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E. Oñate, M. Papadrakakis and B. Schrefler (Eds)

A REGULARIZED DAMAGE MODEL FOR STRUCTURAL
ANALYSES OF CONCRETE DAMS IN THE PRESENCE OF

ALKALI-SILICA REACTION

M. COLOMBO∗ AND C. COMI∗

∗Department of Civil and Environmental Engineering (DICA)
Politecnico di Milano

Piazza Leonardo da Vinci 32, 20133, Milan, Italy
e-mail: martina.colombo@polimi.it, claudia.comi@polimi.it, web page:

http://www.dica.polimi.it

Key words: Alkali-silcia reaction, regularization, nonlocal formulation, strain localiza-
tion, concrete dam

Abstract. Alkali-silica reaction is a chemical phenomenon that affects concrete structures
built some decades ago and subject to a very wet environment, e.g. dams. The starting
point of this work is a bi-phase damage model present in the literature. In general, finite
element solutions with damage models for material having a softening behaviuor exhibit
a sensitivity to the element size and do not converge to physically meaningful solutions
as the mesh is refined. In literature, some regularization techniques have been proposed
and the fracture energy one has been implemented in the bi-phase chemo-damage model.
The limit of this approach is that the solution remains mesh-dependent, so if the mesh is
refined the damage localizes in a band of width fixed by the element size. In this work
the nonlocal formulation of this damage model has been developed, validated with simple
examples and applied to an existing concrete gravity dam, subject to service loading and
affected by the ASR. A comparison between fracture energy regularization approach and
nonlocal formulation is performed.

1 INTRODUCTION

Concrete is one of the most used materials in civil engineering, but its durability can
be reduced by several chemical phenomena, among them the alkali-silica reaction (ASR)
plays a fundamental role. During ASR amorphous silica of aggregates reacts with the
high alkaline solution in concrete micro pores to form a hydrous alkali-calcium-silica gel,
which expands and causes increase of displacements in concrete structures. Another key
dissipative phenomenon related to ASR is micro-cracking, which results in non-symmetric,
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progressive degradation of mechanical properties (strength and stiffness). In [1] a phe-
nomenological two-phase isotropic damage model for the evaluation of the effects of ASR
has been proposed. This model, which extends the one originally proposed in [11] takes
into account the simultaneous influence of both humidity and temperature through two
uncoupled diffusion analyses: the heat diffusion analysis and the moisture diffusion analy-
sis. The solution of these two analyses are considered as input for a consequent mechanical
analysis, used to define the response due to ASR.
The model in [1] has been implemented with fracture energy pseudo-regularization, hence,
as damage develops, the boundary value problem may still become ill-posed and the dam-
age pattern obtained in numerical analyses is mesh-dependent. Such difficulties can be
solved implementing a real regularization technique, as proposed in the literature ([2]-
[4]). In all regularized models the introduction of a material characteristic length fixes
the width of the zone in which damage localizes, thus preventing strain localisation into
a line with consequent zero energy dissipation. In this work a nonlocal formulation of the
bi-phase damage model is proposed for the description of ASR-induced degradation. Non-
locality has been introduced replacing strain invariants with their nonlocal counterpart,
obtained by weighted average. This approach has been validated on a simple example,
then it has been applied to a real case of existing concrete gravity dam.

2 BI-PHASE CHEMO-MECHANICAL DAMAGE MODEL

At the mesoscale concrete affected by ASR is composed of two phases (the solid skeleton
and the gel), so the macroscopic stress is written as the sum of the effective stress σ′

(acting on the skeleton) and of the stress -bp1 (acting on the gel)

σ = (1−D) [2G e+K (trε− α θ)1− b p1] (1)

with

p = (1−D)M (b trε− ζg − αg θ) (2)

where: G and K are respectively the shear and bulk moduli of the homogenized concrete
skeleton; M and b are the Biot’s modulus and the Biot’s coefficient; α e αg are respectively
the volumetric coefficients of thermal expansion for the concrete skeleton and the gel; ζg
is the gel volume content; D is the damage variable, governed by the activation function,
written in terms of strain invariants (trε and Jε) in the following form

f =(1−D)2 4G2 Jε − 9at (1−D)2 [(K +Mb2)trε−Mbζg]
2+

+ 3bt (1−D) [(K +Mb2)trε−Mbζg]h(D)− kt h(D)2
(3)

where: trε = εxx + εyy + εzz is the first strain invariant and Jε = 1
2
e : e is the second

one; at, bt, kt are material parameters governing the shape and dimensions of the elastic
domain; h is the herdening-softening function
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h(D) =




