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0.1 Abstract - English

During the past two decades, thanks to the mutual fertilization of the research in
quantum information and condensed matter, new approaches based on purely
quantum features without any classical analog turned out to be very useful in
the characterization of many-body quantum systems (MBQS). A peculiar role is
obviously played by the study of purely quantum correlations, manifesting in
the “spooky” properties of entanglement and nonlocality (or Bell correlations),
which ultimately discriminate classical from quantum regimes. It is, in fact,
such kind of correlations that give rise to the plethora of intriguing emergent
behaviors of MBQS, which cannot be reduced to a mere sum of the behaviors of
individual components, the most important example being the quantum phase
transitions. However, despite being indeed closely related concepts, entangle-
ment and nonlocality are actually two different resources.

With regard to the entanglement, we will use it to characterize several in-
stances of MBQS, to exactly locate and characterize quantum phase transitions
in spin-lattices and interacting fermionic systems, to classify different gapped
quantum phases according to their topological features and to provide a purely
quantum signature of chaos in dynamical systems.

Our approach will be mainly numerical and for simulating the ground states
of several one-dimensional lattice systems we draw heavily on the celebrated
“density matrix renormalization group” (DMRG) algorithm in the “matrix prod-
uct state” (MPS) ansatz. A MPS is a one-dimensional tensor network (TN) rep-
resentation for quantum states and occupies a pivotal position in what we have
gained in thinking MBQS from an entanglement perspective. In fact, the suc-
cess of TNs states mainly relies on their fulfillment, by construction, of the so-
called “entanglement area law”. This is a feature shared by the ground states
of gapped Hamiltonians with short-range interactions among the components
and consists of a sub-extensive entanglement entropy, which grows only with
the surface of the bipartition. This property translates in a reduced complexity
of such systems, allowing affordable simulations, with an exponential reduction
of computational costs. Besides the use of already existing TN-based algorithms,
an effort will be done to develop a new one suitable for high-dimensional lat-
tices.

While many useful results are available for the entanglement in many differ-
ent contexts, less is known about the role of nonlocality. Formally, a state of a
multi-party system is defined nonlocal if its correlations violate some “Bell in-
equality” (BI). The derivation of the BIs for systems consisting of many parties
is a formidable task and only recently a class of them, relevant for nontrivial
states, has been proposed. In an important chapter of the thesis, we apply these
BIs to fully characterize the phase transition of a long-range ferromagnetic Ising
model, doing a comparison with entanglement-based results and then making
one of the first efforts in the study of MBQS from a nonlocality perspective.



v

0.2 Abstract - Castellano

Durante las dos últimas décadas, gracias al enriquecimiento mutuo entre las
investigaciones en información cuántica y materia condensada, se han desarrol-
lado nuevos enfoques que han resultado muy útiles en la caracterización de los
sistemas cuánticos de muchos cuerpos (SCMC), basados en características pu-
ramente cuánticas sin ningún análogo clásico . El estudio de las correlaciones
puramente cuánticas juega obviamente un papel fundamental. Estas correla-
ciones se manifiestan en las propiedades del entrelazamiento cuántico (“entan-
glement”) y no-localidad (o correlaciones de Bell), que en última instancia dis-
criminan los regímenes clásicos de los regímenes cuánticos. Este tipo de correla-
ciones son, de hecho, las que dan lugar a la plétora de comportamientos emer-
gentes enigmáticos de los SCMC, que no pueden reducirse a una mera suma
de los comportamientos de los componentes individuales, siendo el ejemplo
más importante siendo las transiciones de fase cuánticas (TFC). Sin embargo, a
pesar de ser conceptos estrechamente relacionados, el entrelazamiento y la no-
localidad son en realidad dos recursos diferentes.

Con respecto al entrelazamiento, lo utilizaremos para caracterizar varios ejem-
plos de SCMC, para localizar y caracterizar exactamente las TFC en retículos de
espines y de sistemas de fermiones interactuantes, para clasificar las diferentes
fases cuánticas de acuerdo con su topológia y para proporcionar una señal pu-
ramente cuántica del caos en los sistemas dinámicos.

Nuestro enfoque será principalmente numérico y para simular los estados
fundamentales de varios sistemas unidimensionales nos basamos en gran me-
dida en el célebre algoritmo “density matrix renormalization group” (DMRG),
formulado en el ansatz de los “matrix product states” (MPS). Un MPS es un
“retículos de tensores” (“tensor networks”, TN) unidimensional que representa
estados cuánticos y ocupa una posición central entre los mayores logros obtenidos
al estudiar los SCMC desde la perspectiva del entrelazamiento cuántico. De
hecho, el éxito de los TN depende principalmente de su cumplimiento, por
construcción, de una “ley del area” (“area-law”) de la entropía de entrelaza-
miento. Esta es una característica compartida por los estados fundamentales de
los Hamiltonianos con interacciones de corto alcance entre los componentes del
sistema y con una brecha (“gap”) entre el estado fundamental y los niveles exci-
tados, que consiste en una entropía de entrelazamiento subextensiva, que crece
sólo con la superficie de la bipartición. Esta propiedad se traduce en una menor
complejidad de dichos sistemas, permitiendo simulaciones asequibles, con una
reducción exponencial de los costes computacionales. Además del uso de los
algoritmos ya existentes basados en TN, se desarrollará uno nuevo adecuado
para sistemas en dimensiones altas.

Si bien se dispone de muchos resultados útiles para el entrelazamiento en
muchos contextos diferentes, se sabe menos sobre el papel jugado por la no-
localidad. Formalmente, un estado de un sistema compuesto de muchas partes,
se define como no-local si sus correlaciones violan alguna “desigualdad de Bell”
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(“Bell inequality”, BI). La derivación de dichas desigualdades para sistemas
compuestos de muchas partes es un reto y sólo recientemente se ha propuesto
una clase de ellas, relevante para estados no triviales. En un capítulo importante
de la tesis, aplicamos estas BIs para caracterizar completamente la transición de
fase de un modelo de Ising ferromagnético con interacciones de largo alcance,
haciendo una comparación con los resultados basados en el entrelazamiento y
luego haciendo uno de los primeros esfuerzos en el estudio de los SCMC desde
una perspectiva de la no-localidad.
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1 Introduction

1.1 The puzzle of entanglement and nonlocality in
quantum mechanics

Quantum entanglement [Hor+09] has been for a long time a puzzle (and ac-
tually it continues to be a puzzle) at the core of the interpretation of quantum
mechanics (QM); it is responsible for profound debates bridging physics and
philosophy. The “spooky” action at a distance between entangled quantum sys-
tems brought Einstein, Podolsky and Rosen [EPR35] to force physicists to face
two apparent mutually exclusive alternatives, nowadays known as EPR para-
dox: concerning the impossibility of predicting the simultaneous outcomes of
two non-commuting observables, they stated that “either (1) the description of re-
ality given by the wave function in QM is not complete or (2) these two quantities
cannot have simultaneous reality” and consequently “if (1) is false then (2) is also
false”. Aware of the success of the QM, but not available to abandon the prin-
ciple of reality, the three scientists opted for arguing that QM is not complete.
The implications of such a belief is that QM is a statistical approximation of an
underlying more general and complete theory, whose predictions are not acces-
sible because of the missing of some inaccessible variables, the so called local
“hidden” variables (LHV).

In the face of the instrumentalist approach to the physics programs, the EPR
paradox was soon relegated to be a secondary issue 1. It was not until 1964 that
the seminal works of Bell [Bel64; Bel66] shed new light on the problem. Bell
provided a set of inequalities which must be satisfied to certify that a two-party
system possesses a “local hidden variable description” and whose violation signals

1At the epistemological level, the dispute within the physics community can be roughly traced
back to the philosophical opposition between “realism” and “instrumentalism”. By “instrumentalism”
I mean something more subtle than the trivial “shut up and calculate!” [Mer04]. Instead, I refer to that
approach in which physical theories are not true descriptions of some existing reality, but a “tool”
to organize and predict phenomena [DN91]. Actually, in my opinion, to explain the winning of the
instrumentalists, the materialistic approach that takes into account the political and economic con-
text between the 1930s and the 1970s, is unavoidable. Disproportional investments in high energy
physics (particle and nuclear physics) were in fact preferred since allowing faster advancements
especially in the military technologies during the cold war. On the other hand, the organization
of research in high energy physics was the first example and prototype of “big science”, where the
strict division of tasks and roles among researchers reflected the model production at that time, the
fordism (see for example Smolin [SH08] - for a point of view internal to the research community and
with special attention to the advent and explosion of string theory - and Kaiser [Kai11]).
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nonlocality (or Bell nonlocality). The EPR state violates such inequalities. Bell
inequalities (BIs) [Bru+14] can be formulated in terms of correlators involving
two space-like separated observables (such as, for instance, the famous CHSH
BI [Cla+69]) and can be experimentally tested. Several experimental results
[AGR81; ADR82; Giu+15; Hen+15] confirmed the QM predictions that nonlo-
cality is manifested by some entangled quantum states and the entanglement
was finally “promoted” as a physical measurable property.

The renewed enthusiasm around the foundations of the QM paved the way
for a new approach to information theory. From the 1980s, some papers which
exploited entanglement as a resource for communication [Her82], cryptography
[BB84; WZ82], computation [Deu85] and teleportation [Ben+93] are now consid-
ered pionering works for modern quantum information theory [NC02].

Entanglement and nonlocality, however, are not equivalent concepts, although
the distinction has been blurred for long time. In particular, in a paper of 1991 in
memoriam for Bell, Gisin [Gis91] proved that any bipartite entangled pure state
is nonlocal, whereas Popescu and Rohrlich in 1992 [PR92; GG17] extended this
result to an arbitrary number of parties. But Werner in 1989 [Wer89] explicitly
constructed a mixed state which is entangled and yet admits an LHV descrip-
tion. Hence, entanglement is actually a weaker property i.e. only a necessary
condition for nonlocality.

Nevertheless, the use of entanglement broadened faster than nonlocality and
permeated other branches of QM. Many useful results are available for the en-
tanglement in several contexts, while less is known about BIs, especially in the
study of many-body quantum systems, a field of particular interest for this dis-
sertation.

1.2 The complexity of Hilbert space

Entanglement is first of all a formal property of states acting on tensor product
of local Hilbert spaces. Such structures involve a complexity with no classical
analog.

To assess the differences between classical and quantum complexity, con-
sider a system of N -components. In the quantum picture, each subsystem is
associated to a Hilbert space Hi and the system lives in the tensor product
H =

⊗N
i=1Hi. In particular, a generic pure quantum state is the superposition

state

|ψ〉 =

d∑

{si}=1

cs1s2...sN |s1〉 ⊗ |s2〉 · · · ⊗ |sN 〉, (1.1)

where d is the local dimension of each Hilbert space (the d’s are chosen to be
identical, for simplicity) and the sum runs over all the possible configurations
{si}. There are therefore O(dN ) possible configuration-coefficients cs1...sN i.e.
the complexity is exponential in the number of components. In comparison,
the classical representation of the same system is the Cartesian product of the
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subsystem vector-spaces V =
⊕N

i=1 Vi, and each classical collective state is al-
ways a trivial product state whose complexity is linear in N . Starting from this
consideration, Jozsa [Joz98] argued that the benefit of the quantum computation
does not derive from the quantum superposition, which is actually mimicable also
by classical waves, but from entanglement, which “allows one to construct expo-
nentially large superpositions with only linear physical resources and this cannot
be achieved with classical superposition”. Exploiting such intrinsic quantum com-
plexity lies at the heart of the exponential speed-up of quantum algorithms with
respect to the classical ones [Sho94] and motivates the challenge of the universal
quantum computer [Fey82].

The downside of such complexity, on the other hand, is: while waiting for a
quantum computer, how can we efficiently simulate composite quantum systems with
only classical resources? This task is far from trivial especially if one has to deal
with macroscopic systems ofN = O(1023) components. In such case, there is no
way to exactly solve the related secular equation, neither to store the informa-
tion content of Eq. (1.1) with current computers.

1.3 Entanglement and nonlocality in many-body quan-
tum systems

By many-body quantum systems (MBQS), we mean compounds of many inter-
acting quantum components which show emergent collective phenomena not
reducible to a mere sum of the singular component behaviors. An instance of
such features occurs at quantum phase transitions (QPTs) [Sac11; Car10] 2.

Despite being a weaker property than nonlocality, entanglement is a power-
ful method to study MBQS (see review [Ami+08] and references therein). As an
analysis tool, in a number of works entanglement has been proven to be useful
in classifying ground states and characterizing quantum critical phenomena,
with outstanding results especially for lattice models [LSA12; BDZ08]. In the
following, a non exhaustive review of the main results relevant for this thesis is
given.

• Seminal works in the erlier 2000s focused on pairwise entanglement. In
2002, independently in [ON02] and [Ost+02], it was found that for an
Ising chain in a transverse field, pairwise entanglement is nonzero only
for neirest- and next-neirest neighbors spins, and divergence of its deriva-
tive with respect to the external field occurs at critical point.

2Differently than the classical case, where transition is driven by temperature, a QPT takes place
at absolute zero, driven by some external parameter or coupling constant. In the case of second
order phase transitions, both classical and quantum critical points are characterized by a diverg-
ing correlation length, whose shape is described by universal critical exponents, but QPTs have in
addition different kinds of correlations without classical counterparts, namely entanglement and
nonlocal correlations. In this thesis we essentially do not deal with first order QPTs [Pfl05].
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• Later in 2004 the concept of localizable entanglement was introduced in
[VPC04a], as the maximum amount of entanglement one can concentrate
in two spins performing local measurements on the rest of the system.
The resulting maximal distance at which two spins can be entangled is the
entanglement length [VMDC04]. Such new characteristic length is lower
bounded by two-points correlation length and therefore also diverges at
criticality. Importantly, transition of entanglement (diverging entangle-
ment length but finite correlation length) has been found for spin-1 sys-
tems in one-dimension [VMDC04].

• Changing of focus towards Von Neumann entanglement entropy (EE) of
bipartitions of arbitrary size, was a step forward to understand the struc-
ture of ground states. For almost all the states, EE grows linearly with
the number of particles in the bipartition (i.e. is an extensive quantity) but
in the ground states of gapped (i.e. non-critical) local Hamiltonians EE is
sub-extensive, satisfying an area law [ECP10], i.e. the EE scales only with
the surface of the boundary between the two partitions.

• The area law plays a fundamental role in the numerical treatment of MBQS,
being the fundamental reason of the success of tensor networks (TN) ap-
proaches [VMC08; Orú14; Ran+19] from 2003. TN provide a special ansatz
for wave functions and operators on a lattice (consider in particular ma-
trix product states (MPS) [FNW92; VPC04b] in one-dimension and projected
entanglement-pair state (PEPS) [VC04b; VC04a] in higher dimensions); the
quantities of interest are expressed as a result of the contraction of a net-
work of small constituent tensors. The success of TN is unquestionable, al-
lowing simulations previously impossible with older techniques (e.g exact
diagonalization or quantum Monte Carlo). Especially in one-dimensional
lattices density matrix renormalization grup (DMRG) [Whi92] and time
evolving block decimation (TEBD) [Vid04], remain among the most ac-
curate tools for studying low energy properties and time evolution of a
pletora of models. In two- and higher-dimensions, in systems with long-
range interaction and close to criticality, applications of TN are still rele-
vant but difficulties of several nature emerge. TN are ubiquitous in this
thesis, in applications of already existing algorithms as well as in the de-
velopment of new ones.

• Near to a quantum critical point, divergences of EE frequently occur. Most
is known for one-dimensional spin models, where, thanks to an underly-
ing conformal symmetry the system posseses at criticality, universal log-
arithmic scalings of EE emerge [Vid+03; CC09]. Much less is known in
two- and higher-dimensions.

• According to the Landau-Ginzburg paradigm of the second order QPTs, a
non-zero local order parameter distiguishes an ordered from the disordered
phase: in the ordered phase, the ground state does not satisfy the same
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symmetries of the Hamiltonian, that is it experiences a spontaneous sym-
metry breaking. A breakthrough in classification of QPTs has been the dis-
covery of topological phases, which elude the above description. Here,
the ground state does not break any symmetry. In topological phase tran-
sitions the absence of any local order is compensate by some global sym-
metries which “protect” the phase, leading to the notions of symmetry
protected topological (SPT) phases and topological order [Wen04], both
defined in terms of the kind of entanglent owned by the state. Topol-
ogy is often associated with the presence of edge states (gapless, conduct-
ing, state on the boundaries) and is the the theoretical framework for the
study of many intriguing, not yet fully understood, phenomena, such as
the fractional quantum Hall effect. Entanglement spectrum [LH08] (i.e. the
spectrum of the reduced density matrix of a bipartition) shows regular
degeneracy throughout a topological phase of matter and the topologi-
cal entropy [KP06; LW06] (a negative correction to the area law), which
are strong indicators of topological order in two dimensions. Topological
phases are well studied in non interacting systems. Much less is known
about their robustness in presence of strong interactions. Some of the tools
just mentioned will be applied in this thesis to distinguish between topo-
logical and trivial phases in a paradigmatic strongly interacting fermionic
system, the Creutz-Hubbard ladder.

• Being classical systems supposed to be ultimately quantum, it is of fun-
damental importance to understand classical phenomena in terms of in-
trinsic quantum mechanical properties. Classical chaos manifests as con-
sequences of non-linear equations of motions. This is in contrast with the
linearity of the Schrödinger equation. Nevertheless, quantum signatures
of chaos [Haa13] are the subject of intense studies since the 1980s. This re-
search direction starts from the consideration that some classical chaotic
systems can be seen as the semiclassical limit of a strongly interacting
MBQS. The most important research direction includes the characteriza-
tion of quantum chaos via statistics of quantum energy levels. In systems
that have semiclassical chaotic counterpart, different rates of production
of EE seems to distinguish between regular and chaotic behaviours of the
former [Wan+04]. One chapter of this work is dedicated to the extension
of this conjecture to systems not yet studied.

Conversely, less results are available concerning the role of nonlocality in
MBQS. Generically, a many-body quantum state of a MBQS, and in particular
the ground state, is pure and entangled, it violates some BIs, i.e. is nonlocal.

