map-
ping method used in multi-physics coupling. It works on scattered data without requiring
additional mesh topology or neighborhood information of support points. However, sys-
tem matrices of the equations for the coefficients tend to be ill-conditioned. In this work,
we illustrate the problem by a simple example and discuss possible remedies. Furthermore,
we investigate the numerical performance of this method on uniform and non-uniform
meshes with a particular focus on the coupling of black-box components where typically
no information about the underlying discretization can be extracted. Radial basis func-
tion interpolation usually uses an enhancement of the radial basis functions by a global
polynomial in order to properly capture constant components and linear trends in the
given data. We present a method that determines this polynomial independent from the
radial basis function ansatz, which substantially improves the condition number of the
remaining RBF system. Furthermore, we show that a rescaling approach can be used to
either increase the accuracy or improve the condition number even further by choosing
radial basis functions with a smaller support radius. The results represent an intermediate
state with the aim to be integrated into the multi-physics coupling library preCICE.
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1 INTRODUCTION

While multi-physics simulations are an emerging field in science and industry, most
groups concentrate their work on a single aspect of the simulation. Adding additional
physical aspects to their simulation requires work on additional solvers, which hinders
fast prototyping of coupled simulation environments.

preCICE1 [3, 9] is a black-box, partitioned coupling library. It is developed to foster
quick integration of new codes into the overall coupled model. The black-box approach
enables integration of solvers with only minimal knowledge about the numerical details of
the coupled codes. The software is free and open source under the LGPL 3 license. One
of the crucial parts of a partitioned multi-physics coupling is data interpolation between
non-matching meshes. Due to the the black-box approach, the mesh is represented as
a point cloud. While solvers can optionally provide topological information using basic
primitives such as edges, triangles and quads, the coupling library cannot rely on it. Also
the missing information about the solvers discretization approach and mesh topology
restricts the choice of applicable data mapping algorithms or the use of adaptive methods.

Several interpolation methods that work on point cloud data exist, of which interpola-
tion by radial basis functions is among the most used. Radial basis function interpolation
is well known to produce ill-conditioned systems, which harms the solution accuracy
and the time-to-solution, in particular for large systems. Methods to cope with this are
reviewed in this work. These methods include preconditioning [6], rescaling of the inter-
polant [4] and a different numerical treatment of the additional polynomial that is used
to properly capture global constant or linear components of the data.

2 DATA MAPPING USING RADIAL-BASIS FUNCTIONS

Consider a function f : Rd → R of d variables, that is to be approximated by S :
Rd → R based on the given values {f(xi) : i = 1, . . . , n}. Using radial basis function
interpolation, the resulting interpolant S of the function f reads

S(x) =
n∑

i=1

γi ϕ(||x− xi||) + β0 + βTx, (1)

where ϕ : R+ → R is a radial basis function, β ∈ Rd and || · || denotes the Euclidean
norm.

The interpolation conditions are S(xk) = f(xk), k = 1, . . . , n. To guarantee that the
interpolation problem has a unique solution [10], we enhance the interpolation conditions
with d+ 1 equations for the polynomial:

n∑
i=1

γi = 0 and
n∑

i=1

γi x
(j)
i = 0 ∀j = 1, . . . , d (2)

1www.precice.org
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One of the most common choices for the basis function ϕ are Gaussians

ϕ(x) = exp
(
− (s||x||)2

)
(3)

We restrict to this basis function type in the remainder of this paper. Other common
choices include Thin Plate Splines and Multi Quadrics, of which the latter two were also
investigated, but not further detailed in this paper.

The interpolant S can yield a matrix S̄ defining a linear mapping of the input values
f(xk) from the input mesh to a vector δ of values in the output mesh:

δ = S̄ ω with ω =




f(x1)
f(x2)

...
f(xn)


 (4)

When the row-sum of S̄ is equal to one, the interpolation is consistent, which means
that constant values are interpolated exactly. On the other hand, when the column-sum
of S̄ equals to one, the interpolation is conservative [1]. The operator can be changed from
consistent to conservative and vice versa by transposing it. While obviously this operator
can be both consistent and conservative, ensuring this requires acccess to the underlying
solver’s basis functions and is thus not suited for black-box coupling [7]. Conservative
mapping preserves integral values and is, therefore, usually applied to integral quantities
such as forces. Consistent mapping is usually applied to point values such as velocities or
displacements. Equations (1) and (2) define the consistent formulation of the radial basis
function interpolation. We do not further consider the conservative variant throughout
this paper, though both variants are implemented in preCICE.

