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E. Oñate, M. Papadrakakis and B. Schrefler (Eds)

TIME REVERSAL METHODS IN
ACOUSTO-ELASTODYNAMICS

Franck Assous∗ and Moshe Lin∗

∗ Department of Mathematics
Ariel University,

Ariel, 40700, Israel.
e-mail: franckassous55@gmail.com

e-mail: moshelin1@walla.co.il

Key words: Time Reversal, Elastodynamics, Elastic waves, Wave propagation, Finite
Element, Inverse problems

Abstract. The aim of the article is to solve an inverse problem in order to determine the
presence and some properties of an elastic “inclusion” (an unknown object, characterized
by elastic properties discriminant from the surrounding medium) from partial observa-
tions of acoustic waves, scattered by the inclusion. The method will require developing
techniques based on Time Reversal methods. A finite element method based on varia-
tional acousto-elastodynamics formulation will be derived and used to solve to solve the
forward, and then, the time reversed problem. A criterion, derived from the reverse time
migration framework, is introduced, to help use to construct images of the inclusions to
be determined. Our approach will be applied to configurations modeling breast cancer
detection, using simulated ultrasound waves.

1 INTRODUCTION

Time reversal (TR) is a subject of very active research for over two decades. Many
international teams are currently working on the subject from theoretical, physical and
numerical points of view. It was originally experimentally developed by M. Fink in 1992
in acoustics and showed very interesting features [1].

Time reversal is a procedure based on the reversibility property of wave propagation phe-
nomena in non-dissipative media. As a consequence, one can “time-reverse” developed
signals, by letting them propagate back in time to the location of the source (or scat-
terers) that emitted them originally. The initial experiment, proposed by M. Fink, was
to refocus, very precisely, a recorded signal after passing through a barrier consisting of
randomly distributed metal rods. Theoretically, as well as an inverse problem solved in
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ideal circumstances, TR method should yield the exact solution. However, there is al-
ways the possibility that under some (realistic!) conditions, the time reversed process will
fail. This may happen due to several reasons: measurement noise, availability of only
partial information in space or in time, and lack of knowledge about the medium proper-
ties. Since then, numerous applications of this physical principle have been designed, in
seismology, for locating the epicenter of an earthquake from measurements taken on the
ground [2] and medical imaging [3]. The first mathematical analysis can be found in [4]
for a homogeneous medium and in [5], [6] for a random medium.

In a previous Note [16], we have shown the feasibility of a TR method in an acousto-
elastic medium. We propose here to extend it by considering more complex acouso-elastic
medium that can mimic, for instance, breast tissue configurations. We will apply our
approach to identify an “inclusion”, or to differentiate between two close inclusions, even-
tually with different elastic properties, corresponding to different breast tumors, for exam-
ple, benign and malignant. Indeed, elastic properties of tumor often help to differentiate
them: typically, a benign tumor corresponds to normal breast tissues, with a Young mod-
ulus between 1 and 70 KPa, whereas malignant tumors have a Young modulus varying
from 15 to 500 KPa (see for instance [7]).

2 Forward Problem

We first formulate the mathematical forward problem. We consider a two-dimensional
fluid-solid domain Ω made of two parts, an acoustic one Ωf and an elastic one Ωs.

Figure 1: Acousto-elastic medium that mimics breast tissue

We will assume that Ω is half an ellipse (see figure 1). The acoustic part of the domain
Ωf corresponds to a homogeneous fluid, characterized by its density ρf and its Lamé
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parameter λf . We denote by ∂Ωf the boundary of Ωf and n is the outward unit normal
to the boundary. Introduce the pressure p(x, t) on a time t, x = (x1, x2) ∈ Ωf , and
f(x, t) is a given source, for instance a Ricker function, the acoustic wave equation in Ωf

is written
1

λf

∂2p

∂t2
− div (

1

ρf
∇p) = f , (1)

together with initial homogeneous conditions. We assume that the boundary ∂Ωf can
be split into ∂Ωf = Γf ∪ ΓI , where ΓI denotes the interface between the fluid and solid
part, assumed, for simplicity, to be horizontal. We supplement the system with absorbing

boundary conditions [15] on ∂Ωf . Denoting by Vp =
√

λ
ρ
the wave velocity in the fluid,

the absorbing boundary conditions on Γf are written

∂p

∂t
+ Vp

∂p

∂r
+ Vp

p

2r
= 0 (2)