In the modern framework of device independent quantum information
processing [Ací+07] a Bell scenario is represented with several black boxes (one
for each observer, or party) with their relative input and outputs of local mea-
surements. The only relevant quantities characterizing the experiments are the
conditional probabilities to obtain a vector of outputs, given the inputs (the mea-
surments choices). It results [Fro81; Pit86] that the sets of classical behaviours
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form a bounded convex set, the Bell polytope, embedded in the multidimen-
sional space of the probability distributions of outcomes (see Fig. 2.4 in Chap. 2.3
for an explanatory graphic representation): the interior of the polytope contains
all the classical correlations (namely, the correlations with an LHV representa-
tion), while outside the polytope the nonlocal correlations lie. BIs are the linear
inequalities defining the facets of this polytope. In practice, BIs are linear combi-
nations of probabilities, resulting from an experiment involving only local mea-
surements performed on a composite system.

To signal violation of BIs, two parallel and interconnected problems arise, of
mathematical as well as experimental nature. On the one hand, since the num-
ber of facets increases exponentially with the number of observers, the char-
acterization of the full Bell polytope is an impossible task (an NP-hard o NP-
complete problem). On the other hand, concerning the realization of a Bell test
in laboratory, many BIs require the measure of high-order correlators (resulting
from the product of many local observables), and this is very difficult with state
of art experiments.

To overcome these problems, quite recently, in a series of theoretical works
[Tur+14; Tur+15b], BIs involving only one- and two-body correlators were for-
mulated. They are experimentally accessible and, surprisingly, they are violated
by relevant many-body states, ground states of nontrivial Hamiltonians. These
promising results encourage an exploration of new insights BIs can give about
quantum phenomena. In fact, another motivation of this work is the study of
Bell correlations in the vicinity of a quantum critical point.

1.4 Plan of the thesis

The thesis is organized as follows.

Chapter 2 provides an overview of the theory of the entanglement and non-
locality. This chapter does not contain any original results and focuses on those
fundamental concepts recurring in the rest of the dissertation. The formal defini-
tions of entanglement and separability for pure and mixed states are introduced
for finite dimensional Hilbert spaces in the bipartite scenario. For pure states,
the Von Neumann entanglement entropy (EE) provides a unique measure for
the bipartite entanglement. In contrast, in the multipartite case an obvious gen-
eralization of the previous definitions is missing and different nonequivalent
separability criteria exist: we introduce the notions of “k-separability” and “en-
tanglement depth”. A brief section is devoted to the use of entangled states as
resource in metrology, where the “squeezing” is a good indicator of the entan-
glement depth for spin systems.

For many-body quantum system (MBQS), we restrict to the case of spin lat-
tices and to the bipartite case, and introduce the crucial area-law for the EE,
for one-dimensional and higher-dimensional systems. We review the relevant
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cases in which its violation can occur: long-range interactions systems and crit-
ical systems. Since in the former case there are no general results available,
we review some partial results present in literature, but a general theory is still
missing. For one-dimensional short-range interactions critical systems instead,
violations usually consists in a logarithmic divergence of the EE, whose multi-
plicative factor is a universal signature of the underlying conformal field theory.

In the second part of the chapter, the theory of Bell nonlocality is reviewed in
the modern approach of the device independent quantum information process-
ing, where all quantities and relations are expressed only in terms of the condi-
tional probabilities of the experiments. One distinguishes between classical (or
local), quantum and non-signaling correlations. In particular, classical correla-
tions lie inside a polytope, in turn embedded in the set of quantum correlations.
The facets of the classical polytope, which are the boundaries between quan-
tum and the classical behaviours, define the BIs. A Bell experiment is classified
by a triplet (N,m,∆): the number N of parties, the number m of local observ-
ables and the number ∆ of outputs of each observable. For the simplest (2, 2, 2)
scenario, we show the celebrated CHSH BI. The derivation of all BIs becomes
practically impossible when N increases. However, in the (N, 2, 2) scenario a
class of nontrivial BIs was proposed. We review in details such BIs. They obey
permutational invariance and correspond to the facets of a projected polytope.
In turn, their violation is a sufficient but not necessary condition to certified a
state as nonlocal. However, we show that relevant many-body states violate
the BI. Finally, we show that the level of violation of such many-body BI also
provides a criteria to certificate the amount of multipartite entanglement in the
state.

In chapter 3 the TN approach for the classical simulation of MBQS is re-
viewed. Also in this case, no original results are presented. Many concrete ex-
amples are instead provided. We introduce the TN formalism starting from the
way we can represent one-dimensional states: the matrix product state (MPS).
We take advantage of a very suitable standard graphical representation to re-
duce the complexity of the understanding of the formulas. We emphasize the
fact that TN by construction satisfy an EE area-law, which is the main reason
for its success in simulating the ground states of gapped MBQS in generic di-
mension. For one-dimensional systems the “canonical representation” of MPS
is introduced, which allows for the calculation of the Schmidt coefficients (and
then EE and entanglement spectrum) of any bipartition in a very simple way.
The way to represent operators is also given. The DMRG, which will be used
in chapters 5, 6 and 7 is described in its variational version based on the MPS
formulation. The final part of the chapter is devoted to sketching the problems
of the contraction of high dimensional TN.

Chapter 4 is based on the original article Quantum chaos and entanglement in
ergodic and nonergodic systems [PLQ19]. We study EE as a signature of quantum
chaos in ergodic and nonergodic systems. In particular we look at the quantum
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kicked top and kicked rotor as multi-spin systems and investigate the single-
spin EE which characterizes bipartite entanglement of this spin with the rest of
the system. Even if the dynamics of these model is not exactly solvable, the
symmetries of their Hamiltonian allow to restrict the numerical simulations to a
small symmetric sector of the Hilbert space, hence exact diagonalization is suf-
ficient to explore very long-time evolution for many-particle regimes. We study
the correspondence of the “Kolmogorov-Sinai entropy” (a measure of classical
chaos) of the classical kicked systems with the EE of their quantum counterparts.
We find that EE is a signature of chaos in ergodic and nonergodic systems. In
particular, we show that EE can be maximized even when systems are highly
nonergodic, when the corresponding classical system is locally chaotic. In con-
trast, we find evidence of a quantum analog of “Kolmogorov-Arnol’d-Moser”
theory (a classical theory describing the stability of dynamical systems under
perturbations) and we conjecture that entanglement should here play an impor-
tant role.

Chapter 5 is based on the original article Exploring interacting topological in-
sulators with ultracold atoms: The synthetic Creutz-Hubbard model [Jün+17]. We
provide a complete analysis of the synthetic Creutz-Hubbard ladder, a concrete
interacting quasi-one-dimensional fermionic system where correlated topolog-
ical phases and standard insulating phase compete, resulting in a rich phase
diagram. Entanglement properties of the ground state are studied in different
regimes to explore new physics.

The first section of the chapter is an overview on topological insulating ma-
terials. The Haldane phase of the Heisenberg model is considered, as a paradig-
matic example that eludes any classification based on a local-order parameter.
The definitions of “topological order” and “symmetry-protected topological”
(SPT) phases are given. Then, a particular focus is devoted to fermionic sys-
tems. In the non interacting regime there exists a complete classification of all
the possible SPT phases (the AZ classification [AZ97]), based on the symme-
tries of the Hamiltonian. When interactions are added such classification breaks
down, new phases appears and others are destroyed. For one-dimensional sys-
tems, a new classification is possible based on the different projective represen-
tations of the Hamiltonian symmetries which have a direct relation with the de-
generacy of the entanglement spectrum of a bipartition of the ground state. The
latter is proven exploiting the properties of the MPSs under symmetry-group
transformations.

All these concepts are then applied to the Creutz ladder, in the non-interacting
case and then when Hubbard interactions are added. Concerning numerics,
with the DMRG algorithm we are able to characterize the ground state of the
model in all regimes and to locate exactly its critical lines and the underlying
conformal field theories. Wherever possible (namely, in the limit of strong and
weak interactions and in the intermediate regime) we compare numerical re-
sults with analytical calculations. We give special attention to the competition
of correlated topological phases and standard insulating phase. An analysis of
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the entanglement spectrum further provided evidence of the presence of an ex-
tended topological phase.

Chapter 6 is based on the original article Bell correlations at Ising quantum
critical points [Pig+19]. Focusing on the Ising model in a transverse-field with
power-law (1/rα) ferromagnetic interactions, we show that a certain permu-
tationally invariant Bell inequality based on two-body correlations [Tur+14] is
violated in the vicinity of the quantum-critical point. This observation, ob-
tained via analytical spin-wave calculations and numerical DMRG computa-
tions, is traced back to the squeezing of collective-spin fluctuations generated by
quantum-critical correlations. We observe a maximal violation for infinite-range
interactions (α = 0), namely when interactions and correlations are themselves
permutationally invariant.

Chapter 7 is based on the original article Few-body systems capture many-body
physics: Tensor network approach [Ran+17]. Here we propose a new TN-based
scheme to accurately capture the ground-state properties of infinite MBQS in
higher dimensions, directly in the thermodinamic limit. The general idea is to
embed a small bulk of the infinite model in an “entanglement bath” so that the
many-body effects can be faithfully mimicked. We benchmark the results of
the algorithm against other already existing techniques in some simple models,
namely spin models on honeycomb and simple cubic lattices, showing that the
ground-state properties including quantum phase transitions and the critical
behaviors are accurately captured.

The conclusions are finally exposed in Chapter 8.

The thesis contains also four appendices.
Appendix A contains explicit calculations for some results used in Chap. 4.
In Appendix B and Appendix C the matrix product operators representa-

tions for, respectively, the imbalanced Creutz-Hubbard ladder treated in Chap. 5
and the long-range Ising model studied Chap. 6, are derived to adapt the origi-
nal Hamiltonians to the DMRG calculations.

In Appendix D some details about the algorithm introduced in Chap. 7 as
well as some relations between this algorithm and other existing algorithms are
described.
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2 Entanglement and
nonlocality

In this chapter, we introduce the fundamental theoretical concepts that will be
used in rest of the thesis: basic facts about entanglement and entanglement mea-
sures; the role of entanglement as a resource in metrology; the entanglement
properties of many-body quantum system; Bell correlations and important class
of Bell inequalities for many-body systems. Also the Chap. 3 will be devoted to
preliminaries, but it will be completely focused on tensor networks numerical
methods.

2.1 Entanglement

In this section we overview the entanglement properties of finite-dimensional
Hilbert spaces. In Sec. 2.1.1 we introduce the concepts of separable and entan-
gled states, for bipartite and multipartite systems. The Von Neumann entan-
glement entropy is presented as the entanglement measure for bipartite pure
states. The multipartite case is more involved, we underline the differences with
respect to the bipartite scenario and the open problems. Entangled states play
a crucial role also in quantum metrology [Sec. 2.1.4]: we in particular review
some fundamental results for spin systems, where the amount of squeezing of a
state is related to its degree of multipartite entanglement.

2.1.1 Entanglement in the bipartite scenario

Let us restrict to the finite dimensional case and set HA = Cm and HB = Cn,
the model system is fully described by the vectors in the tensor product H =
HA ⊗HB .

Pure states case. We call a pure state |ψAB〉 ∈ H separable (or product) if it can
be written as a product state between two vectors |ψA〉 ∈ HA and |ψB〉 ∈ HB ,
i.e.

|ψAB〉 = |ψA〉 ⊗ |ψB〉. (2.1)

Otherwise the pure state is entangled.
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Given a bipartite pure state |ψAB〉, the separability problem, i.e. the problem
of knowing if the state is separable or entangled, can be solved thanks to the
Schmidt’s theorem, which states that the following decomposition (Schmidt
decomposition) holds 1:

|ψAB〉 =

r∑

i=1

ai|ui〉|vi〉, (2.2)

where {|ui〉A} and {|vi〉B} are convenient orthonormal vectors respectively in
HA and HB with m ≤ n. The numbers ai > 0 (i = 1, . . . , r) are the Schmidt
numbers and satisfy the condition

∑r
i=1 a

2
i = 1 with r ≤ m. If r = 1 the state is

separable, otherwise is entangled 2.
An important class of entangled states are the maximally entangled states

|Φd+〉 = 1√
d

∑d
i=1 |ui〉|vi〉, where d = min{m,n} (the reason for such name will

be clear in Sec. 2.1.3 after the introduction of the entanglement measures.)

Mixed states case. Pure states are not generic and a complete theory of the
entanglement must involve mixed states 3. For such states, not only the detec-
tion of entanglement is an NP-hard problem [Gur03], but also the definition of
separability (even in the simplest bipartite case) is not trivial and has been given
only relatively later: according to Werner [Wer89] a bipartite mixed state ρAB is
said to be separable iff it admits the following decomposition:

ρAB =

K∑

i=1

piρ
(A)
i ⊗ ρ(B)

i , (2.3)

for some integer K ≤ (mn)2, where ρ(A)
i = |φ(A)

i 〉〈φ
(A)
i | and ρ(B)

i = |χ(B)
i 〉〈χ

(B)
i |,

|φ(A)
i 〉 and |χ(B)

i 〉 are pure states in HA and HB respectively and the 0 < pi < 1

1To sketch the proof, let us first write the state of the bipartite system in a generic form |ψAB〉 =∑
i,j ψij |i〉A|j〉B , where {|i〉A} and {|j〉B} are orthonormal bases in HB and HB . The complex

coefficients ψij can be seen as am ·n rectangular matrix [Ψ]ij that can be decomposed by a singular
value decomposition, obtaining [ψ]ij = UilDllV

†
lj , where U and V † are unitary matrix and D is a

non-negative diagonal matrix whose elements are the Schmidt coefficients. This decomposition will
be also important later in Chap. 3: the matrix product state representation of the quantum states, is
essentially made by repeated singular value decompositions.

2In Chap. 5, in the context of the topological phases of matter, we will reinterpret the ladder of the
Schmidt numbers as the spectrum of an “entanglement Hamiltonian” HA such that ρ(A) = e−HA ,
where ρ(A) = TrBρAB is the trace with respect to the subsystem B of the density matrix ρAB =
|ψAB〉〈ψAB |. In this different fashion, we will also refer to the Schmidt numbers as entanglement
spectrum

3Actually, every realistic physical system is coupled with other (more or less complex) systems
and a perfect isolation is ultimately impossible (even though in some circumstances, theoretical
and experimental well motivated approximations allow to describe a system as closed). In these
cases the density matrix is the most general object which describes a quantum state: pure states and
statistical mixtures.
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are probabilities (
∑K
i pi = 1). In other words, ρAB is a convex combination of

tensor products ρ(A)
i ⊗ ρ(B)

i .
This definition, in addition to being merely formal, has actually an opera-

tional meaning. In fact Eq. (2.3) represent the most general state that can be pre-
pared by means of only local operations and classical communications (LOCC)
[Ben+96] 4. Alternatively one can say that [PV14] “entanglement may be defined as
the sort of correlations that may not be created by LOCC alone”. Even if we shall not
directly deal with mixed states in this thesis, their importance is hardly underes-
timable from the theoretical point of view. Definition of separability in [Wer89]
was in fact provided with the aim to show an example of mixed entangled bi-
partite yet admitting a local hidden variable description, a situation impossible to
encounter in the pure case. This proved the nonequivalence between the con-
cepts entanglement and nonlocality (namely, the violation of some Bell inequal-
ities) which, as will be clearer in Sec. 2.3, are different resources for quantum
information and communication.

2.1.2 Entanglement in the multipartite scenario

In the multipartite scenario H = H1 ⊗ H2 ⊗ · · · ⊗ HN , the situation is more in-
volved and the definition of separability admits many different generalizations,
since there are many ways of grouping the parties [GT09]. Directly considering
the general case of mixed states, we start giving the definition of k-separability,
which resembles the notion of separability. Let us then label the n parties as
[n] = {1, . . . , N} and consider the possible partitions into k nonempty, pairwise
disjoint subsets: A1, . . . , Ak ( [n], Ai ∩ Aj = ∅ for i 6= j and ∪kiAi = [n]. We
call Pksep the set of all such possible partitions of [n]. Then, a state ρ ∈ D(H) is
k-separable if admits the following convex decomposition:

ρ =
∑

p∈Pksep

λp
∑

i

λpi
⊗

Aj∈p
ρ

(j)
i , (2.4)

for 0 < λp < 1,
∑
p λp = 1 and 0 < λpi < 1,

∑
i λ

p
i = 1.

Alternatively, one can classify multipartite entangled states with the notion
of k-producibility [Tót12; Hyl+12; Alo+19]. The partitions Pkprod of [n] are now
taken in a way that subsystems Ai contain at most k elements. A pure state
|ψ〉 ∈ H is k-producible with respect to Pkprod iff it can be written as:

ρ =
∑

p∈Pkprod

λp
∑

i

λpi
⊗

Aj∈p
ρ

(j)
i , (2.5)

4As perceivable from the name, in the local operations and classical communications (LOCC)
paradigm two agents, Alice and Bob, are allowed to perform only local operation (unitaries and mea-
surements) on their own subsystemsHA andHB respectively. No nonlocal operations on the whole
system are allowed. They can furthermore share (in one- or two-way) classical information (commu-
nication) (bits) through a classical channel, but they cannot share any quantum state.
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FIGURE 2.1: An illustration of examples of different possible
degrees of k-producibility and l-separability for a system of

N = 9 parties (blue circles). (Reprinted from [Tur+19])

with obvious meaning of notation. A quantum state that cannot be written in
the form of Eq. (2.5) is said to have an entanglement depth at least of k+ 1 or, in
other words, that there are at least k+ 1 parties genuinely entangled among them.
Finally, a state is genuine multipartite entangled if it is notN−1-producible or,
equivalently, if it has an entanglement depth ofN . Refer to Fig. 2.1 for a pictorial
representation of these definitions.

As we will see in Sec. 2.1.4, k-producibility is related in spin systems to the
squeezing of the state. Without any reference to the concrete system, it can be
certified by a special class of Bell inequalities which we will introduce Sec. 2.3.

2.1.3 The Von Neumann entanglement entropy

Besides the necessity of distinguishing between entangled and separable states,
the quantification of entanglement is a fundamental task. Again, in the simplest
but important case of bipartite pure state it is possible to show that there exists
a unique 5 measure of entanglement E, given by the Von Neumann entropy S
of the bipartition:

E(|ψAB〉) = S(ρA) = −Tr(ρA log ρA)

= S(ρB) = −Tr(ρB log ρB) = −
∑

i

a2
i log a2

i ,
(2.6)

where ρA(B) = TrB(A)ρAB is the reduced density matrix for the subsystem
A(B). In other words, S is the Shannon entropy of the Schmidt coefficient ai.

