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Abstract. Many materials like sand, soil, cement, snow and grain, perform like solids or liquids 

depending on loads and boundary conditions. The proposed coupled solid-liquid analysis has 

the potential to deal conveniently with the severe nonlinearities that are associated with single 

state descriptions. Linear elastic behavior characterizes the solid part. Slowly moving 

incompressible viscous behavior characterizes the liquid part. 
 

 

1 INTRODUCTION 

Granular material in structural and geotechnical engineering generally is treated as a solid 

with special reference to large deformations. Transformation to a steadily moving state is not 

possible. If granular material is treated as a liquid with special properties, the hydrostatic 

pressure evolves in the static state which is not in agreement with the observed impact on 

structures [2]. The internally coupled solid-liquid analysis presented in this paper allows the 

complete transformation between static solid state and steady liquid state. 

The interaction of static solid and steady incompressible liquid continua has been discussed 

for an infinite high tube in 2004 [3]. A detailed approximation has been proposed in 2006 [4]. 

In the present paper the liquid state is represented by pressure only. Dependent on loads and 

boundary conditions an inhomogeneous distribution of solid and liquid properties in space 

results from the relation of the first stress invariants. The velocities may be determined in a 

secondary analysis. 

2 FUNCTIONAL AND PRINCIPLE 

A functional is postulated for plane continua [1, 5, 7] with solid and liquid properties: 
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An elastic solid interacts with an incompressible liquid which is represented by a pressure 

field c. 

S

σ Eε  (2) 

The composite stresses consist of elastic stresses and pressure: 
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S

   σ σ c Eε c  (3) 

The first integral of the functional represents the elastic energy. The area load p in the second 

integral consists of the specific weight  and the horizontal force p2 that interacts between solid 

and liquid (Figure 1). The red variables describe the solid part. The blue variables describe the 

liquid part. 

The third integral refers to the part Bb of the boundary, which is subjected to the load b. The 

boundary load consists of bS acting on the solid part and -c acting on the liquid part. 

T

S

 b b M c  (4) 
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Figure 1: Displacements, pressure, loads and boundary conditions for the hybrid analysis of a silo 

The last two integrals of the functional refer to the part Bm of the boundary, where slip is 

possible in the tangential direction. This part of the boundary is associated with a tangential 

force opposite to the direction of motion and results in a contribution to the internal virtual 

work. The lateral displacement is zero. Coulombs law determines the relation between stresses 

S and load bS for the solid part. Tension which would result in cavitation and the loss of bound 

is avoided for the liquid part by an appropriate relation between pressure c and load bL. 

S L

 b b b  (5) 
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Q     Transformation matrix for interaction at the boundaries 

 

At the remaining part Bu of the boundary the displacement u is zero. 

b m u

B B B B    (7) 

The slip and stick parts of the boundary are determined a priori. The presented linearization 

requires a stationary motion at the walls. The validity of the a priori assumptions regarding 

boundaries and direction of motion are checked after the analysis and may lead to iteration. 

The pressure field c becomes active if the displacement boundary conditions are not 

appropriate to maintain the equilibrium. Otherwise the pressure field vanishes, which results in 

a mere elastic analysis. The pressure c is assumed to be associated with an incompressible 

viscous slowly moving liquid that may be addressed in a secondary analysis. 

   
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(8) 

The functional covers the complete range from elastic static behavior to mere liquid 

behavior. It is restricted to applications without tension. 

The variation of the displacements of the functional is set to zero. The pressure depends on 

the displacements for the prospective applications. It results the following hybrid principle: 

   
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(9) 

The derivations of the displacements determine the strains: 

ε Du  (10) 
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(11) 

3 INFINITE HIGH TUBE 

An infinite vertical tube is chosen as a representative application. These conditions are 

present for example in tall silos, in vertical blood vessels and in funnels of erupting volcanos. 

For resting or steadily moving hybrid material in an infinite high tube, exact analytical 

solutions are available. This allows an evaluation of the general performance of the numerical 

analysis based on the hybrid solid-liquid formulation. 