On the part ΓI , we add an interface condition for the pressure p(x, t), that will be presented
below, see (5). We then introduce the governing equations of linear elastodynamics for Ωs,
the solid part of the domain, characterized by the density ρs, and the Lamé parameters λs

and µs. We assume that the boundary ∂Ωs can be split into ∂Ωs = Γs ∪ ΓI . Denoting by
u(x, t) = (u1(x1, x2, t), u2(x1, x2, t)) the velocity on a time t, at a point x = (x1, x2) ∈ Ωs,
we have

ρs
∂2u

∂t2
−∇ · (µs∇u)−∇((λs + µs)∇ · u) = 0 , (3)

Remark that writing the equation above in terms of velocity (e.g. the time derivative of
the displacement) instead of displacement, allows us to derive a pressure-velocity fluid-
solid formulation, which will make easier the handling of the transmission conditions
during the derivation of the variational formulation, as we will see below.

This equation is supplemented with homogeneous initial conditions and absorbing bound-
ary conditions on Γs, as proposed in [14],

A
∂u

∂t
= τ(u)n , (4)

where the matrix A is a diagonal N × N matrix, with A11 = −
√
ρs(λs + 2µs), A22 =

−√
ρsµs for horizontal boundaries, and the contrary for vertical boundaries. A general

expression of A can be found in [14] for more complex geometries of the boundary. Finally,
we introduce the transmission conditions at the fluid-solid interface ΓI :

1

ρf

∂p

∂n
=

∂u

∂t
· n , (5)
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∂p

∂t
n = τ(u)n . (6)

These conditions express the continuity of the normal component (5) and of the stress
tensor (6) and appear naturally in the pressure-velocity variational formulation, that will
be basis of the finite element method. Putting all these equations together, one can derive
the following variational formulation in the fluid-solid domain:

∫

Ωf

1

λf

∂2p

∂t2
q dω +

∫

Ωf

1

ρf
∇p · ∇q dω

+

∫

ΓI

∂u

∂t
· n q dσ +

∫

Γf

(
1

λfρf

∂p

∂t
+

p

2rρf
) q dσ =

∫

Ωf

fq dω ,

(7)

∫

Ωs

ρs
∂2u

∂t2
· v dω +

∫

Ωs

λsdivu div v + 2µsτij(u) τij(v) dω

−
∫

ΓI

∂p

∂t
v · n dσ −

∫

Γs

A
∂u

∂t
· v dσ = 0 .

(8)

3 Time Reversed Problem

In a second step, we formulate the time reversed acousto-elastic problem. Examples
of time reversal techniques, numerical or experimental, can be found (among others) in
[1, 9, 10, 11, 12]. We first introduce the time-reversed wave equation for the acoustic
part of the domain Ωf . We denoted by pR(x, t′) the time-reversed pressure, defined by
pR(x, t′) = p(x, Tf − t), x ∈ Ωf , where Tf denotes the final time. Since the wave equation
involves only second order time derivatives, this definition ensures that the reversed field
pR(x, t′) is a solution to the wave equation

1

λf

∂2pR

∂t′2
− div (

1

ρf
∇pR) = 0 , (9)

together with (TR) initial conditions and (TR) absorbing boundary conditions on Γf ,
analogous to (2). In addition, on the boundary ΓSRA, modeling a source-receivers array
(SRA) where the forward signal is recorded (see Fig. 1), we set pR(t′) = p(Tf − t) which
is the (recorded) source of the TR.
Similarly, we also introduce the elastic time-reversed problem associated to equation (3).
We denote by uR(x, t′) = (uR

1 (x1, x2, t
′), uR

2 (x1, x2, t
′)) the time-reversed velocity solution

to linear elastodynamics, that solves
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ρs
∂2uR

∂t′2
−∇ · (µs∇uR)−∇((λs + µs)∇ · uR) = 0 , (10)

together with (TR) initial conditions and absorbing boundary conditions analogous to (4).
Finally, we derive the time-reversed continuity transmission conditions at the interface ΓI

1

ρf

∂pR

∂n
= −∂uR

∂t′
· n (11)

∂pR

∂t′
n = τ(uR)n . (12)

Similar to the forward problem, we introduce the time-reversed variational formulation
∫

Ωf

1

λf

∂2pR

∂t′2
qdω +

∫

Ωf

1

ρf
∇pR · ∇qdω

+

∫

ΓI

∂uR

∂t′
· nq dσ +

∫

Γf

(
1

λfρf

∂pR

∂t′
+

pR

2rρf
)qdσ −

∫

ΓSRA

fqdσ = 0

(13)

∫

Ωs

ρs
∂2uR

∂t′2
· v dω +

∫

Ωs

λsdivu
R div v + 2µsτij(u

R) τij(v) dω

−
∫

ΓI

∂pR

∂t′
v · n dσ −

∫

Γs

A
∂uR

∂t′
· v dσ = 0 .