5For an axiomatic approach to the entanglement quantification see the review [Hor+09]. Two
reasonable constraints that each entanglement measure should satisfy are: (1) monotonicity under
LOCC: a LOCC operation cannot increase entanglement; (2) entanglement vanishes on separable
states. Furthermore, the Von Neumann entropy is the unique measure which satisfy the follow-
ing three formal conditions: (1) normalization: it behaves in an “information theoretic way” on
maximally entangled states, i.e. it counts e-bits E(|Φd+〉) = log d; (2) asymptotic continuity: if
‖ρ − σ‖1 → 0, |E(ρ) → E(σ)| (ρ and σ states); (3) additivity: for several copies of the system,
E(ψAB ⊗ φAB) = E(ψAB) + E(φAB).
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This definition makes particularly clear the information contents of entangle-
ment entropy. We also refer to the Von Neumann Entanglement entropy simply
as entanglement entropy (EE). In the rest of this section we mainly focus on the
properties of EE to characterize MBQS.

2.1.4 Entanglement and quantum metrology

Quantum metrology 6 is that branch of physics which aims to exploit quantum
properties to improve the measurement precision. The precise measurement of
a physical quantity is often indirect, inferred by the statistical occurrences of an-
other one, which is the output of the experiment. The paradigmatic framework
is an interferometric setting, where the target quantity depends on the precise
determination of a phase shift.

Let us consider the case of ν independent measurements where, as input-
state ρ0 we have an N -particle system, whose degrees of freedom are two. In
the quantum case we restrict to states ofN spin-1/2 components. An output µ is
measured to have an estimation Θ(µ) of the unknown quantity θ. By only using
classical states, the statistical precision ∆θ in such estimation is bounded by the
so-called Cramér-Rao bound

∆θ ≥ ∆θCR =
1√

FC(θ)ν
. (2.7)

FC(θ) is the (classical) Fisher information

F (θ) =
∑

µ

1

P (µ|θ)
(∂P (µ|θ)

∂θ

)2

, (2.8)

where P (µ|θ) is the likelihood function, the probability of obtaining µ condi-
tioned by the measurement of θ.

The quantum Fisher information FQ(θ) is defined as the Fisher information
maximized over all the possible quantum measurements. By this extension, the
Cramér-Rao bound is improved to the quantum Cramér-Rao bound

∆θCR ≥ ∆θQCR =
1√

νFQ(θ)
, (2.9)

since FC(θ) ≤ FQ(θ). The quantum Fisher information is upper bounded: FQ ≤
N2. By considering only separable states one can reach the standard quantum
limit

∆θSQL =
1√
Nν

. (2.10)

6For a comprehensive review see [Pez+18] and references therein.
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To beat this limit, using entangled states as input is a necessary (but not suffi-
cient) condition. In particular, a large Fisher information requires large entan-
glement depth: for genuine multipartite entanglement FQ is maximized (FQ =
N2) and the maximum possible sensitivity in phase estimation, the so-called
ultimate Heisenberg limit, is achieved

∆θHL =
1

N
√
ν
. (2.11)

More in general, the quantum Fisher information is a witness for the entangle-
ment depth, in fact if

FQ
N
≥ k, (2.12)

the state has an entanglement depth of at least k + 1.
Let us consider spin states and the collective spin operators Jγ =

∑N
i=1

σγi
2

where σγi are Pauli matrices, γ = x, y, z. Let ~J = {σx, σy, σz} and n̂ · ~J = ~Jn the
projection of ~J within the direction n̂. FQ(θ) ≤ 4(∆ ~Jn)2 ≤ (2J)2 ≤ N2, where√
J(J + 1) is the spin length. Therefore the most sensitive spin states are those

with maximum spin J = N/2, which are symmetric for exchange of particles.
Among those entangled states useful in metrology, an important position is

occupied by the spin-squeezed states, which are states with squeezed variance
along a direction at the expense of an antisqueezing along an orthogonal direc-
tion (in order to satisfy the Heisenberg principle). To characterize them, suppose
to rotate the multi-spin state around an axis n̂ perpendicular to the mean spin
direction ŝ, a spin squeezing parameter is introduced:

ζ2 =
N(∆ ~J⊥)2

〈 ~Js〉2
, (2.13)

where ⊥ is a third directions orthogonal to both s and n̂. If ζ2 < 1, the state
is spin-squeezed along ⊥ [KU93]. Importantly, optimal spin-squeezed states
saturate the Heisenberg inequality (∆ ~J⊥)2(∆ ~Jn)2 ≥ |〈 ~Js〉|2/4, whereas a lower
bound for the squeezing parameter is ζ2

a ≥ 2/(N + 2).
A fundamental relation between spin-squeezing and Fisher information is

useful to detect k-particle entanglement in spin systems. In fact from Eqs. (2.12)-
(2.13) it follows that if

ζ−2 ≥ k, (2.14)

the state has an entanglement depth of at least k + 1.
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2.2 Many-body quantum systems: area law for the
entanglement entropy

Quantum information theory paves the way for an alternative approach to the
study of the many-body quantum systems (MBQS) [Ami+08]. From a funda-
mental point of view, it is interesting to characterize ground states and critical
phenomena of MBQS by involving only exclusively quantum quantities. To this
purpose, we focus here on the so-called area law for the EE and its violations.
We limit the review to the context of MBQS on lattices, where many rigorous
theoretical results are available and experimental implementations are very so-
phisticated (in particular ultracold atoms in optical lattices [BDZ08; LSA12] and
trapped ions [PC04] are widely used thanks to their scalability and tunability).

Taking a bipartition of H and randomly picking a state from one block, the
resulting block EE is nearly maximal and, just as in the classical case, is an exten-
sive thermodynamic quantity 7. We refer to this behavior as a volume law scaling
of EE. However, this quite generic property fails in a very special but yet impor-
tant case: the ground states of gapped-local Hamiltonians. For these states, an
area law for the EE holds [ECP10], i.e. the EE grows proportionally the surface
of the blocks of the bipartition [Fig. 2.2]. Formally, let R be a subsystem of a
lattice, consisting of contiguous sites, ρR its reduced density matrix and ∂R its
boundary, having an area law means that

S(ρR) = O(∂R). (2.15)

Concrete versions of bound (2.15) depend on the particular geometry of the sys-
tem taken into account (dimensionality, topology of bipartition, etc.). Well estab-
lished results are available mostly for one-dimensional systems. Here, for spin-
Hamiltonians with short-range interactions, a logarithmic violation of the area
law is characteristic of criticality [Sec. 2.2.2]. Less clear is the situation in higher
dimensions [Sec. 2.2.3] where, although area law is fulfilled for non-critical sys-
tems and several forms of the bound (2.15) have been calculated, there are not
clear violations of the bound at criticality. Long-range interactions Hamiltoni-
ans [Sec. 2.2.4] deserve a separate discussion since there is still a lack of general
results: for example, violations of the area law may occur even for gapped sys-
tems, but weaker versions of the theorem are restored if interactions decay fast.
Finally, let us note that the area law lies behind the reason for the success of
tensor networks numerical methods we will introduce in Chap. 3.

7Sen proved [Sen96] that randomly piking up a state from a Hilbert space of dimension nm, the
average entropy of a subsystem of dimensionmwithm ≤ n is 〈S(ρA)〉 =

(∑nm
k=n+1 1/k

)
− m−1

2n
.

Asymptotically for 1 � m ≤ n the formula reduces to 〈S(ρA)〉 ' logm − m
2n

, where logm is just
the maximum entropy the subsystem can have (maximally entangled state).
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FIGURE 2.2: A bidimensional lattice L is bipartite in two re-
gions R (shaded-grey) and L \ R: if the area law [Eq. (2.15)]
holds, the Von Neumann entanglement entropy scales as the
length of the boundary of bipartition (the number of red sites).

(Reprinted from [Tur+15a])

2.2.1 Area law in one-dimensional non-critical systems

For one dimensional (1D) lattice systems a general result was provided by Hast-
ings [Has07]. Let L = {1, . . . , N} be a N -sites lattice, with arbitrary local dimen-
sion d and take as sub-region R the block of spins R = {1, . . . , n}, n < N .
Consider an Hamiltonian with only nearest-neighbors interactions 8:

H =
∑

i,i+1

Hi,i+1, (2.16)

where each elementHi,i+1 has support on sites i and i+1. Another requirement
is that interactions are bounded by a constant: ‖Hi,i+1‖ ≤ J . Finally, let the
Hamiltonian be gapped with an unique ground state, i.e. there must be a finite
energy gap ∆E between the ground state and the first excited state (the system
is not critical). Under these assumption the Hastings’ theorem states that

S(ρR) ≤ 6c0ξ
′ log(ξ′) log(d)2ξ

′ log(d), (2.17)

for some numerical constant c0 of order of unity and ξ′ = max{2v/∆E, ξC}.
v is the velocity of sound and ξC another constant of the order of unity. The
last two quantities appear as consequence of the Lieb-Robinson bound which in
words expresses a causality principle: there exists a causality cone for the spread

8Without loss of generality any local short-range-interactions Hamiltonian can be viewed as a
nearest-neighbors one, grouping more sites in a single site.
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of correlations in a lattice, i.e. a bound for the velocity (and then the time) the
information can propagate 9.

Finally, note that bound (2.17) is independent of R because in 1D the bound-
ary of the set R of contiguous spins is simply just one or two spins (depending
on the chain has respectively open or periodic boundary conditions). Hence in
1D EE is always upper bounded by a constant, a crucial property behind the
success of the DMRG [Sec. 3.3].

2.2.2 One-dimensional critical systems: logarithmic corrections
to area law

A general feature of quantum phase transitions is that approaching the criti-
cal point the gap gets closed. Therefore a violation of the area law is expected.
However, for continuous phase transitions (second and topological phase tran-
sitions) the criticality is also accompanied by a diverging correlation length and
because of that the system is invariant under global dilatation of the length scale
l→ λl. In such a case a theorem of Polyakov holds (see [Mus10], Chap. 10, for a
discussion): a physical system with local interactions that is invariant under transla-
tions, rotations, and a global dilatation, is also automatically invariant under the larger
class of conformal transformations. Namely, those transformations that preserve
the angles.

Studying criticality with the conformal group of symmetries [Vid+03; CC09]
allowed one to prove that block EE scales logarithmically with the number of
components of the bipartition, with a universal prefactor that is the central
charge of the specific conformal symmetry the system possesses at criticality.
For a spin chain of length N with open boundary conditions, one has [CC04]

S(l) =
c

6
log
[N
πa

sin
( π
N
n
)]

+ c1, (2.19)

where c is the central charge, n is the length of the bipartition (the formula is
symmetric for n → N − n), a is the lattice spacing and c1 is a non universal
constant. As examples, c = 1/2 for the Ising model and c = 1 for XX and XXZ
chains [Vid+03].

9The Lieb-Robinson theorem [LR72] states that on a lattice and for local Hamiltonians with
bounded interaction strength, there exists a velocity v and length scale ξC such that for any two
operators A and B with support on sets X and Y respectively,

‖[A(t), B]‖ ≤ c‖A‖‖B‖ exp {−ξCdist(X,Y )}, (2.18)

for |t| ≤ 1/v, where A(t) = exp{iHt}A exp{−iHt} and where the distance between sets X and Y
is given by dist(X,Y ) = mini∈X,j∈Y (|i− j|).
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2.2.3 Area law in higher dimensions

For higherD-dimensional lattices a number of results for concrete systems (fermionic
and bosonic) suggest that an area law still holds (see [ECP10] for a review). On
the other side, logarithmic violations at criticality do not seem to hold.

InD > 1, technical difficulties arise especially because in high dimension the
block surface can be a nontrivial object. However, for gapped phases, Masanes
could prove in [Mas09] that an area law with logarithmic corrections holds for
the low energy eigenstates (ground state and first excited states):

S(ρR) ≤ c|∂R| log(|R|)k, (2.20)

where |R| is of order of the number of lattice sites in R, c is a system-dependent
constant ad k is an integer ( k = 1 for connected cubic regions, k = D for
arbitrary regions). Exact forms of bound (2.20) can be found in the original
paper [Mas09] for different underlying hypothesis generally more restrictive
with respect to the 1D case. In fact, besides requiring gapped-local Hamilto-
nian and bounded interactions (the Lieb-Robinson theorem is still part of the
proof), some constraints have to be added on the decay of the correlations. Fi-
nally, note that logarithmic correction in (2.20) does not compromise the behav-
ior of the EE being still a true area low, at least in the asymptotic limit, because
|∂R| log(|R|)k/|R| → 0 for |R| → ∞with k > 0.

2.2.4 Area law in systems with long-range interactions

Systems with long-range interactions are not an anomaly in nature [Cam+14].
In effect, short-range interactions are often only a very good approximation
of very fast decaying couplings. For instance, in bosonic ultra-cold quantum
gases, besides van der Waals interactions, approximated with a contact poten-
tial, long-range dipolar-dipolar interactions are responsible for many intriguing ef-
fects [Lah+09]. For lattice spin systems, violations of the area law have been nu-
merically observed also in gapped phases. As a typical example, let us consider
spin-1/2 models with polynomial J(α) ∝ 1/rα decays of coupling strength. Vi-
olation of the area law are found, often depending on α (reasonably one can
expect that for large α the interactions behave as short-range). In [KLT12] for
anti-ferromagnetic interactions, clear logarithmic violations appear for α . 1
deep inside the paramagnetic phase. In [Vod+15] the latter system and also a
long-range Kitaev chain have been proven break the conformal symmetry at
criticality for α . 1, with an anomalous big values of the central charge. Quite
general results for lattice spin Hamiltonian of arbitrary dimensionD and power-
law decay of correlations 1/rα was presented in [Gon+17], where it was proved
that for α > 2D + 2 the area law is satisfied if the ground state can be adia-
batically connected to another satisfying the area law. In conclusion, previous
results show that short-range correlations are not strictly necessary to have an
area law of the EE.
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From an experimental point of view, exponentially or power-law decaying
long-range interactions are now possible to be realized for the 1D case, see for
example [Ric+14] or [Dou+15] for an experimental proposal.

2.3 Nonlocality

Quantum mechanics can give rise to a kind of correlations which, according to
the terminology in the EPR paper [EPR35], are not compatible with the paradigm
of local realism. In the modern terminology, are called nonlocal (or EPR corre-
lations), those correlations among the results of local measurements which do
not admit a description in terms of local hidden-variable models [Bel64; Boh51;
Bel66; Bel04; Bru+14]. From an operational point of view, the latter definition
applies to correlations violating some Bell inequalities (BIs). These are inequal-
ities formulated in terms of linear combinations of conditional probabilities, re-
sulting from an experiment involving only local measurements performed on a
composite system.

As already pointed out in the introduction (Chap. 1), the concept of non-
locality is strictly related, although nonequivalent, to that of entanglement.
On the one hand, it has been proven that any entangled pure state is nonlocal
[Gis91; PR92; GG17], but it is possible to construct entangled mixed states which
do not violate any BI [Wer89]. On the other hand, this nonequivalence mani-
fests also in somehow counterintuitive behaviors when characterizing quantum
states: for example, it is known that, in many cases, violation of BIs is larger
for partially entangled states than for maximally entangled states [MS06], with
nontrivial consequences in the use of entanglement and nonlocality as resources
in quantum information protocols.

These differences, proven in few-body systems, may have fundamental im-
pacts in many-body systems, where the role of nonlocality is fairly unexplored,
although much is know about entanglement. One reason for such difficulty lies
in the extreme difficulty in deriving BIs when the number of parties of a Bell
experiment increases. In fact, as we shall see, the number of BIs necessary to
fully characterize the set of local behaviors of a many-body system grows expo-
nentially with the number of parties.

Besides computational complexity, there are also experimental difficulties. A
many-body Bell experiment, in fact, requires the measurement of a product of as
many observables as the number of parties but at the state of art experimental
techniques this is extremely difficult (although in principle possible [Bak+09;
She+10]).

In this section, we review the main concepts related to nonlocality and Bell
experiments in the general framework of the device-independent quantum in-
formation processing [Sec. 2.3.1], where all the relevant quantities characteriz-
ing the experiments are the conditional probabilities to obtain a vector of out-
puts, given the inputs [Ací+07]. In Sec. 2.3.2 the definitions of local correlations
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and nonsignaling correlations are given, with the corresponding characteriza-
tion in terms of polytopes in the probability spaces. Quantum correlations are
also defined but they do not form a polytope. In the same section, we also
show that in the case of dichotomic local measurements (two outputs) condi-
tional probabilities have a useful interpretation in terms of expectation values.
In Sec. 2.3.3 a formal definition of BIs is provided. Finally, in Sec. 2.3.4 we face
the many-body case. The recent results of Tura et al. in [Tur+14; Tur+15b] are
illustrated: they found a class of analytic permutationally invariant BIs involv-
ing only one- and two-body correlators, which are violated by relevant many-
body states and can be experimentally tested. The amount of violation of these
BIs provides also a certification of the entanglement depth, in alternative to the
squeezing measurements.

2.3.1 Device-independent formulation of Bell inequalities

In order to have a theory robust against experimental imperfections and the
derivation of BIs independent of any concrete experimental realization, we will
work in the modern framework of device-independent quantum information
processing (DIQIP) [Ací+07]. In the DIQIP approach, each party is imagined
as a black box, where an agent is able to locally select an input (namely a button;
there is one button for each possible local measurement setting) in order to get
an output (the local measurement outcome) [Fig. 2.3]. No assumptions are made
about the contents of the boxes.

A Bell experiment (or scenario) is described by a triplet of numbers (N,m,∆).
N is the number of parties (boxes); each party is labeled by an index i. In a
run of the experiment, the i-th party performs the measurement M(i)

xi , where
xi ∈ {1, . . . ,m}. Each measurement xi has ∆ outcomes ai ∈ axi1 , . . . , a

xi
∆

10. The
simplest Bell experiment is (2, 2, 2) and the celebrated Clauser-Horne-Shimony-
Holt (CHSH) inequality [Cla+69] is an example.