Figure 2 shows a horizontal slice taken from a vertical infinite high plane tube. The constant 

area load p which is identical to the specific weight  acts on the material. With respect to 

infinity the complete weight of the slice is transferred to the vertical walls and results in shear 

forces that hold the equilibrium. Between the two walls the shear stresses vary linearly in the 

horizontal direction and stay constant in the vertical direction. The contribution of the cut off 
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upper and lower parts of the tube represents the related boundary load 12 that acts on the top 

and bottom faces of the slice. 

If no sliding is possible at the vertical walls the distribution of displacement is quadratic in the 

horizontal direction and constant in the vertical direction (Figure 2). The principal stresses are 

independent from the properties of the material. The major principal stress I (compression) is 

opposite equal to the minor principal stress II (tension). The angle is 45 degrees. 

Since tension is not permissible for granular material a relative movement at the walls evolves. 

3.1 Analysis 

The link between the exact formulation and the approximate formulation is the analysis for 

nonlinear symmetric distributions of vertical stresses over the cross section (Figure 6). No 

changes regarding the vertical and horizontal stresses are possible in the vertical direction. 

11 22 22

1 1 2

0 0 0

x x x

  

  

  

 (12) 

No change of the vertical strain in the horizontal direction is possible since then the solid 

shear stresses would increase according to the infinity of the height. 
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Figure 2: Fixed slice in an infinite high tube. a, area load, boundary load and deformation. b, shear stresses and 

principal stresses 

Shear stresses follow from the equilibrium: 

12 2

x    (14) 

Normal stresses: 

11,S 11
c     (15) 

22,S 22
c     (16) 

22,S 11,S

1



  



 (17) 

Boundary condition at the walls: 
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12 22,S
c    (18) 

Equilibrium at the walls: 

12

L

2



    (19) 

3.2 Constant vertical stress distribution 

Horizontal strain: 
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Figure 3: Boundary stresses and principal stresses in a slice of an infinite high vertical plane tube. a, elastic solid 

solution (left) and b, liquid solution (right) 

Solid solution: 

 

A mere solid solution evolves in the following case. The applied vertical boundary load b1 

causes horizontal stresses 22 that activate shear stresses 12 by wall friction that hold the 

equilibrium to the weight of the silo slice (Figure 3a). 

   

11

1 ν 1 2ν

L

2μE ν

 

      (21) 

 

11

L 1

2μ ν

 

    (22) 

For a given height H of the solution area it is possible to determine the displacements. Index 

t refers to the top face; index b refers to the bottom face. Index c refers to the centre; index w 

refers to the walls. 
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3.3 Nonlinear vertical stress distribution 

A nonlinear vertical stress distribution over the cross section is possible in an infinite high 

vertical tube. It probably will not evolve with respect to the minimum of elastic deformation 

energy. 

Derivation of the stress strain relations: 

11 22

2 2

0 0

x x
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 
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 (26) 

The integral of horizontal strain is zero according to the vertical tube. 
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3.4 Functional and Principle 

Functional: 

       
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Principle: 

       

b m

T

2 1 1 1 1 22,S
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c

dA u dA u dA u b c dB u c dB 0

x



              


    Du E Du

(30) 

4 APPROXIMATION 

A fourth order approximation of the vertical displacement u1 in the horizontal direction and 

a linear approximation in the vertical direction require six degrees of freedom with respect to 

the symmetry of the tube. 

A single degree of freedom is required for a cubic approximation of the horizontal 

displacement u2 since it is assumed to be constant in the vertical direction and to be zero in the 

center and at the walls of the tube. This degree of freedom is the horizontal strain 
2

u in the 
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center which is the first derivation of the horizontal displacement. The digits t and b of the nodal 

values refer to the top face and the bottom face (Figure 4). 