(14)

In order to create synthetic data, the forward and reversed formulations are approximated
by the FreeFem++ package [13] which implements a finite element method in space. In
this study we use a P2 finite element method. The advancement in time is performed by
using a second order in time central finite difference scheme, so that it is time reversible
also on the numerical level.

4 Numerical results

In this section, we describe numerical results obtained for a scatter identification prob-
lem, in the case of two scatters located in the elastic part. The principle of the numerical
process is as follows: an incident wave is generated by a point source such that after a time
Tf the total field is negligible. On the boundary ΓSRA located in the fluid part, the forward
signal is recorded. Then, we perform numerically a time-reversed computation, by back
propagating the recorded scattered data from the SRA. However, we do not assume we
know the physical properties or the number of the inclusions, nor their locations. Hence,
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the recorded data are back propagated in the medium without the inclusions. Finally, we
intend to image the unknown scatterers in the medium - responsible of the diffraction of
the incident wave - by using correlation method between the forward uI and the reversed
wave us

R in the same spirit as those involved for instance in time reverse migration [8].
Here, we have considered the following RTM (Reverse Time Migration) criterion:

RTM(x) =

∫ Tf

0

us
R(Tf − t,x)× uI(t,x)dt . (15)

To illustrate our purpose, we consider the medium sketched in Figure 1, made of fluid part
(top) and of a elastic one (bottom), the elastic part sketching a breast tissue geometry
and is a heterogeneous medium, as it contains a skin layer, i.e. a very thin layer. The
SRA is an horizontal line as sketched on Figure 1.

For the fluid part, we choose ρ = 1000kg/m3 and λ = 2.25GPa, for the solid part, the
same value of ρ with λ = 1.83GPa and µ = 18.33kPa, and for the skin (inside the solid
part), ρ = 1150kg/m3, λ = 6.66GPa and µ = 66.66kPa. There are two elliptical inclu-
sions with different size, shape, and elastic properties. The first one represents a benign
tumor with ρ = 1000kg/m3, λ = 2.16GPa and µ = 21.66kPa, and the second one a
malignant tumor, with the same ρ, λ = 2.99GPa and µ = 30kPa. Note that both in-
clusions are penetrable, which means that the reflection of the incident wave highlighting
the inclusion is quite weak. Finally, the source used to generate the acoustic wave in the
fluid part is a Ricker function of the form f(x, t) = (1− 2π2(ν0t− 1)2)e−π2(ν0t−1)2 , with a
central frequency ν0 = 100kHz and a corresponding wavelength equal to λW = 12mm.

To verify the (in)sensitivity of the method with respect to the noise in the data, we added
Gaussian noise to the recorded field pS with

pSNoise = (1 + Coeff ∗ randn) ∗ pS

where randn satisfies a centered reduced normal law and Coeff is the noise level, taken
equal to 10% in our simulations.

Hence, the scatterers are illuminated by an incident acoustic field, that is first transmit-
ted to the elastic medium through the interface ΓI , and then scattered by the inclusions,
before to be recorded by the SRA. The SRA being located in the fluid part, they are able
to record only a scalar quantity (the pressure p(x, t)), and not a vector velocity u(x, t).

However, as shown on images below, where the correlation image between the forward
and the reversed wave is depicted (only in the elastic layer), one is able to determine
the existence and location of the malignant tumor. The definition of more quantitative
criteria to determine the presence and the properties of these inclusions is the subject of
our future work.
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Figure 2: Representation of solid part (2D and 3D illustrations)

5 Conclusion

We proposed a time-reversal approach for acousto-elastic non homogeneous wave equa-
tions. Numerical results have been presented and show satisfactory and promising results
in a heterogeneous fluid-solid medium (breast tissue with skin), using only partial infor-
mation, that is pressure recorded data in the fluid part. By cross-correlating the incident
field with the time-reversed scattered field, we were able to determine properties of these
inclusions and to differentiate two inclusions, even with different elastic properties. We
have now to evaluate quantitatively the obtained elasticity parameters, probably by intro-
ducing different cost functions, in the same spirit as what is derived for inverse problems.
As usual in this context, optimization based algorithm could be necessary to achieve this
part.
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