In the DIQIP approach, one considers probability distributions of results as
the only relevant quantities. After many repetitions of the experiment, one ob-
tains the joint conditional probabilities or correlations

P (~a|~x) := P (a1, a2, . . . , aN |x1, x2, . . . , xN ) ≥ 0, (2.21)

denoting the probability to get the outputs a1, a2 . . . aN once the measurements
x1, x2, . . . xN are performed. To get a valid probability distribution, each P (~a|~x)
must be non-negative. There are ∆NmN possible combinations of inputs and
outputs ~a|~x. The available information is the collection {P (~a|~x)} of these proba-
bilities, giving the required probability distribution. From a geometric perspec-
tive, one can imagine conditional probabilities P (~a|~x) as vectors ~P ∈ RD, with

10For the sake of clarity and since we will concern with situations that are symmetric under per-
mutation of the parties, we limit to the case where the number ∆ andm of I/O are the same for any
box. Furthermore, continuous outputs or/and input can be considered (see [Bru+14] for references).
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FIGURE 2.3: Schematic picture of the Bell experiment in the
DIQIP approach. Each party is a black box, where an agent lo-
cally selects a measurement setting or input xi to get an output
(the local measurement outcome). The results of a repetition of
the experiments are collected in vectors of conditional probabil-

ities. (Reprinted from [Tur+15a])

D = (∆m)N . Actually, components of ~P are not independent but satisfy some
linear constraints. First of all, a normalization condition is required:

∆∑

a1,...,aN=1

P (a1, a2, . . . , aN |x1, x2, . . . xN ) = 1. (2.22)

Thanks to non-negativity and normalization, the set of conditional proba-
bilities (2.21) is an affine subspace of RD of dimension d = (∆ − 1)NmN , the
probability space P . P is a polytope [Pit86] (a bounded polyhedron), i.e. a con-
vex hull fully described by a finite list V of extreme points, its vertices v ∈ V .
The number of vertices of P is D 11. We will encounter two more polytopes in
next section, both contained in P : one is the set NS of no-signaling behaviors,
the other one is the set L of local behaviors, whose vertices have the important
physical interpretation of deterministic local behaviors, while its facets are the
Bell inequalities.

2.3.2 No-signaling, local and quantum correlations

No-signaling constraint. Besides normalization, it is physically reasonable to im-
pose P (~a|~x) also a no-signaling constraint, which expresses causality when par-
ties are spacelike separated, i.e. the impossibility of a party to instantaneously
influence the others by its measurement choices. Mathematically, this requires

11 Thanks to convexity, each vector ~P of the polytope P can be always expressed as the convex
sum

~P =
∑
v∈V

Pvv, (2.23)

for 0 ≤ Pv ≤ 1,
∑
v∈V Pv = 1
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FIGURE 2.4: (a) Graphical representation of the chain of inclu-
sions in Eq. 2.35: L ( Q ( NS ( P . Local polytopeL is strictly
contained in the set Q of quantum correlations (which is not a
polytope), in turn strictly contained in the no-signaling poly-
tope NS. Each facet of L is a BI. Red dots vi are the vertices
of L. (b) Polytope L is projected in a lower dimensional one
π(L) (by considering only low-order correlators). Vertices are
projected into vertices, but some of them will fall in the interior
of π(L) (in general external points of L are projected in exter-
nal points of π(L), this is the case for vA and vB). Projection
does not come for free: whereas local behaviors still remain lo-
cal (point p1), there are some nonlocal behaviors which are not
correctly evaluated (for example point p2). Importantly, if a vio-
lation of PIBI is found, the corresponding point is nonlocal also

in the general case (this is the case for point p3).

that marginal probability distributions among all parties except the k-th, are inde-
pendent of xk:

∆∑

ak=1

P (a1, a2, . . . , ak, . . . , aN |x1, x2, . . . , xk, . . . , xN )

= P (a1, a2, . . . , ak−1, ak+1, . . . , aN |x1, x2, . . . , xk−1, xk+1, . . . , xN ),

(2.24)

requiring the existence of well defined conditional probabilities P (ai|xi) for
each box. The subset NS of P of no-signaling correlations is also a polytope of
dimension dimNS = (m(∆N − 1) + 1)N − 1.

Local (or classical) correlations. In terms of conditional probabilities we can
now formalize the central notion of locality. In general, correlations (2.21) could
be not factorizable, i.e. P (a1, . . . , aN |x1, . . . , xN ) 6= ∏N

i=1 P (ai|xi), denoting sta-
tistical dependence among local measurements. There is nothing strange in such
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dependence, which does not mean there is any influence at distance among
the parties: in a local theory, statistical dependence takes place if the subsys-
tems have interacted in the past. In fact, conditional probabilities factorize if we
are able to exactly reconstruct the full story of the parties (and the interactions
among them), encoded in a local hidden-variable (LHV) λ:

P (a1, a2, . . . , aN |x1, x2, . . . , xN ) = P (a1|x1, λ)P (a2|x2, λ) · · ·P (aN |xN , λ),
(2.25)

meaning that in the experiment, the probability of obtaining each ai depends
only on the local measurement xi and on λ, but not on other measurements and
outcomes. λ is called “hidden” because in practice it could be not accessible. In
general, λ may also vary along the experimental runs and it is substituted by a
probability distribution q(λ):

P (a1, a2, . . . , aN |x1, x2, . . . , xN )

=

∫

Λ

dλq(λ)P (a1|x1, λ)P (a2|x2, λ) · · ·P (aN |xN , λ),
(2.26)

where λ ∈ Λ, q(λ) ≥ 0 and
∫

Λ
dλq(λ) = 1. Such a factorization formally ex-

presses the condition of locality in Bell experiments, meaning the capability of
simulate the experiment with a local hidden-variable model.

Joint probability correlations can equivalently factorize in terms of deter-
ministic LHV model. In a deterministic model, given xi, the outcome of a box
is completely determined by the local variable λ; the deterministic conditional
probabilities D(ai|xi, λ) can assume only two values: 1 for the fixed (determin-
istic) outcome of the measure and 0 otherwise, i.e. D(ai|xi, λ) = δ(ai − axii ).
Eq. (2.26) now reads:

P (a1, a2, . . . , aN |x1, x2, . . . , xN )

=
∑

Λ

qλD(a1|x1, λ)D(a2|x2, λ) · · ·D(aN |xN , λ). (2.27)

The set of local (deterministic) strategies is a convex polytope, the important Bell
polytope L [Fro81; Pit86], whose (∆m)N vertices are just the local deterministic
behaviors D(ai|xi, λ). Since deterministic strategies satisfy no-signaling con-
straint, L ⊂ NS 12.

12The no-signaling property of deterministic strategies are proven as follows:

∆∑
ak=1

P (a1, . . . , ak, . . . , aN |x1, . . . , xk, . . . , xN )

=
∑
Λ

qλD(a1|x1, λ) · · ·
∆∑

ak=1

D(ak|xk, λ) · · · , D(aN |xN , λ)

= P (a1, . . . , ak−1, ak+1, . . . , aN |x1, . . . , xk−1, xk+1, . . . , xN ).

(2.28)
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It is worth noting that no assumptions about the underlying theory have
been done so far, in particular no mention about classicality: (formal notion
of) locality [Eqs. (2.26, 2.27)] is the only assumption behind the definition of
the local polytope. However, being classical physics local, the local polytope is
commonly interpreted as classical polytope while the related probability dis-
tributions (2.26, 2.27) correspond to our understanding of classical correlations
between local independent measures.

Quantum correlations. When the system is in a quantum state and quantum
observables are involved, the vectors ~P of quantum conditional probabilities
are predicted via the Born’s rule:

P (a1, a2, . . . , aN |x1, x2, . . . xN ) = Tr(ρΠa1
x1
⊗Πa2

x2
· · · ⊗ΠaN

xN ). (2.29)

ρ ∈ H =
⊗N

i=1Hi and Πai
xi are measurement operators acting on Hi 13. Set Q

of quantum correlations is convex but is not a polytope [Pit86]. Using similar
arguments as in footnote 12, one proves that quantum correlations satisfy no-
signaling constraint, i.e. Q ⊂ NS.

Dichotomic observables. The above definitions have a convenient interpreta-
tion in the ∆ = 2 scenario (N,m, 2), which is particularly relevant for this dis-
sertation. For dichotomic measurements, one can, in fact, work with expecta-
tion values or correlators 14, instead of probability vectors (2.21). Provided the
redefinition of the outcomes from {0, 1} to {−1,+1}, the relation between the
two representations is, for one-body expectation values:

〈M(i)
xi 〉 = P (ai = 1|xi)− P (ai = −1|xi), (2.30)

For two-body correlators:

〈M(j)
xjM(i)

xi 〉 = P (ai = aj |xi)− P (ai 6= aj |xi). (2.31)

Similar relations hold for higher order correlators:

〈M(j1)
xj1
· · ·M(jk)

xjk
〉

=
∑

aj1 ···ajk

(−1)aj1⊕aj2⊕···⊕ajkP (aj1 , . . . , ajk |xj1 , . . . , xjk), (2.32)

with j1 < j2 < . . . < jk = 1, . . . , n, k = 1, . . . , N and⊕ indicates the sum modulo
2. In particular, for quantum observableM(i)

xi = Π
(+1)
xi − Π

(−1)
xi . Deterministic

13Measurement operators are called also positive operator-value measures (POVM). They are positive
semi-definite Π

xi
ai ≥ 0 for any ai and xi and sum the identity

∑
ai

Π
xi
ai = 1. If dimensions Di

of local Hilbert spaces Hi = CDi are not bounded, we can always assume Π
xi
ai to be standard

projective “Von Neumann” measurements [NC02].
14Do not confuse the terminology: for “correlators” we mean expectation values or correlation

functions, which are different from “correlations” that is the conditional probabilities (2.21).
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behaviors defining the vertices of L are those correlators that factorize as:

〈M(j1)
xj1
M(j2)

xj2
· · ·M(jk)

xjk
〉(det) = 〈M(j1)

xj1
〉〈M(j2)

xj2
〉 · · · 〈M(jk)

xjk
〉. (2.33)

Relation (2.32) can be inverted to provide the combination of correlators neces-
sary to obtain a given conditional probability vector:

P (a1, a2, . . . , aN |x1, x2, . . . , xN )

=
1

2N

(
1 +

N∑

k=1

∑

1≤j1<···<jk≤N

aj1 · . . . · ajk〈M(j1)
xj1
· · ·M(jk)

xjk
〉
)
.

(2.34)

2.3.3 Bell inequalities

So far in the DIQIP approach, we have defined a series of requirements the prob-
abilities distributions of outcomes from a Bell experiment must satisfy in order
to: (1) be true probabilities (normalization condition (2.22)); (2) respect causal-
ity (no-signaling constraint (2.3.2)); (3) be local [Eqs. (2.26) and 2.27)]. We also
stated that the sets P ,NS and L are convex polytopes, whereasQ is convex but
is not a polytope.

Importantly, we found the following inclusion-relations among these sets
hold: both local and quantum joint conditional probabilities satisfy no-signaling
principle, i.e. L ⊂ NS andQ ⊂ NS and they are strictly contained inP . In addi-
tion, we know that L ⊂ Q because all correlations belonging to L can be realized
with separable (factorizable) states. Thanks to Bell’s theorem [Bel64], we know
there are quantum states which are nonlocal, therefore Q 6= L. Finally it is pos-
sible to find no-signaling correlations which are not quantum [PR92], hence also
Q 6= NS . In summary, the following chain of inclusions holds [Fig. 2.4(a)]:

L ( Q ( NS ( P. (2.35)

Once the local polytope L has been introduced, it is natural to define the
BIs as its facets [Fig. 2.4(a)] [Fro81; Pit86]. In fact, alternatively to the vertex-
description (deterministic outcomes), the Farkas–Minkowski–Weyl theorem assures
that a polytope embedded in a space of dimension D can be described as the in-
tersection of finitely many half-spaces, each one defined by points ~p satisfying a
linear inequality of the form ~h · ~p ≥ h0, for suitable (~h, h0) ∈ RD+1. Hence, the
generic form of a BI is:

I :=
∑

~ai,~xi

T~ai, ~xiP (~ai|~xi) ≥ −βC , (2.36)

where T~ai,~xi are real coefficients and βC = −min~p∈P(I) is the classical bound
of the Bell inequality. If the inequality is satisfied, ~P is guaranteed to belong to
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L, i.e. the conditional probabilities resulting from a Bell experiment can have an
interpretation in terms of a local hidden variable model.

In the particular (N,m, 2) scenario, one can completely characterize L from
the knowledge of all the correlators 15

〈M(j1)
xj1
〉, 〈M(j1)

xj1
M(i2)

xj2
〉, . . . , 〈M(j1)

xj1
M(i2)

xj2
· · ·M(jN )

xjN
〉. (2.37)

Combining Eq. (2.36) and Eqs. (2.30-2.32), the most general BI for the (N,m, 2)
scenario in terms of expectation values is

N∑

k=1

∑

1≤j1<···<jk≤N

∑

ji∈{1,...,m}

α(j1,...,jk)
xj1 ,...,xjk

〈M(j1)
xj1
· · ·M(jk)

xjk
〉+ βC ≥ 0 (2.38)

with α(j1,...,jk)
xj1 ,...,xjk

∈ R.

CHSH inequality. To give an example, let us return to the simplest Bell sce-
nario (2, 2, 2) where the CHSH inequality [Cla+69] is the only nontrivial BI [Fin82].
In this case the Bell polytope has 16 vertices and the inequality reads:

P (00|00)− P (01|00)− P (10|00) + P (11|00)

+P (00|01)− P (01|01)− P (10|01) + P (11|01)

+P (00|10)− P (01|10)− P (10|10) + P (11|10)

−P (00|11) + P (01|11) + P (10|11)− P (11|11) ≤ 2.

(2.39)

According to Eq. (2.31), it can be rewritten in the “usual” form, involving only
two-body correlators:

|〈M(1)
1 M

(2)
1 〉+ 〈M(1)

1 M
(2)
2 〉+ 〈M(1)

2 M
(2)
1 〉 − 〈M

(1)
2 M

(2)
2 〉| ≤ 2. (2.40)

CHSH is violated by entangled states. The maximal violation allowed to quan-
tum states is 2

√
2, also known as Tsirelson bound [Cir80].

2.3.4 Detecting nonlocality in many-body systems with two-
body correlators

As discussed, the full characterization of local polytope becomes practically
impossible in the generic case for bigger N , m and ∆, since the number of
facets/vertices grows exponentially withN . What is necessary is the knowledge
of all correlation functions, whereas in the dichotomic measurements scenario

15Note the difference between correlators (expectation values of product of operators) and joint
conditional probabilities, crucial in the construction of the local polytope, clearly expressed in
Eq. (2.34). In fact, it should be stressed that to get the full conditional probability vector ~P = P (~a|~x),
the full-body correlator 〈M(1)

x1 · · ·M
(N)
xN 〉 alone is not enough. Instead, one needs all the k-body cor-

relators: one-, two- and so on, until the N -body correlator.
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∆ = 2 one can alternatively require the knowledge of all k-body correlators
(2.37). Furthermore, in experiments, one typically accesses to only few-body
correlators, typically one- and two-body correlators. However, even if, intu-
itively, most of the information about correlations is contained in high-order
correlators, BIs involving all-but-one parties have been proven useful to detect
nonlocality [Wür+12; WNZ12; Kas+08]. These results motivate the detection
of nonlocality with the minimum amount of available information, which is in-
corporated in the one- and two-body correlators. To attack this problem in the
(N, 2, 2) scenario, in [Tur+14; Tur+15b] Tura et al. projected the local polytope L
onto a subspace of lower dimension, by taking into account only one- and two-
body correlators. Furthermore they focused only on permutationally invariant
BIs.

By reducing to only one- and two-body correlators and m = 2, one has

N∑

i=1

(
αiM(i)

0 + βiM(i)
1

)
+

N∑

1≤i<j

γij

〈
M(i)

0 M
(j)
0

〉

+

N∑

1≤i6=j

δij

〈
M(i)

0 M
(j)
1

〉
+

N∑

1≤i<j

εij

〈
M(i)

1 M
(j)
1

〉
+ βC ≥ 0,

(2.41)

with αi, βi, γij , δij and εij real parameters. This simplification corresponds to
a projection of the full local polytope in a smaller one, dubbed L2. Projection
procedure strongly reduces the dimension of the polytope, from dimL = 3N −
1 to dimL2 = 2N2 16. Although reduced, this dimension still grows quickly
with N while keeping the number of vertices unchanged D = (∆m)N 17. To
further reducing complexity, in [Tur+14] (in the spirit of [BGP10]) permutational
symmetry is imposed to BIs. This implies that in Eq. (2.38) expectation values
〈M(i)

k 〉 and 〈M(i)
k M

(j)
l 〉 now take the same coefficients αi = α, βi = β, γij = γ,

δij = δ, εij = ε, when k = l and for i 6= j. One obtains the following general form
of permutationally invariant BI with one- and two-body correlators (PIBI):

I := αS0 + βS1 +
γ

2
S00 + δS01 +

ε

2
S11 + βC ≥ 0, (2.43)

16We saw that dimL = (m(∆−1)+1)N−1, which equals 3N−1 in the (N, 2, 2) scenario. This can
be also understood by considering that for each party there are three possible measurement choices
(two observables or not measure anything) to the power N . The 1 must be subtracted because if
no measures are performed in each party, the result is trivial. After projecting L in the space of
correlators up to order K, dimension of LK is [Tur+15b]

dimLk =
K∑
k=1

(
N
k

)
mk(∆− 1)k, (2.42)

Which equates (m(∆− 1) + 1)N − 1 for k = N
17Vertices are projected in vertices, but some vertices can be projected within the interior o L2, see

Fig. 2.4(b).
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FIGURE 2.5: From [Tur+14], quantum violation of (2.45), scaling
with N . The chosen local operators areM(i)

0 = M0 = σz and
M(i)

1 =M1 = cos θσz + sin θσx (only one angle θ to optimize).
In (A) Maximal relative quantum violation QNV /2N of the Bell
operator B(θ) (red line) and corresponding optimal angle θN
(blue line). In (B)The violation as function of θ. Increasing N ,
also violation grows, meaning robusteness against misaligne-

ment of the measurements. (Reprinted from [Tur+14])

where

Sk :=

N∑

i=1

〈M(i)
k 〉 Skl :=

N∑

i,j=1
i 6=j

〈M(i)
k M

(j)
l 〉. (2.44)

Elements of the symmetric polytope Ls2 are now five-tuples (S0, S1, S00, S01,
S11), hence dimLs2 = 5 independently on N . It can be proven that the number
of vertices (and of BIs) of Ls2 is 2N2 + 1, that is still hardly tractable and the
characterization of all the PIBI is still nontrivial. Nevertheless, a three-parameter
class of PIBI was found in [Tur+14], of which an important representative is:

− 2S0 +
1

2
S00 − S01 +

1

2
S11 + 2N ≥ 0. (2.45)

Finally, let us point out that projection does not come for free. In Fig. 2.4(b)
its consequences are depicted: whereas local behaviors still remain local (point
p1), there are some nonlocal behaviors which are not correctly evaluated (point
p2). Importantly, if a violation of PIBI is found, the corresponding point (p3 in
Fig. 2.4) is nonlocal also in the general case.