1−

[
1−

(
σe

σ0

)] (
D
D0

)2

if D < D0[
1−

(
D−D0

1−D0

)c]0.75
if D ≥ D0

(4)

In the previous Equation σeσ0 is the ratio between the stresses at the elastic limit and
at peak, D0 defines the damage level corresponding to the peak stress and c governs the
negative slope of the softening part of the function h(D). In finite element approach, the
coefficient c is used to scale the fracture energy density of the material in such a way
that each finite element can dissipate the correct amount of energy, independently of its
size. This method, called as “fracture energy regularization“, prevents the occurrence of
spurious mesh dependency in the structural global response.
The evolution of ζg, which depends on temperature and humidity, is not reported here for
brevity and reference is made to [1] for further details.

3 REGULARIZED MODELS

In the context of standard continuum theories, damage-induced softening constitutive
models typically cause ill-posedness of the initial boundary value problem.
In order to introduce a remedy, various regularization techniques have been proposed in
the literature, especially for damage models (as one used in this work). Among them, the
following approaches are cited:

(i) Fracture energy pseudo-regularization: the parameters governing the material soft-
ening are modified with the mesh size in order to have a fixed value of the fracture
energy associated with the finite element. It can not be considered a real regular-
ization method as the length introduced is a mesh-dependent numerical parameter
and not a material one.

(ii) Nonlocal integral models ([2]-[3]): the inelastic behaviour at a point is governed by
a weighted average over a representative volume of the strains or strain invariants.

The nonlocal regularization methods introduce a characteristic material length in the
formulation, which fixes the width of the zone in which damage localises, thus preventing
strain localisation into a line with consequent zero energy dissipation. Usually, for material
likes concrete this length depends on the aggregates size.
In 3.1 and 3.2 the two above cited methods are presented and in 3.3 a simple numerical
test is performed.

3.1 Fracture energy approach

The simplest but crude remedy to pathological mash-dependence, popular in engineer-
ing applications, is to adjust the softening part of the stress-strain diagram as a function of
the element size. When this is done properly, the energy dissipated in a band of cracking
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elements does not depend on the width of the band. The fracture energy regularization
introduces a modification of the softening parameters according to the mesh size, such
that to impose the same energy dissipation per unit area even with mesh refinement. This
can be considered as a numerical “trick“ to obtain a phisically sense overall response, for
this reason it is known as a pseudo-regularization method.
The method is based on the assumtion that dissipation always takes place in a band one
element thick, irrespective of the element size. The constituive law is modified in such
a way that the energy dissipated over a completely fractured finite element is equal to
an assigned value depending on the fracture energy Gf (which is a material property,
independent of the specimen size) and on the element size. The area below the softening
part of the σ− ε curve represents the energy dissipated per unit volume (or specific frac-
ture energy gf ) in uniaxial test. This is related to the corresponding fracture energy Gf

through the material characteristic length w (i.e., Gt = gtw) representing the width of
the crack band front. For each element, the “material characteristic length“ w is substi-
tuted by the “element characteristic length“ le, which depends on the mesh and measures
the numerical width of the fracture process zone. The specific fracture energy gf is then
scaled for each element so that gf l

e = Gf .
The fracture energy density gf is defined as the area below the stress-strain curve and it
depends on parameter c through Equation 4. For c < 1, the σ − ε curve has a snap-back
branch, while for c = 1 the slope is discontinuous at the peak. Values of c > 1 are adopted
in all cases. Examples of fracture energy density scaling for varying c are shown in Figure
1.