T
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Displacement at the walls: 

T 1 1
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
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Restriction of the vertical tube: 
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Figure 4: Nodal values for the interpolation functions 

The liquid pressure c is assumed to be constant in the vertical direction and quadratic in the 

horizontal direction. Due to symmetry two degrees of freedom are required. These degrees of 

freedom are the liquid pressure cc in the center and cw at the walls (Figure 4). 

Strain interpolation matrix: 

T

B DF  (34) 

The boundary load b acts at the top face and the bottom face of the slice. The quadratic 

distribution of the vertical component b1 depends on values bc at the center and bw at the walls. 

The linear distribution of the horizontal component b2 depends on the value 
2w

b  at the walls. It 

is zero in the center. 
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Integration of area load: 
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The horizontal area load is an interaction between solid and liquid parts: 

2,L 2,S
p p   (36) 

Integration of partial area load: 
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It follows with the principle (30): 
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(38) 

5 EXAMPLES 

Specific weight, Poisson’s ratio and coefficient of wall friction in the applications represent 

grain [2]. The modulus of elasticity is chosen according to [6] (e.g. peat). 

 

 = 0,009 MN/m
2

     specific weight 

E = 1,000 MN/m
3

    Young’s modulus 

 = 0,375                  Poisson’s ratio 

 = 0,001 MNs/m
2

   viscosity 

 = 0,4                      coefficient of wall friction 

L = 1,00 m               width 

H = 20,00 m             height 

5.1 Constant vertical stress distribution 

The finite element analysis reproduces the exact solutions for constant vertical stresses 

(Section 3.2). The stresses are negative for granular material since tension is not permitted. In 

the following discussion omits the sign for compression while (partial) tension is indicated by 

a minus sign. 

 

Solid solution: 
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2

11

0,01875 MN / m   (39) 

The solid solution represents the state of rest in a high silo. 

The red color indicates the mere solid state of the hybrid material. Liquid pressure is zero. 

Solid stresses and displacements are identical with Section 3.2. 

s
11
= 0,00450 MN/m

2

s
11
= 0,01875 MN/m

2

s
11
= 0,01305 MN/m

2

s
11
= 0,00877 MN/m

2

 

Figure 5: Transformation from a, the solid state (red) by the hybrid states (b, dark red and c, violet) to d, the 

liquid state (blue) 

Liquid solution: 

2

11

2

0,0045MN / m

c 0,0045MN / m

 



 (40) 

The blue color indicates the mere liquid state of the hybrid material. Solid stresses and 

displacements are zero. 

The liquid solution evolves only for absent or nearly absent bottom since the flow velocity 

in the steady state is very high. For even higher velocities a granular gas evolves that is not 

covered by the performance of coupled solid and liquid analysis. 

 

Hybrid solution: 

 

The hybrid solid liquid solution represents the common situation in tall silos if the material 

is moving with a constant velocity. This happens sometime after the beginning of discharging. 

The behavior is primarily solid, and the velocity is small. No horizontal displacements evolve 

for constant vertical stress distributions. 
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Transformation: 

 

The two states analysis enables the transformation from the static solid state at the beginning 

of time to the steady liquid state at the end of time. Figure 5 shows the solid and liquid states 

and two intermediate hybrid states. 

The red picture in Figure 5 represents the solid state. The first violet picture represents an 

intermediate hybrid state. It contains more red color which indicates that the solid part 

dominates the liquid part. The second violet picture represents another hybrid state. It contains 

more blue color since the behavior is primarily liquid. 

5.2 Quadratic vertical stress distribution 

Nonlinear vertical stress functions 11 result in nonlinear distributions of solid and liquid 

parts over the cross section. The relation between both parts is determined by the relation of the 

first stress invariants I1,S and I1,L (Table 1). Limiting condition for the solution area is that one 

part cannot exceed 100 %. According to Section 3.3 evolve horizontal area load p2 and 

horizontal strain 22. 