Quantum violations. In the context of detection of nonlocality for concrete
many-body ground states, inequality (2.45) will play a crucial role for its sim-
plicity.

For this purpose, we now characterize a Bell experiment specifying local
quantum observables. For the (N, 2, 2) scenario, one can always obtain maximal
violations restricting to local Hilbert spaces of dimension Di = 2 [TV06] and
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projective measurements (see footnote 13). As local observables one can chooses
linear combination of Pauli operators: M(i)

xi = n̂ · ~σ, where n̂ = (x, y, z), |n̂| = 1,
~σ = (σx, σy, σz). When restricting to real observables

M(i)
xi = cos θ(i)

xi σ
(i)
z + sin θ(i)

xi σ
(i)
x , (2.46)

for θ(i)
xi ∈ [0, 2π). Since there are two observables per site, notation can be sim-

plified with θ
(i)
x1 := θ(i) and θ

(i)
x2 := φ(i). By means of this specific choice of

measurements, one can associate a quantum operator B(θ(i), φ(i)) (the so-called
Bell operator) to the left hand side of Eq. (2.45). By diagonalizing B(θ(i), φ(i))
the many-body states violating the PIBI are found, the corresponding eigenval-
ues representing the violation. In [Tur+14], the further simplification of mea-
suring the same pair of observable for each party (the angles φ(i) = φ, θ(i) = θ)
was considered, justified by the numerical evidences that this choice preserves
optimality. In fact, they found that states that maximally violate B(θ(i), φ(i))
are symmetric for exchange of particles 18. Restriction to symmetric sector of
the Hilbert space, allowed reaching very big size (N = 104 parties) with exact
diagonalization routines. Results from [Tur+14] are shown in Fig. 2.5.

As a further remarkable result from the same work, another PIBI has been
found, violated by Dicke states |Dk

N 〉 in spin- 1
2 N -particle systems, which are

symmetric N -qubit states we shall encounter also in Chap. 4 as initial states that
we let evolve under the kicked dynamic of quantum kicked top and rotor:

|Dk
N 〉 =

√
(N − n)!n!

N !

∑

P
P(|+ 1

2
〉⊗N−k| − 1

2
〉⊗k), (2.47)

that is a symmetric linear combination of permutations of product states with
N − k qubits in the state | + 1

2 〉 and k qbits in the state | − 1
2 〉. Dicke states

are relevant states for concrete MBQS, emerging as ground state of the Lipkin-
Meshkov-Glick Hamiltonian [LMG65]:

HLMG = − λ
N

N∑

i,j=1
i 6=j

(
σ(i)
x σ(j)

x + σ(i)
y σ(j)

y

)
− h

N∑

i=1

σ(i)
z . (2.48)

Importantly, the amount of violation of the PIBI (2.45) is related to the multi-
partite entanglement (Sec. 2.1.2): in recent works [Alo+19; Tur+19] it was proven
– in a device-independent scenario – that k-producible states cannot violate the
PIBI by more than a certain relative quantum violation β(k), which is (in the

18Importantly, although the intuition may bring one to associate the symmetry of BI with the
symmetry of nonlocal states (in this case, a permutational symmetry) no theoretical reasons justify
the generalization of the statement. Derivation of BIs is in fact independent of any theory (only the
no-signaling and locality hypothesis are necessary to construct the local polytope).
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asymptotic limit, for large n and k):

β(k) ≈ 1

4
+
e−1/(8s)

2
+

1

2k

(
6s− e−1/(8s) − 1

8n

)
, (2.49)

where s =
√

k+1
48 . Therefore, observing a violation exceeding β(k) certifies

an entanglement depth of at least k + 1. Note that, in comparison with the
spin-squeezing criteria [Eq. (2.14)], BIs witness less multipartite entanglement
[Tur+19; Alo+19], but the key advantage is that they certified it in a device-
independent way.

Finally let us note that in the symmetric measurement scenario, where all the
parties measure the same observables, the violation can be estimated by collec-
tive measures. Collective measures were experimentally performed in [Sch+16]
in a Bose-Einstein condensate of entangled states of two-level atoms, violating
inequality (2.45). In this scenario, in Chap. 6, PIBI (2.45) will be used to detect
nonlocality in a long-range Ising model.
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3 Tensor networks approach
to many-body quantum
systems

In Chap. 2 we reviewed the concepts of entanglement [Sec. 2.1] and nonlocal-
ity [Sec. 2.3]. Being purely quantum properties without any classical counter-
part, their study and application in different contexts is an essential part of the
understanding of nature. We payed special attention to their declinations in
many-body systems. In particular, we saw that entanglement plays a crucial
role in characterizing ground states and quantum phase transitions. A problem
of practical interest remained still untouched: having at our disposal only clas-
sical resources, how to overcome the difficulties derived from the extreme com-
plexity of the Hilbert space, in order to explicitly simulate extended quantum
systems? This chapter is devoted to tensor networks (TNs), a modern numerical
and theoretical method to efficiently simulate many-body systems on a lattice.
In the next section, we briefly review pros and cons of the main numerical tools
available for many-body quantum systems. In Sec. 3.2 TN states are introduced,
with explicit examples in one-dimension, where they are called matrix product
states. It is shown that TN states satisfy by construction an area law for the en-
tanglement entropy. In Sec. 3.2.3 an analog representation for operators (matrix
product operators) is given, for short-range interactions Hamiltonian, where the
representation is exact as well as for the long-range case, where some approx-
imations might be necessary. Sec. 3.3 is devoted to the density-matrix renor-
malization group (DMRG), which is the most important and used TN based
algorithm to simulate ground states for one-dimensional lattices. In Sec. 3.4 the
view is broadened towards high-dimensional systems and the problem of the
contraction of TNs.

3.1 Numerical methods for many-body quantum sys-
tems

Many-body quantum systems (MBQS) are notoriously hard to simulate by
classical computers due to the exponential increase of the complexity of their
wave function with the number of their constituents (see Introduction, Sec. 1.2).
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Solving the full eigenvalue problem becomes de facto intractable already for
moderate values of N . When constituents are weakly interacting, single parti-
cle approximations work typically well: this is, for example, the case of various
versions of the mean field theory, which describe efficiently such diverse systems
as Bose-Einstein condensates [GSS96] or Bardeen-Cooper-Schrieffer superconductors
[FW12]. However, in many cases strong interactions and strong correlations
have to be taken in consideration, since they are source of many exotic phe-
nomena, such as superfluid-Mott insulator transition [Mot49; Fis+89], BEC-BCS
crossover [SR06; GR07], Fractional Quantum Hall Effect [Lau83], High-Temperature
Super-Conductivity [Kei+15] or quark confinement [Cre83; MM97], to name a few.

For strongly interacting MBQS, exact analytical results are available only
in a very restricted number of cases (for one-dimensional (1D) models see for
instance [Tak05]). For non-integrable systems analytical approximations often
dramatically fail, and numerical approaches are then necessary.

For small enough MBQS (up to few tens of constituents) we can still exactly
solve the Schrödinger’s equation by means of an exact diagonalization [NM05;
Rav+17], and try to extrapolate our understanding to larger systems, employing
finite-size analysis and scaling.

Nevertheless, the true collective emergent phenomena appear only in ther-
modynamic limit; in practice, they require to consider MBQS with hundreds of
constituents. So far, several algorithms have been developed for attacking this
problem.

Quantum Monte Carlo methods (QMC) [Fou+01] handle very large sys-
tems of the order of thousands of particles in arbitrary dimension, with a preci-
sion that scale statistically with the number of the sampling in the wave-function
configuration space. Nevertheless, the well-known “negative-sign” problem [Whi+89;
TW05] hinders the applicability of QMC to fermionic and frustrated spin sys-
tems, even if variational approaches [Umr+07] may overcome this obstacle with
impressive results.

Tensor networks (TNs) [VMC08; Orú14; Sch11; Eis13; Ran+19] are a spe-
cial ansatz for wave functions and operators on a lattice, where the quantities
of interest are expressed as a result of the contraction of a network of small
constituent tensors 1. TN algorithms [Orú14; Eis13] basically try to reduce the
computational cost from exponential to polynomial in the number of particles. TN
representation is suitable for simulating low entangled states, in particular non-
critical ground states of MBQS, in fact TNs satisfy by construction the entan-
glement area law (Sec. 2.2). They can be easily formulated in a variational
way to circumvent the negative-sign problem. For example, in 1D, looking
for the ground state, the energy should be regarded as a cost functional, which
is supposed to be minimized over the set of wave functions, expressed in the

1Indeed, also QMC-based method have been developed that provide an ansatz for the wave func-
tion, often integrated with other methods. Among others, here we mention the Resonating valence-
bond wave functions [Cap+01], the entangled-plaquette-state [Mez+09] and the neural-networks (NN)
ansatz proposed in [CT17], where the NN parameters are optimized (“trained”, in the language of
NN) with variational or time-dependent variational QMC.
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FIGURE 3.1: Pictorial representation of TN. (a) Scalar. (b) Vec-
tor. (c) Rectangular matrix. (d) A multi-index tensor repre-
senting a many-body quantum state ψ with local dimensions
s1, . . . , sN as in Eq. (3.1). (e) the MPS representation of (d) for
open boundary conditions. The pictorial representation of TN
is usually exploited to make the calculations simpler and clearly

shows the contractions relations.

form of a 1D TN, or matrix product state (MPS) [Sch11]. TNs have been pro-
posed as the best candidates for the numerical simulation of static and dy-
namic properties for both fermionic and bosonic non-critical systems. Espe-
cially in 1D, the success of TN is unquestionable: density matrix renormal-
ization group (DMRG) [Whi92] (and its modern adaptations), time-evolving
block decimation(TEBD) [Vid04; Vid07a] and the time-dependent variational
principle (TDVP) [Hae+11] to name a few, remain among the most accurate
tools (with an error of the order of the machine precision) for studying low en-
ergy properties and time evolution of lattice systems with or without transla-
tion invariance, for open as well as periodic boundary conditions [VPC04b], for
pure and mixed states [ZV04], for short- and long-range interactions [CDV08;
FND10a], for both bosonic and fermionic models [Sch+98; WS99; GC+02; Riz+05;
She+08; DCLS11; YHW11]. For critical systems adaptation of TN have been pro-
posed: the multiscale entanglement renormalization ansatz (MERA) [Vid07b;
Vid08] is an example.

3.2 Tensor networks states and operators

Let us consider the general many-body quantum state already encountered in
the introduction [Eq. (1.1)] and here rewritten for the sake of convenience:

|ψ〉 =

d∑

{si}=1

cs1s2...sN |s1〉 ⊗ |s2〉 · · · ⊗ |sN 〉. (3.1)

The TN way to handle this wave function is by interpreting the set of coefficients
cs1...sN as a tensor of N indices and in turn decomposing it in a network of N
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smaller connected tensors. The paradigmatic example is given in 1D by the
matrix product states (MPSs). Many different yet similar ways are available to
write down an MPS. For periodic boundary conditions we may have for example:

|ψ[A]〉 =

d∑

{si}=1

Tr
[
As1αβA

s2
βγ · · ·AsNµα

]
|s1 . . . sN 〉. (3.2)

Notation |ψ[A]〉 means the state now depends on tensors Asiδκ. Each A[i] :=
Asiδκ has three indices 2 and dimension χ × d × χ: si are let free (uncontracted)
and corresponds to physical indices (the local Hilbert space) of dimension d,
already present in the original tensor cs1...sN ; remaining indices α, β · · · ν have
dimensions χ and are contracted. χ is called bond dimension and we shall see
it is related to the entanglement of the state. The number of parameters required
in the representation is now O(Ndχ2), therefore linear in N . In Fig. 3.1 a graph-
ical representation of the decomposition is shown, which makes the formalism
transparent. Actually, many calculations involved TN can be directly done in a
very simple way through the graphical representation.

A physical way to interpret the tensor decomposition (3.2) is by using the
valence bond picture (VBP) [FNW92; VPC04b; PG+06].

In VBP every tensor A[i] can be obtained assigning two virtual spins to each
lattice site, in a way the right one of them is maximally entangled with the left
one in the following site [Fig. 3.2(b)] and then projecting the state on the physical
space:

A[i] =

d∑

si=1

χ∑

δ,κ=1

Asiδκ|si〉〈δ, κ|. (3.3)

Thanks to VBP, is easy to show how MPSs automatically satisfy an entangle-
ment area law: taking a bipartition of length l (cutting the ring in two virtual
bonds) one has S(ρl) ≤ 2 log(χ) 3. VBP can be straightforward generalizable in
higher dimensions, where the TN ansatz for states, takes the name of projected
entanglement pair state (PEPS) [VC04b] [Fig. 3.2(c)].

3.2.1 States efficiently represented by MPS

Decomposition (3.2) is just a different representation of (3.1). In practice, only
those states satisfying an entanglement area law can be efficiently put in this
form. For high entangled states, the MPS representation is not efficient, re-
quiring the bond dimension growing exponentially. However, there exist also
important states with an exact MPS representation: this is the case of e.g the

2From now on, we denote as A[i] the i-th tensor Asiδκ, if it is not necessary to explicitly indicate
its indices.

3the coefficient 2 is because of the double cutting; for infinite chain one has 1 (one cut). In general
the coefficient expresses the size of the boundary surface, i.e. the number of cut virtual bonds. For
example, in 2D, for a square bipartition of side L, S(ρL) ≤ 4L log(χ).
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FIGURE 3.2: (a) The MPS representantion of a many body quan-
tum state. The valence bond representation for (b) an MPS and

(c) a 2D PEPS. (Reprinted from [Tur+15a]).

Greenberger-Horne-Zeilinger (GHZ) and W states [GHZ89] and the Affleck-
Kennedy-Lieb-Tasaki (AKLT) state [Aff+04].

AKLT state deserves particular attention. It is the ground state of the spin
S = 1 Hamiltonian (local-physical dimension d = 3):

HAKTL =
∑

i

~Si~Si+1 +
1

3
(~Si~Si+1)2. (3.4)

This Hamiltonian resembles the antiferromagnetic Heisenberg model HH =∑
i
~Si~Si+1 and in fact there is no phase transition between the ground state of

the AKLT Hamiltonian and the ground state of the Heisenberg chain as long
as the coefficient of the biquadratic term varies between 0 and 1/3. The AKLT
state results then very useful to indirectly study the Heisenberg model and in
particular to verify the Haldane conjecture [Hal83], which states that the integer-
spin anti-ferromagnetic Heisenberg chains are gapped. For periodic boundary
conditions, the MPS representation [Eq. (3.2)] of the AKLT state requires a bond
dimension χ = 2 (then it is nontrivially entangled) with tensor-matrices [Sch11]:

A1 =

(
0
√

2
3

0 0

)
; A2 =


−

√
1
3 0

0
√

2
3


 ; A3 =

(
1 0

−
√

2
3 0

)
.

The AKLT state is a completely dimerized state with short-range entanglement
only between nearest-neighbour spins, which arrange in singlets (valence bonds,
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FIGURE 3.3: Pictorial representation of the AKLT state with
open boundary conditions (ground state of Hamiltonian (3.4)).
It is a completely dimerized state with short-range entangle-
ment only between nearest-neighbour spins, which arrange
in singlets (dashed lines). Two spin-1/2 (the left- and right-
most spins) remain uncoupled, forming two “edge states”.

(Reprinted from [Ran+19]).

FIGURE 3.4: Canonical representation of an MPS. Tensors Λsi

are diagonal matrices whose elements are the Schmidt coeffi-
cient of the bipartition 1, . . . , k versus k + 1, . . . N .

see Fig. 3.3). For infinite chains or periodic boundary condition all spins-1 par-
ticipate in two valence bonds. For open chains, two spin-1/2 (the left- and right-
most spins) remain instead uncoupled, forming two “edge states”, which give the
ground state of (3.4) a fourfold degeneracy. We will encounter again the AKLT
state in Sec. 5.1.1 as an example of simmetry protected topological phase [GW09].

3.2.2 Canonical representation of MPS

To understand how MPS representation works in practice and the special role
played by the bond dimension in approximating a generic state, it is useful to
introduce in detail another special representation, proposed by Vidal in [Vid03],
the so called canonical representation of MPS [Fig. 3.4]:

|ψ[Γ,Λ]〉 =
∑

{si}

Γs1a1
Λ[1]
a1

Γs2a1a2
Λ[2]
a2

Γs3a2a3
· · ·Λ[N−1]

aN−1
ΓsNaN |s1, . . . , sN 〉 (3.5)

Tensors Γsiai−1ai lie on each physical site, whereas the tensors Λai , directly acces-
sible on the bonds, are diagonal matrices whose elements are the Schmidt coeffi-
cients (the entanglement spectrum) with respect to the bipartition [1, · · · , k], [k+
1, · · · , N ]. That is, the reduced density matrices read ρ[1,··· ,k] = ρ[k+1,··· ,N ] =
(Λ[k])2. The procedure to bring any state (3.5) in the from (3.1) consists in prac-
tice in a concatenation of reshapes and singular value decompositions (SVD, see also
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the footnote 1) of tensor cs1s2s3...sN :

cs1s2...sN = Ψs1(s2...sN ) (reshape c in a two-index vector Ψ)

=
∑

a1

As1a1
Λ[1]
a1

(V †)a1(s2...sN )︸ ︷︷ ︸
(do an SVD and contract Λ with V †)

=
∑

a1

Γs1a1
Ψ(a1s2)(s3...sN ) (reshape Ψ)

=
∑

a1a2

Γs1a1
As2a1a2

Λ[2]
a2

(V †)a2,(s3,...sN )︸ ︷︷ ︸
(do an SVD and contract Λ with V †)

=
∑

a1a2

Γs1a1

︷ ︸︸ ︷
Λ[1]
a1

Γs2a1a2
Ψ(a2s3)(s4...sN ) (contract Λ with V † and As2a1a2

= Λa1Γs2a1a2
)

= . . . (iterate the decomposition of Ψ(a2s3)(s4...sN ))
(3.6)

The crucial step in previous derivation is that when making an SVD, the small-
est singular values of Λak can be discarded, storing only the largest χ � χk =
dmin(k,N−k), so setting the bond dimension of the MPS. The total error in such
approximation is given by the sum of the squares of the neglected singular val-
ues: err = ‖|ψ〉 − |ψ〉mps‖2 ≤

∑N−1
k=1

∑χk
i=χ+1 λi(k). For non-critical systems, the

goodness of this approximation is supported by the general behaviour of the
entanglement spectrum coefficients, which scale rapidly to zero as λi ≈ exp(−i)
[Vid03]. A canonical form can be derived also for infinite chains [OV08], where
the matrices Γ and Λ satisfy the canonical conditions4

∑

i

ΓsiΛ2Γsi† =
∑

i

Γsi†Λ2Γsi = 1. (3.7)

It turns out that the transfer matrix [Fig. 3.5]

Taa′;bb′ =
∑

si

Γsiaa′
(
Γsibb′

)∗
Λb′Λa′ (3.8)

has a right eigenvector δa′b′ with eigenvalue λ = 1 (an analogous relation holds
for the left eigenvector). Furthermore, δa′b′ is the only eigenvector with |λ| = 1
iff the state is pure. Recently, a unified version of canonicalization, for different
lattices and dimensions has been provided in [Eve18].