Figure 1: Specific fracture energy definition with different parameter c values.
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3.2 Nonlocal model

A computationally efficient and theoretically sound localization limiter is provided by
the nonlocal averaging, which is in principle applicable to any type of constitutive model.
The idea of a nonlocal continuum originally appeared in elasticity [9].
The nonlocal approach replaces a certain variable by its nonlocal counterpart obtained by
weighted averaging over a spatial neighborhood of each point under consideration. Thus
the response at a point x depends not only on the state and internal variables at that
point, but also on those of point s, belonging to a proper neighborhood of the point. The
characteristic length defines the size of this neighborhood.
If α(x) is some “local“ field in a domain V , the corresponding nonlocal field is defined by

〈a(x)〉 =
∫

V

α′(x, s)a(s)ds (5)

where α′(x, ξ) is a given nonlocal weight function.
In this work the nonlocal model presented in [2], which defines the weighted average of a
strain measure, has been developed, implemented and used. The basic non-local variables
at a point x are assumed to be the average strain invariants, i.e. the weighted averages
over the volume V of the local strain invariants

〈Jε(x)〉 =
∫

V

W (x− s)Jε(s)ds (6)

〈trε(x)〉 =
∫

V

W (x− s)trε(s)ds (7)

where W (x− s) is the weighting function, adequately defined to normalise the averaging.
In Equations 6 and 7 and in what follows the symbol 〈•〉 denotes the weighted average
value of the quantity •. W (x − s) is assumed as the normalised Gauss function and the
average is extended to the whole body so that V coincides with the body volume:

W (x− s) =
1

W0(x)
exp(

(
−‖ x− s ‖2

2l2

)
(8)

with

W0(x) =

∫

V

exp

(
−‖ x− s ‖2

2l2

)
ds (9)

The length l is a material parameter which can be related to the width of the zone
in which damage phenomena localise. No particular provisions need to be introduced for
points near the boundary of the body since W0(x) in Equation 9 already normalises the
averaging.
The non-local model is then obtained by replacing in the loading functions the averages
of the strain invariants. The resulting non-local loading functions F is

5

793



M. Colombo and C. Comi

F =(1−D)2 4G2 〈Jε〉 − 9at (1−D)2 [(K +Mb2)〈trε〉 −Mbζg]
2+

+ 3bt (1−D) [(K +Mb2)〈trε〉 −Mbζg]h(D)− kt h(D)2
(10)

Note that non-locality only intervenes in the damage activation function, while the
stress-strain Equation 1 remains local.

3.3 Plane strain tension test

In order to clarify the limits of the fracture energy regularization and the effective-
ness of the nonlocal regularization, these methods have been tested on a simple example
subject to a linearly increasing displacement applied on one base. A bi-dimensional spec-
imen in plane strain tension conditions has been considered, meshed with different finite
element sizes (see Figure 2). To trigger localization, the strength is slightly reduced in
the central part of the specimen. The analyses have been performed by a finite element
Matlab code where the local and nonlocal models have been implemented.
Figure 3 (a) and (b) depict the global response in terms of reaction force as a function
of axial displacements obtained with fracture energy regularization and nonlocal formu-
lation. In both cases, as expected, the global response is quite similar for all considered
meshes. On the contrary, the damage pattern, shown in Figure 4, is completely different:
when using fracture energy regularization damage localizes in one element thick band
and hence considerably changes by modifying the mesh (see Figure 4 (a)); when using
nonlocal regularization instead the width of the localization band is fixed by the material
lenght and thus does not change with the mesh size (see Figure 4 (b)).

4 STRUCTURAL ANALYSIS OF A GRAVITY DAM SUBJECT TO ASR

The comparison between fracture energy regularization approach and nonlocal formu-
lation has been developed considering an existing concrete dam: Fontana dam is a gravity
dam (maximum height, length, and thickness at the basis equal to 146, 720 and 114 m,
respectively) located in Graham County, North Carolina (United States). Its construction
was completed in 1946, but only 3 years later a pattern of cracking was first observed,
together with an upstream movement of the structure. In late 1972, inspectors found a
large longitudinal crack near the left abutment, in both the upstream and downstream
walls of the foundation drainage gallery inside the dam (for more details see [10]).
The bi-phase model, both in local and nonlocal formulation, accounts for the simultaneous
effect of the temperature and humidity. A weakly coupled approach has been followed:
a preliminary heat diffusion analysis and moisture diffusion analysis allowed to compute
the varying fields of temperature and humidity, which have been the input of the subse-
quent chemo-damage analysis. The preliminary thermal and humidity analyses have been
performed using Abaqus software. Furthermore, with the same program the paraemter
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Figure 2: Specimen geometry for the simple tension test at imposed displacemnets; typical elements
dimensions: (a) 10 mm, (b) 5 mm and (c) 2 mm.