In order to ensure that S̄ is a sparse matrix, we use a cut-off radius r for the basis
functions ϕ and shift them to achieve continuous functions:

ϕlocal(x) =

{
ϕglobal(x)− ϕglobal(r) for x < r,
0 for x ≥ r.

(5)

2.1 Numerical Challenges & Solution Approaches

It is well known that radial basis function interpolation suffers from ill-conditioning
of the resulting linear system [6]. This conditioning can be controlled by the shape
parameter s of ϕ, i.e., by controlling the width of the basis functions. This results in a
trade-off between accuracy and conditioning of the interpolation which is illustrated in
Sect. 3.

A suitable choice for the shape parameter s is therefore of tremendous importance for
the resulting approximation quality and convergence properties. This can be illustrated
by s → 0, an infinitely flat basis function. The resulting matrix would only consist of
ones and thus be singular, which corresponds to condition number ∞. On the other
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hand, s → ∞ yields singular peaks as basis functions resulting a diagonal system matrix
but very poor interpolation accuracy. In our approach, we use a cut-off value of 10−9,
i.e., choose the radius r such that ϕ(r) = 10−9. Together with the definition of a basis
function, a shape parameter, resulting in a carrier that includes exactly a given number of
vertices m based on the maximal mesh width of the discretization can be determined. If
hmax is the maximum mesh width of the input mesh, the corresponding shape parameter
s for Gaussian basis functions is given by

s =

√
− ln 10−9

m · hmax

(6)

This ensures that the basis function decays to 10−9 within them neighboring vertices from
its center if the distance between data points is hmax. It is common practice to include at
least the nearest neighbor [4] in both the input and the output mesh [2]. For a non-uniform
mesh, the largest distance should be considered [1]. While these statements are based on
experiences, [5] gives a systematic approach to this issue, based on leave-one-out cross
validation (LOOCV). Whereas naive LOOCV requires to create one interpolant for each
vertex followed by an optimization step, [8] was able to simplify the algorithm such that
the interpolant needs to be created only once for all vertices. Because it is still followed
by the optimization step and needs to explicitely create the inverse of the interpolation
matrix, it significantly increases the computational cost. The algorithm also optimises
only with respect to accuracy and does not take the harming effect of the ill-conditioning
into account. We, therefore, use a heuristic approach to determine the best value for m.

The ill-conditioning of the interpolation problem is aggravated by non-uniform meshes,
which are used, e.g., in discontinous-Galerkin based solvers. A common representation
uses a Gauss-Chebyshev distribution of nodes, which is defined by

xk = cos

(
2k − 1

2n
π

)
, k = 1, . . . , n (7)

for polynomial degree n in the one-dimensional interval (−1, 1). Non-uniform point dis-
tribution greatly complicates finding an appropriate shape parameter and thus to control
accuracy and conditioning.

An obvious remedy to the problem of the fixed shape parameter of the basis function
on non-uniform meshes are adaptive methods. Techniques that use basis functions with a
variable shape parameter, computed based on the local mesh density are known to reduce
the condition number by four orders of magnitude, see section 3. More sophisticated
methods also include adaptive refinement of the input mesh. This can result in a reduced
problem size given the input data are sufficiently smooth. [10] uses a local error indicator
on a coarse mesh to determine areas to refine. Both methods, however, require a definition
of mesh density, e.g., based on the distance to the nearest neighbor for each data point,
which would potentially compromise one of the main features of RBFs to work on scattered
data.

4

53



Florian Lindner, Miriam Mehl and Benjamin Uekermann

The problem of the conditioning can also be tackled by preconditioning techniques,
such as preconditioning by accelerated iterated approximate moving least squares as pre-
sented in [6]. The technique has shown good first results reducing the condition number
on uniform meshes. However, achieving stability on non-uniform meshes remains prob-
lematic, as the method requires control of the distance of the interpolation system matrix
to the identity matrix. If this distance is not bounded by one, convergence can not be
reached. Thus, the method is not fully applicable to coupled problems with black-box
solvers where the eigenvalues of the interpolation matrix are unknown.