We conclude noting that MPSs are by construction finitely correlated: given
two local (on-site) operators Ô and Q̂, one can prove that correlation functions
behave as

C(r) ≡ 〈ÔiQ̂i+r〉 − 〈Ôi〉〈Q̂i+r〉 ' e−r/ξ, (3.9)

4To be more precise, the canonicalization in Eq. (3.6) has been illustrate for a finite-non-
translational invariant MPS (for the sake of simplicity) giving a new MPS in a left-canonical form,
i.e. satisfying only

∑
i ΓsiΛ2Γsi† = 1 [Fig. 3.5(a)]. For a translational invariant MPS, both left- and

right-canonical conditions hold as in Eq. (3.7).
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FIGURE 3.5: Transfer matrix of an MPS in canonical representa-
tion. (a) left canonical condition; (b) right canonical condition.

with ξ = −1/ log |λ2/λ1| a constant (the correlation length) and λ1,2 the first and
second eigenvalues of the transfer matrix (for canonical MPSs, λ1 = 1 and λ2

directly provides the correlation length).

3.2.3 Matrix product operators

Not only pure states can be decomposed as TN, but also density matrices and
Hamiltonians [VGRC04; Pir+10]. They are called matrix product operators
(MPO) in 1D and projected entanglement pair operators (PEPO) in higher di-
mensions. The explicit form of an MPO in 1D for periodic boundary conditions
is

Ô =

d∑

{si}=1

K∑

{ai}=1

[
W

s1s
′
1

a1a2W
s2s
′
2

a2a3 · · ·W sNs
′
N

aNa1

]
|s1 . . . sN 〉〈s′1 . . . s′N |. (3.10)

This expression is similar to the MPS in Eq. (3.2), unless that for the presence
of two physical indices for each local tensor W [i] [Fig. 3.6]. K is the MPO bond
dimension, which is different from χ and depends, in the case of Hamiltonians,
on the interaction range.

At least when dealing with short-range Hamiltonians, an MPO can be easily
constructed without any approximation. Let us start by constructing a general
MPO where tensors W [i] are upper-triangular matrices

W [i] =

(
A[i] B[i]

0 C [i]

)
, (3.11)

whereA[i],B[i] andC [i] are square d×dmatrices (d the local physical dimension)
and K = 2× d. Putting the W i in the MPO decomposition (3.10), one obtains

Ô =

N∑

n=1

A[1] ⊗ · · ·A[n−1]B[n] ⊗ C [n+1] ⊗ · · ·C [N ]. (3.12)
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FIGURE 3.6: (a) An MPO. The horizontal indices, ais in
Eq. (3.10), are contracted. Each matrix W [i] can act on the local
physical space with the free indices si and s′i, respectively to
the Hilbert space and its dual. (b) An MPO of bond dimension
K acts on an MPS of bond dimension χ via the contraction of
the physical indices. The resulting MPS’ has a bond dimension

χ′ = χK.

For a simple local Hamiltonian H = h
∑N
i=1 σ

µ
i , A[i] = C [i] = 1, B[i] = hσµ. For

an Ising chain in a transverse field H =
∑
i=1 σ

ν
i σ

ν
i+1 + hσµi , where two-body

nearest-neighbour interactions are added, one generalizes W [i] as

W [i] =



A[i] B[i] C [i]

0 0 D[i]

0 0 E[i]


 , (3.13)

with A[i] = E[i] = 1, B[i] = D[i] = σν and C [i] = hσµ. For open boundary
conditions, the first and the last tensors of the MPO are (for the last example):

W [1] =
(
A[i] B[i] C [i]

)
; W [N ] =



C [i]

D[i]

E[i]


 . (3.14)

A more general, albeit less intuitive, method to write down an MPO from a
generic Hamiltonian was proposed in [CB08], based on a parallelism between
tensor networks and finite-states automata. This approach is suitable to treat
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FIGURE 3.7: Scheme of the finite states automaton for an Ising
chain in a transverse field.

and efficiently simulate long-range interactions (with exponential and power-
law decaying, see e.g. [FND10a; CDV08]) and it will result very useful espe-
cially in Chap. 6. The Hamiltonian is imagined as constructed by a machine
(automaton) having as many internal states as the possible interactions every
site of the chain can have. To be concrete, let us focus on the above-written Ising
Hamiltonian and, for concreteness, let us set ν = x and µ = z. The scheme rep-
resenting this automaton is depicted in Fig. 3.7 and described in the following.
One starts from the automaton-state 1 (no-interactions) and therefore has three
possibilities: (i) adding an interaction σx, passing to the next site of the chain
and then changing the automaton-state to the internal-state 3 (completing the
interactions); (ii) adding a local transverse field hσz , which brought the automa-
ton in the internal-state 3 or (iii) adding another identity operator (remaining in
the same internal state 1). If the internal state is 3, the only possible completion
is by adding another interaction σx to and changing the state in 2. Finally, being
in the internal state 2 there are two possibilities: adding the identity operators
(staying in state 2) or exiting from the automaton. Once the automaton is con-
structed, to put it in MPO form, one has to fill a square matrixW [i] of dimension
K equal to the number of internal states (in this caseK = 3). Rows ofW [i] corre-
spond to ingoing internal states (the state in which the automaton is), columns
are the outgoing internal states. For example, being in the state 1 (first row) one
will have the identity in the first column, σx in the second (state 2) and hσz in
the last columns, finally obtaining, in line with (3.13):

W [i] =



1 σx hσz

0 0 σx

0 0 1.


 (3.15)

3.3 The density matrix renormalization group

Density matrix renormalization group (DMRG) [Whi92] was inspired by the
real-space quantum renormalization group (RG) [Wil75], a coarse-graining proce-
dure to find the ground state of strongly interacting MBQS on a lattice. The
success of the RG is however limited to few cases and White and Noack argued
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FIGURE 3.8: Graphical representation of the reduced eigen-
value problem at each step of a DMRG [Eq. (3.17)].

in [WN92] that its main lack lies in not properly taking into account the correla-
tions (or boundary effects) existing between each block and the rest of the lattice
during the decimation procedure. White’s breakthrough was to reformulate the
coarse-graining as a variational method involving the reduced density matrices
instead of the Hamiltonian. The original formulation of DMRG is quite heuris-
tic, though very powerful, and during the early years after its release it was not
very clear the deep theoretical reason for its success. In 1995 Östlund and Rom-
mer [ÖR95] pointed out that ground states found by the DMRG are MPS. From
2004, with the seminal works of Cirac, Latorre, Verstraete, Vidal and coworkers,
the previous results were reinterpreted from a quantum information perspec-
tive, open the way for a full developing of TN as a theoretical framework for the
study of MBQS as well as a numerical tool at the basis of many algorithms.

Since DMRG is ubiquitous in this work, we give here a sketch of the algo-
rithm in its modern MPS formulation. To find the ground state of the Hamilto-
nian Ĥ , the cost functional to minimize is

min
{A}

(
〈ψ[A]|Ĥ|ψ[A]〉 − λ〈ψ[A]|ψ[A]〉

)
. (3.16)

This problem is quadratic in each A[i]. Instead of minimizing the full Hamil-
tonian, the DMRG procedure proposes to diagonalize and optimize each small
local tensorA[i] at a time, keeping the algorithm globally optimal, with a computa-
tional cost scaling asO(χ3). In practice at each step of the algorithm, one fixes all
the tensors Asi but one, which is the target, and solves the reduced eigenvalue
problem (which is computationally affordable with an exact diagonalization)

min
A[i]

(A[i]†HeffA
[i] − λA[i]†NeffA

[i]
)
, (3.17)

where: Heff and Neff depend on all the tensors but A[i] as shown in Fig. 3.8.
The algorithm is iterated until convergence (which is guaranteed, see [VPC04b]).
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FIGURE 3.9: Example of contraction of a 2D TN. If starting from
contracting an arbitrary bond between two sites, a tensor with
six bonds will be obtain. Then contract the new tensor with a
neighbouring one and so on. At each step the number of bonds
increases linearly with the boundary of the contracted area ∂
and the memory needed increase exponentially asO(χ∂) (χ the
bond dimension), making the procedure de facto intractable.

(Reprinted from [Ran+19])

3.4 Contraction of tensor networks

We already encountered in the previous section the problem of contracting a
TN to calculate quantities of interest. For example, to calculate the expectation
value 〈ψ|Ĥ|ψ〉 one may start from the contraction of an MPS and an MPO as
in Fig. 3.6 and then contracting the resulting MPS’ again with the MPS. In the
first step the bond dimension increases from χ to χ′ = χK but such growth
is limited and acceptable. In 1D one typically faces manageable contractions,
but the 2D case may be much more complicated, often intractable, as shown in
Fig. 3.9. Maybe, the simplest and instructive example of non exactly contractible
2D TN emerges from the time (real or imaginary) evolution of a 1D MPS under a
time evolving block decimation (TEBD) algorithm [Vid04; Vid07a]. Under the
action of a time-independent Hamiltonian Ĥ the state |ψ[A]〉 evolves following
the Schrödinger’s equation

i∂t|ψ[A(t)]〉 = Ĥ|ψ[A(t)]〉. (3.18)

In the TEBD one directly starts from the generic solution of (3.18) in exponential
form

|ψ[A(t)]〉 = e−iĤt|ψ[A(0)]〉. (3.19)

Time t is discretized in small steps τ , t = nτ , with τ → 0 and n → ∞. For
nearest-neighbour interactions Ĥ =

∑
〈i,j〉Hij . Each step τ of the evolution is

approximated by the operator

e−iĤτ = eiĤ12eiĤ23eiĤ34 · · · eiĤN−1N +O(τ2), (3.20)
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FIGURE 3.10: The basic steps of the TEBD: the initial MPS at
time t = 0 is contracted with a row of tensors, expressing one
step τ of the (real or imaginary) time evolution [Eq (3.20)]. Af-
ter each contraction, a truncation is implemented exploiting an
SVD, retaining only the first χ bigger singular values, in order
to keep the bond dimension unchanged and at the same time
minimizing the distance of the MPS before and after the trun-

cation.

where the error comes from the (first-order) Trotter-Suzuki decomposition [SI87],
necessary because of the non-commutativity of two-sites operators in the Hamil-
tonian [Ĥi,i+1, Ĥi+1,i+2] 6= 0. The operator in (3.20) can be expressed in MPO
form and the full-time evolution operator (3.19) is the contraction of n → ∞ of
such MPOs and the initial MPS |ψ[A](0)〉. At each step τ , the bond dimension
of |ψ[A](t + τ)〉 increase from χ(t) → χ(t)d2. This exponential growth must be
truncated at each step, to limit the bonds to the preset cutoff χ and to save com-
putational costs and memory. This truncation is usually performed by an SVD
5 (refer to Fig. 3.10 for a graphical representation of the TEBD).

There are also exactly contractible 2D TN. This is, for example, the case
of networks with no loops, as the tree tensor networks (TTN) [SDV06; TEV09]
[Fig. 3.11(a)], which yet can simulate only states with a bounded amount of en-
tanglement. In some algorithms, TTN ansatz provides a mean-field approximation,
very useful for having a first guess of the ground-state energy. The multiscale en-
tanglement renormalization ansatz (MERA) [Vid07b; Vid08] [Fig. 3.11(b)] captures
the properties of systems at criticality and is contractible, although it contains
loops [Fig. 3.11(b)]. In the generic case in D > 1 dimension, a contraction-
truncation scheme is often unavoidable. In D = 2 variational schemes in the
spirit of the DMRG [VMC08] or high-dimensional imaginary-time TEBD [Jor+08]

5Note in particular that the truncation is in contrast with the Lieb-Robinson theorem which im-
plies that, in many cases of interest, the EE grows linearly with time. Hence, TEBD may not simulate
long time regimes with a good accuracy. Furthermore, Trotter decomposition makes the TEBD not
simply adaptable to long range Hamiltonian (in general to no translation invariant Hamiltonian)
and the bond truncation can spoil some conservation laws and symmetries (for a discussion see
[Hae11] pages 118-120). A different approach to the time evolution in 1D is the time dependent varia-
tional principle for quantum lattices [Hae+11] which is based on the geometrical properties of the MPS
manifold. It does not require any Trotter decomposition and is suitable for short as long as long
range interactions.
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FIGURE 3.11: In (a) and (b) two different tree tensor networks
states. In (c) a MERA. (Reprinted from [Ran+19]).

can serve to simulate the ground states of lattice systems. We refer to [Ran+19]
for a recent and comprehensive review of the techniques to contract TN in ar-
bitrary dimensions. In Chap. 7 a new algorithm for infinite systems in arbi-
trary dimensions is proposed, which reduces the full many-body problem to
the simulation of a few-body one embedded in an “entanglement bath”. This
bath “mimics” the degrees of freedom of the extended system and the infinite
TN contraction problem is encoded in a simpler set of eigenvalue equations.
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4 Entanglement and quantum
chaos

In the current chapter we show how entanglement can be used as an intrinsically
quantum property capable to characterize the emergence of chaos in classical
systems. We tackle this problem by studying in detail two simple but paradig-
matic dynamical systems, the quantum kicked top and the quantum kicked ro-
tor, which both have chaotic behaviour in their classical version. In order to
directly compare the quantum kicked top and the quantum kicked rotor, we
study the latter as a special limit of the former, exploiting the formulation given
by Haake and Shepelyansky in [HS88]. Even if the dynamics of these model is
not exactly solvable, the symmetries of their Hamiltonian allow to restrict the
numerical simulations to a small symmetric sector of the Hilbert space, hence
exact diagonalization is sufficient to explore very long-time evolution for many-
particle regimes.

In Sec. 4.1 we give a historical overview of the entanglement approach to
chaos and discuss more in detail the problems we want to attack in the rest of
the chapter. In Sec. 4.2 we review the classical and the quantum kicked top. In
Sec. 4.3 we look at the classical and quantum kicked rotor and we derive the
kicked rotor as a limiting case of the kicked top. We show that bipartite en-
tanglement entropy is a good signature of quantum chaos in this non-ergodic
system. In Sec. 4.4 we discuss properties of our quantum system that are remi-
niscent of Kolmogorov-Arnol’d-Moser theory.

4.1 Quantum chaos and entanglement

Sketched in the 17th century by Newton and others, the deterministic laws of
classical mechanics quickly ran into difficulties. Foremost was the fact that equa-
tions of Newtonian gravitation resisted analytic solutions for three or more bod-
ies. The struggles of the unsolvability of many classical mechanical equations
was further exacerbated when Poincairé proved that perturbation to known in-
tegrable solutions in general leads to non-integrability or chaos. This was in con-
trast to observation, which saw nature as substantially regular, from the periodic
movements of planets to the sounds of a piano. This paradox was resolved in
the form of Kolmogorov-Arnol’d-Moser (KAM) theory [Arn13] which formally
explains the persistence of quasi-periodic behaviors in chaotic systems.
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Chaos in classical physics is characterised by a hypersensitivity of the time
evolution of the system to even small changes in the initial conditions. Classi-
cally this is well understood in terms of the hypersensitive dependence of the
phase space trajectories. Quantum chaos, in contrast, cannot be defined in the
same terms, largely due to the fact that there is no general quantum analogue of
classical phase space trajectories. To put this into context, the unitary evolution
of an initial quantum state ψa(0) is

ψa(t) = Uψa(0) , (4.1)

where U = e−iHt/~ is the unitary time-evolution operator for a system with
Hamiltonian H . Similarly, starting from a nearby initial state ψb yields ψb(t) =
Uψb(0). The scalar product of these states is constant for all time,

〈ψa(t), ψb(t)〉 = 〈ψa(0), ψb(0)〉 . (4.2)

Therefore, due to the linearity of the Schrödinger equation, differences in
initial conditions cannot grow, in stark contrast to the exponential divergence of
trajectories of chaotic classical systems. As underlying all classical systems are
quantum mechanical ones, the confounding question is: how does chaos arise from
quantum systems? This question motivates the search for quantum signatures of
chaos.

Approaches to quantum signatures of chaos fall into two categories. One
involves investigating quantum variables that distinguish between quantum
systems whose classical counterparts are integrable and nonintegrable. These
approaches typically look at energy spectra properties [Rei13; Haa13; Gut90;
Tab89; Zyc90]. A second class of approaches seeks intrinsic quantum definitions
of quantum chaos. Examples of these include quantum parallels of the Lya-
punov exponents and entropy measures [FMR91; SC96a; SŻ94; SC96a; SC96b;
ZP94; ZP95; nK04]. There have also been attempts to develop a quantum ana-
logue of KAM theory [Eva04; HTT84; BCK15; GRR86]. In this chapter we will
look at the entanglement entropy (EE) as a signature of quantum chaos.