Table 1: Stresses, principal stresses, stress invariants, strains and horizontal load 

Figure: 6a 6b 

x2 0,5 0,25 0,0 0,5 0,25 0,0 

11 0,008775 0,001198 0,013050 0,007350 0,006281 0,005925 

22 0,010125 0,010125 0,010125 0,004650 0,004650 0,004650 

c 0,000750 0,008766 0,011437 0,004400 0,001728 0,000837 

p2 0,042750 0,021375 0 -0,014250 0,007125 0 

11 0,00206 0,00206 0,00206 0,00241 0,00241 0,00241 

22 0,00392 0,00049 -0,00196 -0,00131 0,00016 0,00065 

12 0,00450 0,00225 0 0,00450 0,00225 0 


0,01400 0,01349 0,013050 0,010698 0,007859 0,005925 


0,00490 0,00862 0,010125 0,001302 0,003072 0,004650 

 40,7 33,8 0 36,6 35,0 0 

I1,L/I1,S 0,793 0,079 0,987 0,733 0,316 0,158 

 

Lower pressure in the centre: 

 

Starting from the mere solid case only a decline of the vertical stresses in the center is 

possible to avoid tension. For lower vertical stresses in the center (Figure 6a) the partial solid 

stresses dominate in the center (red color). At the walls the liquid stresses finally exceed the 

solid stresses (violet color) If the vertical stresses in the center continue to decrease the solid 

stresses at the walls enter the not permitted tension range. This follows from the horizontal 

strain at the walls in the second column of Table 2. 
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Lower pressure at the walls: 

 

Starting from the mere liquid case only an increase of the vertical stresses in the center is 

possible. For higher vertical stresses in the center (Figure 5b) the partial liquid stresses dominate 

in the center (blue color). At the walls the solid stresses finally exceed the liquid stresses (red 

color). 

 

Transformation: 

 

The mere solid solution (Figure 5a) turns to the hybrid solution (Figure 6a) if the constant 

stress function turns to a concave stress function. While the stress level decreases it approaches 

the mere liquid solution (Figure 5d). While the constant stress function turns into a convex 

stress function (which is barely possible) it turns to the hybrid solution (Figure 6b). While the 

stress level increases it finally approaches the mere solid solution again (Figure 5d). 

 

Table 2: Transformation from the solid state (Fig. 5a) by the hybrid state (Fig. 6b) to the liquid state (Fig. 5d) 

and back to the solid state by the hybrid state (Fig. 6a), (x2=0,5) 

Fig.: 5a 6a 5d 6b 5a 

11,c 0,01875 0,013050 0,004500 0,005925 0,01875 

11,w 0,01875 0,008775 0,004500 0,007350 0,01875 

22 0,01125 0,010125 0,004500 0,004650 0,01125 

c 0 0,000750 0,004500 0,004400 0 

p2 0 0,042750 0 -0,014250 0 

11 0,01031 0,00206 0 0,00241 0,01031 

22 0 0,00392 0 -0,00131 0 

12 0,00450 0,00450 0,00450 0,00450 0,00450 

I 0,020858 0,01400 0,004500 0,010698 0,020858 


0,009142 0,00490 0,004500 0,001302 0,009142 

 25,1 40,7 45,0 36,6 25,1 

I1,L/I1,S 0 0,793 1,00 0,733 0 

 

Table 2 shows the development at the walls (x2 = 0,50 m) during this process. The 

intermediate states result from the development of the vertical stress in the center (x2 = 0) in the 

first line. 

6 CONCLUSIONS 

The computational method presented in this paper covers a wide range of possible 

applications. It is based on the simultaneous interaction of two materials in the same place at 

the same time. The linearity of the analysis is preserved. The unavoidable nonlinear effects are 

covered by obvious a priori considerations as usual in engineering. Further research is directed 
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towards more general applications and the investigation of the usefulness of the numerical 

analysis that has been developed for an infinite high tube. 

 

 

Figure 6: a, Primarily solid behavior at the walls and nearly liquid behavior in the center (left). b, Primarily 

liquid behavior at the walls and nearly solid behavior in the center (right). 
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