The rescaling procedure proposed in [4] does not try to address the ill-conditioning
by using a preconditioner, but improves interpolation quality, thus making it possible to
use skinnier smaller basis functions, i.e., smaller values for m which, in turn, improves
the condition number of the interpolation problem. The method showed very promising
results during first investigations. Basically, it works by constructing a rescaled interpolant
S̄ by

Sr(x) =
Sf (x)

S1(x)
(8)

where Sf (x) denotes the interpolant constructed from the given values as shown in Eq. (1)
and S1(x) is the interpolant of the constant function g(x) = 1. Substantial improvements
can be observed in particular for small m without negatively affecting the conditoning.
The additional computational cost remains moderate as it only involves the computation
of one additional interpolant for each set of data positions to be mapped. We present
results in Sect. 3.

2.2 Our Algorithm

In this section, we show the structure of the matrices and describe the algorithm we
use to compute the interpolation result. We present two variants to treat the polynomial
with the second variant leading to a significant improvement in conditioning and equal
accuracy.

Integrated Polynomial We construct the system matrix C that defines the linear
system for the coefficients γi, i = 1, . . . , n and βi, i = 0, . . . , d of interpolant S from Eq.
(1) including the polynomial equations:




0 QT

Q P




︸ ︷︷ ︸
C




β

γ




︸ ︷︷ ︸
p

=




0

ω


 (9)

where P ∈ Rn×n, Pi,j = ϕ (||xi − xj||2) , i, j = 1, . . . , n and where the i th row of Q ∈
Rn×d+1 is (1 x

(1)
i . . . x

(d)
i ), i.e., holding the coordinates of the input data.

5

54



Florian Lindner, Miriam Mehl and Benjamin Uekermann

The evaluation matrix A is smiliarly constructed:

A =


 V P ′


 (10)

with P ′
i,j = ϕ (||yi − xj||2) , i = 1, . . . , ñ, j = 1, . . . , n and Vi,· = (1 y

(1)
i . . . y

(d)
i ). yi, i =

1, . . . , ñ are the evaluation points in the output mesh. While P and P ′ account for the
basis functions evaluated at the input resp. output mesh, Q and V hold the coordinates
of the input or output vertices and account for the polynomial part of Eq. (1).

The output values δ are now computed by

δ = A · C−1ω (11)

Separated Polynomial In the formulation above, the polynomial is embedded into
the system and solved together with it. Another approach is to treat the polynomial
coefficients separately by first solving a least squares problem


Q


 ·

[
β
]
≈


ω


 ⇒ β = Q† · ω (12)

for polynomial coefficients β by QR-decomposition. Q† denotes the pseudo-inverse of Q.
In the next step, the polynomial values have to be subtracted from the input values ω
before the basis function coefficients γ can be computed from

P · γ = ω −Q · β ⇒ γ = P−1 (ω −Q · β) (13)

Evaluation involves adding the polynomial values computed at the output positions V :

δ = P ′ · γ + V · β = P ′ P−1
(
ω −QQ† · ω

)
+ V Q† · ω. (14)

Parallelization Using basis functions with a compact support yields sparse matrices P
and P ′. However, Q and V that represent the polynomial are dense. Using the integrated
polynomial therefore adds global communication overhead in the process of solving the
ill-conditinoned system. The separated polynomial, on the other hand, solves a smaller,
better conditioned system, resulting in less global communication.

As an effect of the black-box approach to coupling, we reuse the surface partitioning of
the respective solver and therefore cannot guarantee optimal load balancing. In practice,
however, the partitioning already provides a good clustering of the vertices. As a result,
the matrix P and P ′ have are band-matrices and, thus, the corresponding systems are
easy to solve in parallel.
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3 RESULTS

In the remainder of this work, we present results that illustrate the trade-off between
conditioning and accuracy for uniform and non-uniform meshes. We compare techniques
such as adaptive basis functions and rescaled interpolants as well as integrated and sepa-
rated computation of the polynomial.

The test function to be interpolated is a rescaled Gaussian

f(x) = exp(−|x− 3|2) + 2 (15)

Albeit this test function appears simplicistic, it is able to reproduce properties of the
interpolation we experienced on real-world FSI simulations.

Figs. 1 and 2 show the resulting root mean squared error (RMSE) and the condition of
the interpolation matrix C or P , respectively, using a Gaussian basis function. The shape
parameter is set according to Eq. (6). While the interpolation using uniform meshes has
a condition number of 8.50× 1015 when reaching an error of 10× 10−6 (m = 17.71), the
non-uniform mesh results in a condition number of 2.57× 1018 reaching the same error
(m = 13.73). Using an adaptive basis function, the condition number is significantly
lower, resulting in 7× 1014 for the same level of accuracy as illustrated in Fig. 3.
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Figure 1: Condition number and root mean square error (RSME) for a uniform point distribution with
192 points.