The connection between EE and chaos was first proposed by Zurek and Paz
[ZP94]. Here they studied a classical inverted harmonic oscillator (an unsta-
ble but not properly chaotic system) and conjectured that in the corresponding
quantum system, weakly coupled to a high temperature bath, the rate of pro-
duction of the von Neumann entropy equals the sum of the positive Lyapunov
exponents. Importantly, this sum is equivalent to the Kolmogorov-Sinai en-
tropy (KSE) [Pes77]. Even though the conjecture is not directly generalizable to
less trivial systems [MS98], Zarum and Sarkar [ZS98] showed a significant cor-
respondence between the entropy contours of the phase space of the classical
kicked rotator (CKR) and the quantum kicked rotator (QKR) embedded in a
dissipative environment. Subsequent to the Zurek-Paz conjecture, and perhaps
motivated by it, Furuya, Nemes, and Pellegrino numerically showed that clas-
sical chaos could be related to high EE and classical regular dynamics to low EE
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in the context of the Jaynes-Cummings model [FNP98]. This result stimulated
further studies of the EE as a direct signature of chaos.

More recently bipartite EE as a signature of chaos was studied in the quan-
tum kicked top (QKT) modelled as a multi-qubit system [Wan+04; Gho+08; RLP17;
KG18a; KG18b], without the need for an external environment. In comparison
with the Zurek and Paz model, one side of the bipartite system would serve
as the harmonic oscillator, whilst the rest of the system as the bath. A signifi-
cant difference however is that in the Zurek and Paz model, the coupling to the
bath was weak, whereas in the later works the coupling to the effective bath is
strong. In this strong coupling regime, the system decoheres almost instanta-
neously. These works found that high EE corresponds to chaos in quasi-ergodic
systems. Remarkably, it was experimentally observed in a three superconduct-
ing qubit system [Nei+16]. The correspondence between EE and chaos has been
argued to not be universal: Lombardi and Matzkin offer a counter-example in
the Rydberg molecule [LM11; LM15]. However, their claims are controversial,
and have been questioned by others [Mad15; RLP17]. Recently, Kumari and
Ghose [KG18b] propose that the conflict arises because Lombardi and Matzkin
work deep in the quantum regime, where the correspondence is known to break
down.

The correspondence between chaos and EE can be intuited when one consid-
ers the linear entanglement entropy (EE) measure

S = 1− trρ2
A, (4.3)

where, following the notation in Sec. 2.1 ρA is the reduced density matrix of the
bipartition of the Hilbert space H = HA ⊗ HB (ρ is the density matrix of the
whole Hilbert space). When ρA is a maximally mixed state, S is maximised (see
Appendix A.1 for proof). For a maximally mixed state, further bipartition of
ρ would still result in maximally mixed state, and hence the S would still be
maximized. For maximally mixed states, all the states accessible to the reduced
system share the same probability of occurrence. This situation is reminiscent
of the state of a system that corresponds to the canonical ensemble at infinite
temperature in which all micro-states of this system occur with the same prob-
abilities. Since we deal here with kicked dynamics, we heuristically expect that
energy is periodically delivered to and accumulated in these systems, therefore
we expect that in the long-time limit these systems should be described well by
the ensemble distribution corresponding to infinite-temperature canonical en-
semble. In this sense in the long-time limit, these systems achieve ergodicity,
that is the time-average of physical observables became equal to the ensemble
average with respect to infinite-temperature canonical-ensemble.

In classical systems, one may have chaos even in non-ergodic, or not fully
ergodic systems. In the CKR for example, in the presence of KAM tori [Arn13]
the system is far from ergodic, yet local chaos exists, in the sense that trajectories
are non-regular but they are restricted to sectors of the phase space (bounded
by KAM-tori). Taking this to the quantum regime, it is not immediately obvious
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that S can be maximised for an analogous non-ergodic ρ. We would like to ask:
can bipartite EE be a signature of quantum chaos in non-ergodic systems?

We tackle this problem by studying in detail both the top and rotor in the
classical and quantum regimes. These prototypical systems have the main ad-
vantage that they exhibit the most important features of chaotic dynamics and
a rich phase space, despite their relative simplicity. In order to directly compare
the QKT and the QKR, we study the latter as a special limit of the former, ex-
ploiting the formulation given by Haake and Shepelyansky in [HS88]. In light of
the experimental accessibility of the multi-qubit system, this approach has the
further convenience that it allows one to describe the QKT and QKR in the same
closed multi-qubit system. Using this system as a case-study, we will show that
EE is a signature of quantum chaos even in highly non-ergodic systems. Specif-
ically, in Sec. 4.2 we review the CKT and QKT. We calculate the KSE of the CKT
and the EE of the QKT. In Sec. 4.3 we look at the CKR, the QKR and we derive
the kicked rotor as a limiting case of the kicked top. We show that bipartite EE
is a good signature of quantum chaos in this non-ergodic system. In Sec. 4.4 we
discuss properties of our quantum system that are reminiscent of KAM theory.

4.2 Quantum kicked top

The Hamiltonian of the QKT [HKS87] is

HT = αJx +
β

2j
J2
z

∞∑

n=−∞
δ(t− n) (4.4)

where J is the angular momentum vector that obeys the commutation relations

[Ji, Jj ] = iεijkJk . (4.5)

The magnitude J2 = j(j+1)~2 is a conserved quantity. The first term in Eq. (4.4)
describes a precession around the x-axis with angular frequency α. The second
term represents a periodic kick. Each kick is an impulsive rotation around the
z-axis by an angle proportional to Jz . For convenience we work in natural units
where ~ = 1, whereas the time is counted with the number of kicks. The propor-
tionality factor involves dimensionless coupling constant β/j, where β is known
as the torsion strength.

The angular momentum operators at each kick can be obtained from the
discrete time evolution of the operators in the Heisenberg picture,

Jn+1 = U†TJnUT , (4.6)

where UT is the Floquet operator describing the unitary evolution from kick to
kick,

UT = exp(−i β
2j
J2
z ) exp(−iαJx) . (4.7)
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In the spirit of [Wan+04] (and several following works), modelling the sys-
tem as a N -spin system, the angular momentum operators can be expressed in
terms of Pauli operators,

Jγ =

N∑

i=1

σγi
2
, (4.8)

where γ = x, y, z.
We choose the initial pure state to be symmetric under the exchange of any

spin, so that the state vector at an later time is also symmetric. Thus we can
write the state of our N -spin system in terms of Dicke states |j,m〉 (see also
Eq. (2.47) and related discussion), where m = −j,−j + 1, · · · , j, with j = N/2.
To connect the quantum and classical dynamics of the kicked top, we choose the
initial state to be the spin coherent state

|Φ,Θ〉 = exp{iΘ[Jx sin Φ− Jy cos Φ]}|j, j〉 . (4.9)

The state of the system after n+ 1 kicks is

|ψ〉n+1 = UT |ψ〉n, (4.10)

where |ψ〉0 = |Φ,Θ〉.

4.2.1 Classical kicked top

The classical phase space of the kicked top can be given in the form of a Poincaré
map, representing the stroboscopic evolution of the classical angular momen-
tum.

As well known in the literature (see e.g. [HKS87]), one can obtain this clas-
sical map from the quantum evolution in Eq. (4.6). We firstly introduce the
normalised angular momentum vector X = 〈J〉/j and take j → ∞ (this is
equivalent to taking the thermodynamic limit N → ∞). Its kicked evolution is
Xn+1 = f(Xn) and is obtained substituting X into Eq. (4.6), giving finally the
classical map

Xn+1 = Xn cos[β(Yn sinα+ Zn cosα)]

− (Yn cosα− Zn sinα) sin[β(Yn sinα+ Zn cosα)] ,

Yn+1 = Xn sin[β(Yn sinα+ Zn cosα)]

+ (Yn cosα− Zn sinα) cos[β(Yn sinα+ Zn cosα)] ,

Zn+1 = Yn sinα+ Zn cosα .

(4.11)

The normalised angular momentum vector can be parameterised in polar coor-
dinates, X = (sin Θ cos Φ, sin Θ sin Φ, cos Θ), to give a two-dimensional classical
phase space, in the form of a Poincaré map. Fig. 4.1(a) maps the Poincaré map
for α = π/2, β = 3.
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FIGURE 4.1: (a) The classical phase space of the CKT, with 500
random initial conditions for a duration of 500 kicks. (b) The
KSE of the CKT, calculated on a grid of 200 × 200 initial con-
ditions, iterating the linear map for 104 steps. KSE > 0 cor-
responds to chaotic behavior, whereas KSE = 0 indicates reg-
ular behavior. Point T1, T2 marks (Φ,Θ) = (2.20, 2.25) and
(3.57, 2.25) respectively. (c) The time-averaged EE of the QKT,
calculating for a system of N = 300 spins and averaged over
T = 300 kicks. A comparison of (b) and (c) shows a remark-
able correspondence between chaotic (regular) classical behav-
ior and high (low) EE. However, in the classical case there is a
well defined demarcation between chaotic and regular regions,
whereas in the quantum case the transition from regions of low
to high EE is smooth. (d) plots the time-averaged EE at Θ = π/2
for different numbers of spinsN . The transition from regions of
low EE to high EE becomes starker with increasing number of
spins, marking the transition to quantum chaos more abruptly,

in a similar fashion to classical behavior; α = π/2, β = 3.
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4.2.2 Kolmogorov-Sinai entropy of kicked top

The Poincaré map provides a pictorial representation of the phase space, through
which one can visually distinguish between regular and chaotic regions. How-
ever, to have a proper quantitative measure of the degree of chaoticity, we make
use of the KSE. The KSE is the rate of change with time of the coarse-grained
Gibbs entropy [Kol58; Kol59] and is calculated as [Pes77]

hKS = lim
t→∞

1

t

t∑

n=1

log2 ln (4.12)

where ln =
√

(δXn)2 + (δYn)2 + (δZn)2 is the distance in the phase space be-
tween two initially close points after n kicks. Importantly, Pesin [Pes77] showed
that the KSE is equal to the sum of the positive Lyapunov exponents. As the
Lyapunov exponents give the rate of separation of two infinitesimally close tra-
jectories, the KSE = 0 for regular regions, and the KSE > 0 for chaotic ones, for
times large enough. The KSE therefore is a quantitative measure of the level of
chaos. Fig. 4.1(b) plots hKS of the CKT for α = π/2, β = 3. hKS = 0 for regularly
regions. For chaotic regions, hKS > 0, as here the trajectories are divergent.

The procedure to obtain the KSE is as follows. The generalised iterative map
xn+1 = f(xn) is linearised to give its associated tangent map δxn+1 = f(xn +
δxn)−f(xn). The tangent map is rescaled, δxn → δxn/ln, before being fed back
at each iteration. The tangent map reads:

δXn+1 = δXn cos γn

+δYn
[
−Xnβ sinα sin γn − Ynβ sinα cosα cos γn

+Znβ sin2 α cos γn − cosα sin γn
]

+δZn
[
−Xnβ cosα sin γn − Ynβ cos2 α cos γn

+Znβ cosα sinα cos γn + sinα sin γn
]
,

δYn+1 = δXn sin γn

+δYn
[
Xnβ sinα cos γn − Ynβ sinα cosα sin γn

+Znβ sin2 α sin γn + cosα cos γn
]

+δZn
[
Xnβ cosα cos γn − Ynβ cos2 α sin γn

+Znβ cosα sinα sin γn + cosα cos γn
]
,

δZn+1 = δYn sinα+ δZn cosα,

(4.13)

where γn ≡ Ynβ sinα+Znβ cosα. In Appendix A.2 a detailed calculation of the
KSE is provided. At the best of our knowledge, this is the first time the KSE has
been calculated for the CKT.



54 Chapter 4. Entanglement and quantum chaos

FIGURE 4.2: Time evolution of the ergodicity for the QKT
(dashed lines) and the QKR-limit for j = 9 (solid lines) in a
regular region (black) and chaotic regions (green/grey). Points
T1, T2 are marked in Fig. 4.1 andR1, R2 are marked in Fig. 4.4.
The chaotic region (corresponding to the initial point T2) in the
QKT can be termed as quasi-ergodic, since our ergodicity mea-
sure is close to 1 (about 0.8). In contrast, the chaotic region
(corresponding to the initial point R2) in the QKR-limit hardly
shows any signature of ergodicity. We attribute this fact to the
persistent presences of the KAM tori, bounding the classical

chaotic regions in the CKR. The number of spins is N = 500.
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4.2.3 Top ergodicity

Ergodic systems are dynamical systems in which time averages of the observ-
ables are provided by a suitable ensemble averages:

〈O〉time = 〈O〉ensemble . (4.14)

In a very special situation, in which the dynamics is such that the energy is
delivered to and accumulated in the system, one expects that the time averages
of observables in the long-time limit correspond to ensemble averages calcu-
late with respect to the canonical Gibbs-Boltzmann ensemble ρG(T ) at infinite-
temperature:

ρ∞ = lim
T→∞

ρG(T ) = lim
T→∞

∑

n

exp
− HT
kBT |ψ〉n〈ψ|n, (4.15)

where T is the temperature and kB is the Boltzmann constant. In this situation
the system uniformly explores all states over time, such that an observable O
averaged over time equals the same observable averaged over all states.

The full QKT system is in a pure state, therefore its EE, defined in Eq. (4.19),
is always zero if we do not take any bipartition of the system. This is not so with
its ergodicity. We measure the ergodicity as the fidelity [Joz94]

F (ρ, ρ∞) = tr
√√

ρ∞ρ̄
√
ρ∞ (4.16)

where ρ̄ is the time averaged density matrix of the full system. As all states
are equally probable in the infinite-temperature Gibbs-Boltzmann canonical en-
semble, ρ∞ = 1

N+11 is (proportional to) a unit matrix of the same dimension
as ρ. The closer F is to 1, the closer our system is to ergodic behavior, i.e. time
averages are equal to state-space averages. It is worth noting that at time n,
ρn = |ψ〉n〈ψ|n is density matrix of a pure state, but here we are taking the den-
sity matrix averaged over time n, ρ̄ =

∑n
i ρi/n. Another important point it is

necessary to clarify here is that the concept of canonical ensemble is valid only
for systems interacting and exchanging energy with the heat-bath; indeed, the
classical and quantum kicked top are explicitly time-dependent and are not of
this category. In fact, because of the external kicking, they are not in equilibrium
with the environment. Still, in the long-time limit we expect that a lot of energy
is delivered to the system, so we can assume the infinite-temperature canonical
ensemble as the equilibrium limit ensemble ρ∞.

In the phase space of the CKT of Fig. 4.1(a), chaotic initial points explore
much of the phase space, in comparison to regular initial points which explore a
regular narrow band of the phase space; correspondingly chaotic regions are er-
godic, whereas regular regions are not. Does this notion of chaos and ergodicity
hold in the quantum case? To answer this question, we calculate the quantum
ergodicity at points corresponding to chaotic and regular initial conditions.
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We pick two representative initial conditions corresponding to regular and
chaos points, and calculate their ergodicity in the QKT: (Φ,Θ) = (2.20, 2.25) and
(3.57, 2.25), labelled respectively as T1 and T2 in Fig. 4.1. Fig. 4.2 plots the er-
godicity of these two points: point T2 is “quasi” ergodic, since our ergodicity
measure is close to 1 (about 0.8), whereas point T1 is far from ergodic. The rea-
son why the chaotic regions are not fully ergodic is that there are regular regions
which are not visited by initial conditions beginning in the chaotic regions. In
other words, chaotic regions are ergodic and regular regions are not, in the cor-
responding quantum system. In the next section, we calculate the EE of these
regions.

4.2.4 Top entanglement entropy

The QKT Hamiltonian acts collectively on all N spins, thereby preserving the
symmetry of the N -spin state; this means that the spin expectation value of any
single spin is

〈sγ〉 =
〈Jγ〉
2j

. (4.17)

The reduced density matrix of a single spin is

ρ(1) =
1

2
+ 〈s〉 · σ . (4.18)

In the context of quantum chaos and EE, the choice of bipartition is not well
understood; different bipartition choice can lead to different results. In prior
work, Ref. [Gho+08; LM11] bi-partitioned one-particle from the larger systems,
Ref. [Wan+04] bi-partitioned two-particles from the larger system, and Ref.
[Lak01] averages over-all possible partitions. However, only the one-particle bi-
partition has been experimentally verified [Nei+16]. Here we have chosen the
one-particle bi-partition, because it is the simplest to calculate. The role that the
choice of bipartition plays in quantum chaos would make an interesting future
study.

From the definition of linear entropy (S = 1− trρ2
(1)), the EE of a single spin

with the rest of the system is [Gho+08]

S =
1

2

(
1− 〈J〉 · 〈J〉

j2

)
. (4.19)

We define the time-averaged EE as 1/T
∑
n S(n), where S(n) is the linear

entropy after the n kicks and T is the final number of kicks. For finite systems,
time-averaging is used to estimate the equilibrium value approached by larger
systems [Nei+16]. It is worth noting that the time-average of S is different from
applying the time-average of the density matrix to Eq. (4.19), which would not
be a measure of EE.
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We use the time-average EE to depict a quantum phase space: choosing the
initial state to be spin coherent |Θ,Φ〉with 0 ≤ Θ < π and 0 ≤ Φ < 2π, Fig. 4.1(c)
plots the time-averaged EE of the QKT for α = π/2, β = 3. Remarkably there
is an obvious correspondence between the time-averaged EE of the QKT and
the classical phase space trajectories and KSE, as shown in Fig. 4.1(a) and (b).
Regions of low EE correspond to regular trajectories (KSE = 0), and regions of
high EE correspond to chaotic trajectories (KSE > 0).

An important difference between the KSE and EE of the kicked top however,
is that in the classical case there is a well defined demarcation between chaotic
and regular regions, whereas in the quantum case the transition from regions of
low to high EE is smooth. The change in EE becomes greater with increasing
number of spins, and therefore the transition from regions of high EE to low
EE occurs more rapidly as shown in Fig. 4.1(d). From Fig. 4.1(d) one may con-
jecture that in the very large spin limit, classical chaotic regions correspond to
maximum EE = 1/2, and regular regions corresponds to minimum EE = 0, with
a well defined demarcation between these two EE regions, in the QKT.

The surprising correspondence between EE and KSE is made more stark
when one compares the vastly different forms of the KSE Eq. (4.12) and the
EE Eq. (4.19). Underlying these very different equations however is a common-
ality in the information that they encapsulate; both are the rate of information
production in their relative classical and quantum domains [ZS98].