Figure 3: Comparison of the global response in terms reaction force vs of axial displacements between
(a) local and (b) nonlocal approach.
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Figure 4: Contour plot of the damage, from the largest FE size (on the left) to the smallest one (on the
right) for: (a) fracture energy regularization and (b) nonlocal formulation.

representing the reaction evolution has been calculated and used in Matlab in order to
compare the local and nonlocal model results.
The 2D dam section has been discretized by plane strain 3-nodes element. To check the
regularization properties of the two models we have considered two meshes with different
refinements (with typical finite element dimension of 50 and 20 cm).
For this dam no detailed monitoring data are available, only the crack geometry due to
ASR is known from [10]. For this reason, the damage material parameters have been
calibrated considering this crack formation and direction.
For the annual variation of temperature, saturation degree for the water and reservoir
level, in this work reference has been made to what reported in [11] (see Figure 5).

To determine the initial temperature and of saturation degree fields within the dam,
a preliminary heat diffusion analysis and a preliminary moisture diffusion analysis have
been performed respectively.
In these first steady state analyses the stabilized temperature and saturation degree in
the internal nodes, starting from the initial uniform field of the two variables, have been
evaluated by assuming as boundary conditions the mean values of temperature, saturation
degree and reservoir level. The second step consisted of transient analyses, in which the
assumed sinusoidal annual variation of air temperature and saturation degree, shown in
Figure 5 (b) and (c) respectively, have been applied. Furthermore, a sinusoidal reservoir
level variation (Figure 5 (a)) has been considered. In Figure 6 (a) the histories of tem-
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Figure 5: History of Fontana (a) reservoir level, (b) air temperature and (c) saturation degree for the
water.

perature and (b) of saturation degree at different points of the dam obtained with these
second analyses analyses are depicted.

Figure 6: Histories of (a) temperature and (b) saturation degree of some nodes (A, B and C) of Fontana
dam (10 years of the full analysis).

The diffusion analyses have been performed in Abaqus and the reaction extent evolution
could then be computed. Then, the chemo-mechanical analysis has been implemented in
the Matlab code considering both the local and nonlocal models. In Figure 7 the damage
contour plot after 15 years with different meshes is shown: as discussed in the section
3.1, with fracture energy regularization (green outline) the band of the damaged area
depends strongly on the finite element dimension (it becomes smaller when the mesh size
is reduced). On the contrary, instead, with nonlocal formulation (orange outline), the
damage pattern remains almost unchanged passing from a mesh to another. The same
Figure emphasizes that using the pseudo-regularization technique the results in terms of
the global response remain quite good: the same vertical crest displacements have been
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obtained for the two meshes, similarly to what happened with nonlocal formulation.

Figure 7: Damage contour plot after 15 years and crest vertical displacement evolution with coarse and
refined meshe; fracture energy regularization at the top and nonlocal formulation at the bottom.

5 Conclusions

Concrete dams are strategic structures that may be subject to many degradation phe-
nomena, such as alkali-silica reaction, which causes displacements increase, cracks and ma-
terial expansion. These effects can be studied through a bi-phase damage model, present
in the literature, which has been implemented using a fracture eenrgy regularization tech-
nique in order to avoid sensitivity to the element size and non-convergence to physically
meaningful solutions as the mesh is refined. This method is a pseudo-regularization ap-
proach since the characteristich length introduced for scaling the material fracture energy
depends on the element size. For this reason, in this work the nonlocal formulation of
the bi-phase chemo-damage model has been developed. It consists in replacing the strain
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invariants with their nonlocal counterpart obtained by weighted averaging. The new ver-
sion of the model has been validated with simple tensile testsin plane strain conditions. It
has been demonstrated that with nonlocal model the damage localization band remains
almost unchanged when the mesh is refined, as opposed to what happens with fracture
energy regularization (the damage concentrates in a band one element thick). With both
the methods, the global response in terms of reaction forces vs axial displacements is sim-
ilar for all the considered meshes. Then, the comparison between the two approaches has
been developed for an existing gravity dam, thus showing the effectiveness of the model
also in structural analyses of real structures.
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