Figs. 4 and 5 show accuracy and condition number for increasing mesh sizes. Since
the shape parameter is computed based on the maximum mesh width, in most parts
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Figure 2: Condition number and root mean square error (RSME) for a Gauss-Chebyshev non-uniform
point distribution, using 16 elements of 12th order, resulting in 192 points.

of the interval, the actual m is larger than the prescribed one for the Gauss-Chebyshev
distribution, which explains the better accuracy. The Gauss-Chebyshev mesh yields a
condition of 1.3× 1018 to reach an error below 1× 10−4 on a mesh of size 848. The
uniform mesh, on the other hand, requires a higher value for m to reach a comparable
accuracy, but the condition remained below 5× 109. In contrast to the non-uniform
mesh, condition number and accuracy curves flatten out, making m a suitable parameter
to control accuracy and condition for uniform meshes of different sizes. Non-uniform
meshes show an unstable behavior for larger mesh sizes, resulting in an smaller, but
heavily oscillating error.

The rescaled basis functions method does not change the interpolation matrices them-
selves and, therefore, obviously results in identical condition numbers. With regard to
accuracy, it performs about two orders of magnitude better. This gain in accuracy makes
it possible to use a smaller value form, which in turn improves the conditioning. Whereas,
without rescaling, the interpolant supplemented by the polynomial performed much better
than without polynomial, both methods are comparable when combined with rescaling.
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Figure 3: Condition number and root mean square error (RSME) for Gauss-Chebyshev non-uniform
point distribution, using 16 elements of 12th order, resulting in 192 points using shape parameters adapted
to the local mesh width.
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Figure 6: Condition number and root mean square error (RSME) for the rescaled interpolator and
uniform point distribution using 192 points.
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Figure 4: Condition number and root mean square error (RSME) for uniform point distribution, using
Gaussian basis functions with width m = 6.
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Figure 7: Condition number and root mean square error (RSME) for the rescaled interpolator and
uniform point distribution, using a Gaussian basis function whith m = 6.
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Figure 5: Condition number and root mean square error (RSME) for Gauss-Chebyshey non-uniform
point distribution, using a fixed element size of 0.25 with varying degrees from 2 to 64 for basis functions
with width m = 6 neighboring vertices (based on maximum mesh width).

4 CONCLUSIONS

We evaluated the conditioning of the interpolation system matrix, as well as the accu-
racy of the interpolation using radial basis functions on uniform and non-uniform meshes.
For this paper, we focused on consistent interpolation using a Gaussian basis function.
Multi Quadrics and Thin Plate Splines are other often mentioned basis function for FSI,
but require a global support and therefore are detrimental to parallelization. Results show
that interpolation by RBF is powerful, easy to implement and works well on uniformely
scattered data. On uniform meshes, the width m of the basis functions is an effective pa-
rameter to control the accuracy-condition trade-off and is applicable to meshes of different
sizes. This trade-off also appears when other basis functions, such as Multi-Quadrics or
Thin Plate Splines are used. However, the interpolation performs less well on non-uniform
meshes. The parameter m needs to be reduced on larger meshes to keep the condition
reasonably low and to produce reliable numerical results. Adaptivity can ease the bad
conditioning but requires the knowledge of local mesh density, which needs to be either
supplied by the solver providing the mesh or computed by the interpolation algorithm.
In addition to the computational overhead, this would require significant changes to the
software stack to efficiently provide and use this information. Another problematic fea-
ture of RBF interpolation is oszillations at the edges of the interpolation interval, similiar
to Runge’s phenomenon for polynomial interpolation. This can in particular harm solvers
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that - following the black-box coupling - rely on the interpolation results close to the edge
of the mesh or even outside the source mesh (extrapolation). The rescaling approach also
solves this issue in large parts.

The investigation in this paper were performed on one-dimensional data sets. Though
experiences show similiar behavior for three-dimensional sets, it warrants further investi-
gation with particular focus on the rescaled interpolation approach. At the current state
of RBF interpolation, preCICE provides a powerful and efficient implementation, which
still needs significant user experience to control the results. Future work will introduce
automated methods to remove this burden from the user. Next steps include the imple-
mentation of the rescaling into the coupling software preCICE and tests on real-world
multi-physics problem as well as performance optimization.
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