In the kicked-top, chaotic regions are quasi-ergodic, and these regions are
marked by high EE, and non-ergodic regions are marked by low EE. This how-
ever is not a general relation, and in the next section we show that non-ergodic
regions can also exhibit high EE.

4.3 Quantum kicked rotor

Another well-known kicked system used in the study of chaos is the kicked
rotor. The Hamiltonian of the QKR is

HR =
1

2I
P 2 +K cos Φ

∞∑

n=−∞
δ(t− n) (4.20)

where Φ is the angle operator and P is the angular momentum, canonically
conjugate to Φ. K is the kicking strength and I is the moment of inertia. The
rotor operators obey the commutation relation

[P,Φ] = −i . (4.21)
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The angular momentum and angle operator at each kick can be obtained from
the discrete time evolution of the operators in the Heisenberg picture,

Pn+1 = U†RPnUR ,

Φn+1 = U†RΦnUR ,
(4.22)

where the Floquet operator UR is

UR = exp(−iP
2

2I
) exp(−iK cos Φ) . (4.23)

This produces the stroboscopic equations

Pn+1 = Pn +K sin Φn ,

Φn+1 = Φn + Pn+1/I .
(4.24)

As there are no products of P and Φ terms, this equation is also valid classically.
The phase space of the rotor is a cylinder, −∞ < P < ∞, 0 ≤ Φ < 2π. This

is topological different from the spherical phase space of the top. Although the
rotor is unbounded in P , the stroboscopic equations show that the system is
invariant under 2πI translations in P and 2π in Φ. Fig. 4.4(a) plots the classical
rotor phase space for K = 0.9, I = 1.

4.3.1 Classical rotor-limit of the top

Rotor dynamics may be derived from the top if we confine the top to an equa-
torial waistband as depicted in Fig. 4.3 [HS88]. This is achieved by reducing the
precession frequency about the x-axis and increasing the torsion strength about
the z-axis through the rescaling

α = K/j , β = j/I , (4.25)

where j →∞. We call this substitution the rotor-limit of the top, or simply the
rotor-limit. If one begins in the equatorial waistband, this rescaling confines the
angular momentum to (Fig. 4.3)

X = cos Φ , Y = sin Φ , Z = P/j . (4.26)

Substitution of Eq. (4.25) and (4.26) into the kicked-top map of Eq. (4.11), takes
one to the kicked-rotor map of Eq. (4.24).

The rotor may be approximated by the top even for relatively modest values
of j. Fig. 4.4(c) plots the top phase space with the rescaled α and β for j = 9, in
between P = 0 and 2π. A comparison with the rotor phase space of Fig. 4.4(a),
shows that rotor characteristics are clearly seen in the rotor-limit of the top phase
space of Fig. 4.4(c).
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FIGURE 4.3: (a) The magnitude of the angular momentum J
of the top is a conserved quantity, and therefore is represented
on a sphere. (b) The rotor-limit is achieved with the rescaling
α = K/j, β = j/I , where j →∞. If one begins in the equatorial
waistband, this rescaling confines the angular momentum to

X = cos Φ, Y = sin Φ, Z = P/j.

4.3.2 Rotor Kolmogorov-Sinai entropy

To further quantity the similarities of the rotor and the rotor-limit, we compare
the KSE of the two. From Eq. (4.24), the tangent map for the rotor is (see Ap-
pendix A.3 for derivation)

δPn+1 = δPn +K cos(Φn)δΦn , (4.27)

δΦn+1 =
(

1 +
K

I
cos Φn

)
δΦn +

δPn
I
. (4.28)

Using this tangent map, Fig. 4.4(b) plots hKS for the rotor for K = 0.9, I = 1.
Fig. 4.4(d) similarly plots hKS for the rotor-limit. The two plots show a high
level of similarities, but also differences, which we discuss below.

4.3.3 Quantum rotor-limit of the top

Let us define the following rescaled operators,

X̂ ≡ Ĵx/j , Ŷ ≡ Ĵy/j , P̂ ≡ Ĵz . (4.29)

Substitution of these operators into the commutation relations of Eq. (4.5), and
taking j →∞ so that we may drop the 1/j2 terms, we get,

[X̂, Ŷ ] = 0, [Ŷ , P̂ ] = iX̂ , [P̂ , X̂] = iŶ . (4.30)

These commutation relations are satisfied with

X̂ = cos Φ , Ŷ = sin Φ , P̂ = −i ∂
∂Φ

. (4.31)



60 Chapter 4. Entanglement and quantum chaos

FIGURE 4.4: (a) and (c) show the classical phase space of
the CKR and the CKR-limit (j = 9), with 500 random ini-
tial conditions for a duration of 500 kicks. (b) and (d) show
the KSE of the CKR and CKR-limit (j = 9), calculated on a
grid of 200 × 200 initial conditions, iterating the linear map
for 104 steps. The points R1, R2, R3, R4, R5, R6 mark (Φ,Θ) =
(π, 0), (π, π/2), (π, 3π/4), (π, 2π), (0, 0), (0, 2π). (e) plots the
time-averaged EE of the QKR-limit, for N = 300 spins and a
duration of T = 300 kicks. (f) plots the time-averaged EE of
the QKR-limit at Φ = π for various N ; the transition from re-
gions of low EE to high EE becomes more stark with increasing

number of spins. Parameters: K = 0.9, I = 1.
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Substituting Eq. (4.25), Eq. (4.29), and (4.30), into the top Hamiltonian of Eq. (4.4),
one retrieves the rotor Hamiltonian of Eq. (4.20) [HS88].

4.3.4 Rotor ergodicity

The presence of KAM tori can separate regions of local chaos. This is clearly rep-
resented in the phase space of the CKR of Fig. 4.4(b), where islands of KSE > 0
are separated from each other. Trajectories whose initial conditions lie in this
regions, are completely irregular (non-periodic) i.e. chaotic; nevertheless, they
cannot invade other regions of the phase space. The KAM tori act as inpene-
trable barriers which prevent the system from exploring the whole phase space;
here the system is highly non-ergodic. These chaotic regions are localised, as
opposed to the global chaos exhibited in the CKT.

We calculate the ergodicity corresponding to a point in one of these regular
region and also in a local chaos region: (Θ,Φ) = (π, 0) and (π, π/2), respectively.
These points are marked by R1 and R2 in Fig. 4.4(d). Fig. 4.2 shows that the
ergodicity of the regular region is low, but that point R2 is also highly non-
ergodic. We would like to know, whether EE can still be a signature of quantum
chaos in these highly non-ergodic regions.

4.3.5 Rotor entanglement entropy

As the classical rotor may be extracted from the top for modest values of j, quan-
tum rotor physics may also be extracted from the quantum top. However in the
quantum case we will need a large number of spins to identify the correspon-
dence between EE and chaos in the rotor, as we will show.

We begin with the rotor-limit with j = 9, as with the classical example. For
the range 0 ≤ 〈P̂ 〉 < 2π, Θ is restricted to arccos(2π/j) ≤ Θ < π/2 or -π/2 ≤
Θ < − arccos(2π/j), since P = Zj = j cos Θ. We choose the latter range for Θ,
as this will correspond to the rotor map of Eq. (4.24). For large j, this range is a
small strip in the equatorial waistband of the top phase space.

Now unlike the classical case, where the demarcation between regular and
chaotic regions are well defined, in the quantum regime the transition between
corresponding regions of low and high EE is gradual. This means that deeper
in the quantum regime, features corresponding to the classical features may be
washed out. Fig. 4.6 plots the EE for 4 different points (K = 0.9, I = 1): R1 =
(Φ, P ) = (π, 0), R2 = (π, π/2), R3 = (π, 3/4π), R4 = (π, 2π) for N = 50 and 500.
From Fig. 4.4(b), we see that points R1 and R4 correspond to classical regular
behavior, and points R2 and R3 correspond to chaos. A comparison of Fig 4.6(a)
and (b) shows that as one increases the number of spins these regions become
more distinguishable, in that there is less overlap of the EE marking each region.
This is also reflected in Fig. 4.4(f) which plots the EE at Φ = π for various N ,
where the difference between EE of chaotic and regular regions becomes greater
with increasing N .
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FIGURE 4.5: The time-averaged EE of the QKT-limit with N =
600 spins, at φ = π for various j. As j increases, the EE is more

symmetric as it approaches the QKR.

Fig. 4.6 shows that points R2 and R3 are different, revealing an asymmetry
in the rotor-limit, that is not present in the rotor phase space. This asymmetry is
also clearly evident in Fig. 4.4(f). In the classical case, the KSE plot of the rotor-
limit [Fig. 4.4(d)] is also asymmetric, whereas the KSE plot of the rotor is not
[Fig. 4.4(b)]. The root of the asymmetry lies in the fact that we have used a finite
value of j, whereas the rotor is reached from the top only in the limit of j →∞.

Fig. 4.5 plots the time-averaged EE at Φ = π for various j with constant
N = 500. Now two operational properties of the rotor-limit are revealed here.
Firstly, increasing j means that the behavior of the system approaches that of the
quantum rotor, thereby reducing the aforementioned asymmetry. Secondly, in-
creasing j for a constantN presents a trade-off: although the system approaches
the quantum rotor, for larger values of j one requires more spins to achieve the
correspondence between EE and the classical features of the phase space; i.e. the
difference between the EE of chaotic and regular regions is reduced. The intu-
itive reason for this is that, larger j means that we are working in a narrower
equatorial waistband. In the parameters of the top, this means that Θ is con-
fined to the range {π/2, arccos(2π/j)}. As we are working in an increasingly
narrower region as j increases, one requires a larger number of spins to be able
to distinguish the corresponding classical features, as exemplified in Fig. 4.6.

Finally we plot the EE corresponding to the entire classical phase space for
the QKR-limit in Fig. 4.4(e). We see a qualitative correspondence with the KSE
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FIGURE 4.6: Plots of the EE for 4 different points [as marked
in Fig. 4.4(d)]: R1 = (Φ, P ) = (π, 0), R2 = (π, π/2), R3 =
(π, 3/4π), R4 = (π, 2π) for (a) N = 50 and (b) 500. Points
R1 and R4 correspond to classical regular behavior, and points
R2 and R3 corresponds to chaos. A comparison of (a) and (b)
shows that as one increases the number of spins these regions
become more distinguishable, in that there is less overlap of the

EE marking each region. Parameters follow Fig. 4.4.

of the CKR-limit in Fig. 4.4(d). Importantly, in contrast to the kicked top, here
the system is far from ergodic. Therefore EE can be a signature of quantum chaos
even in non-ergodic systems.

To intuit how this is so, recall Eq. (4.19) which gives the EE of the one-spin bi-
partition. For maximally mixed states, the state space is explored uniformly, so
that 〈J〉 = 0. One may roughly consider this to be the case for the quasi-ergodic
QKT in Fig. 4.1. However, one should only consider this as an intuitive expla-
nation, as our system is in fact not maximally mixed; it is the time-averaging
that gives rise to these effects. In the rotor-limit however, exploration in the Jz
direction is suppressed, so that Jz → 0, for states beginning in the equatorial
waistband. This suppression means that not the entire space of states is uni-
formly explored, and therefore the system is far from being ergodic. This means
that, 〈J〉 = 0 under the conditions that 〈J〉x = 〈J〉y = 0; under these condi-
tions EE is maximised even though the system is non-ergodic conditions. In
the next section, we provide an alternative explanation which is reminiscent of
KAM theory.

4.4 Quantum Kolmogorov-Arnol’d-Moser theory

An integrable Hamiltonian H0 in the presence of perturbation is written as

H = H0(κ) + εV (κ,λ) (4.32)
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where κ and λ are the action variables with total D dimension, and ε is a small
perturbation parameter. Integrable H0 generates periodic phase-space trajecto-
ries that lie on D-dimensional tori surfaces. The KAM theorem states that for
sufficiently small ε, the tori ofH0 do not vanish but are deformed, so that the tra-
jectories generated by H are conditionally periodic [Arn13]. What is the quantum
analogue of KAM theory?

Understanding the crossover behavior arising from the integrability break-
ing in quantum systems have been pursued through indirect measures such as
level statistics [BT77; BKM10; Rig09a; Rig09b] and in the quasi-classical limit of
systems using semi-classical eigenfunction hypothesis [Per73; Ber77; Vor79]. In
more direct analogy with KAM theory, an existence conditions for localisation
in non-integrable quantum systems has also been developed [HT83]. We do not
give a quantum KAM theory here, but simply show properties in our quantum
system that are reminiscent of KAM theory. Our motivation is that this may lead
to a robust quantum KAM theory in future work.

4.4.1 Entanglement entropy and quantum KAM tori

An alternative perspective on why regions with maximum EE may not be er-
godic, can be found by considering the CKR in the context of KAM theory [Chi79;
Gre79]. For very small kicking strength trajectories are regular, for very large
kicking strength trajectories are chaotic. In between these two extremes, both
types of trajectories exists in the phase space, with islands of chaotic regions
separated by KAM tori. This means that these islands of chaotic trajectories are
bounded and do not explore the whole phase space. The critical value of K
where the last of the KAM tori disappears is KC ' 0.971635 (I = 1) [Gre79].

A quantum analogue of this classical behavior can be qualitatively inspected
by using the Husimi distribution [Hus40; TS85]. At each point (Φ, P ) of the
quantum phase space, the Husimi distribution gives the expectation value of
the density matrix ρn (at time n) of the spin coherent state |Φ, P 〉,

PH(Φ, P ) =
2j + 1

4π
〈Φ, P |ρn|Φ, P 〉. (4.33)

In Fig. 4.7, we apply the Husimi distribution to the QKT for states initialised
in the regular region (point T1) and chaotic region (point T2). Here the Husimi
distribution floods the phase space for states initialised in the chaotic region
[Fig. 4.7(a)], and is localised for states initialised in a regular region [Fig. 4.7(b)].

In Fig. 4.8(a), (c) and (e), we apply the Husimi distribution to the QKR-
limit for states initialised in the chaotic region (point R5) for increasing kicked
strengths: K = 0.9 (below the classical critical point KC), K = 1.2 (just above
KC) and K = 2 (well above KC). We observe that although all the three cases
correspond to chaos, it is only when K is well above KC that Husimi distribu-
tion floods the phase space [Fig. 4.8(e)]; in comparison, for K near and below
KC , the Husimi distribution is confined to a much smaller fraction of the phase
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FIGURE 4.7: The Husimi distribution for the QKT after 500
kicks. (a) The initial state corresponds to chaotic point T2 in
Fig. 4.1. The resulting Husimi distribution spreads across the
phase space. (b) The initial state corresponds to regular point T1

in Fig. 4.1. The resulting Husimi distribution is highly confined.
All the parameter of the QKT are the same as in Fig. 4.1(c).



66 Chapter 4. Entanglement and quantum chaos

space [Fig. 4.8(a) and (c)]. This is in constrast to the QKT, where chaos corre-
sponds to a Husimi distribution which floods the phase space.

We compare the Husimi distribution of the QKR-limit with the classical tra-
jectories of th CKR-limit. In Fig. 4.8(b), (c) and (d), we plot the trajectories of
the CKR-limit for states initialised in the chaotic region (point R5) for the same
values of K as for the QKR-limit. When K is above the critical point the tra-
jectory floods the phase space [Fig. 4.8(d) and (f)]; in comparison, when K is
below the critical point, the trajectory is confined to a much smaller fraction of
the phase space [Fig. 4.8(b)]. Classically, this confinement marks the boundary
of the impenetrable regular KAM tori. A comparison of the Husimi distribution
of the QKR-lmit with the classical trajectories of the CKR-limit for K well above
and below KC shows a clear qualitative resemblance. This behavior suggests
the presence of a quantum analogue of the KAM tori and a phase transition. An
important difference however occurs near KC , which will discuss later in this
section.

One may consider torus regions of low EE as the quantum counterpart of
classical KAM tori, separating islands of high EE. By analogy to the classical
case, we conjecture that the presence of torus regions of low EE indicate that
states beginning in different islands of high EE will explore mutually exclusive
states, i.e. low EE tori separate orthogonal states. This conjecture is numerically
supported in Fig. 4.9(a)-(d) which shows the time-averaged density matrices of
the full system with initial conditions marked by T2 in Fig. 4.1(b), and initial
conditions marked by R5,R2,R3 in Fig. 4.4(b). Fig. 4.9 graphically depicts the
magnitude of the elements of the time-averaged density matrices. Note that we
use larger values of j = 15 and N = 500 than that used to generate Fig. 4.4(e),
to be closer to the rotor-limit. The graphical representation clearly shows that
T2 explores the full Hilbert space, whilst R2,R3, R5 only explore a subset of the
Hilbert space, explaining why these latter systems are not ergodic. R2 and R5

explore the same subspace, whilst R2 and R3 explore different different sub-
spaces. Inspection of the rotor phase space in Fig. 4.4(b) shows that R2 and R5

belong to the same chaotic island, whilstR3 belongs to a different one, separated
by KAM tori. This leads to the notion that evolution from initial conditions be-
longing to the same high EE island will explore the same subspace, but different
islands explore different subspaces. It is surrounded by a sea of low EE tori that
acts to prevent the subspace overlap between different islands.

Increasing the kicking strength above some critical point destroys the low EE
tori, and the system is free to explore the full Hilbert space, as for example repre-
sented with point T2; here the system uniformly explores the full Hilbert space
and therefore has high fidelity with the infinite-temperature Gibbs-Boltzmann
canonical ensemble, ρ∞. Interestingly the critical point which sees the destruc-
tion of low EE tori and the onset of ergodicity, corresponds near to the classical
KC value. In the CKR, KC marks the disappearance of the last KAM tori and
the formation of KAM cantori (broken tori [MMP84; BK84]). In the classical
case, KAM tori act as impenetrable barriers to the growth of the mean square
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FIGURE 4.8: A comparison of the Husimi distributions [(a), (c)
and (e)] for the QKR-limit and trajectories for the CKR [(b),
(d) and (f)], for the initial state corresponding to point R5 [in
Fig. 4.4(d)], after 500 kicks, for N = 500. In (a) and (b) the
kicked strength K = 0.9 is below the critical point KC , and
KAM tori confine the Husimi distribution and the classical tra-
jectories. In (c) and (d), K = 1.2 is just above KC : in the quan-
tum case the Husimi distribution is confined (c), whereas the
classical trejctory spreads across the phases space. Here the
KAM cantori is impenetrable in the quantum case, but per-
meable in the classical case. Finally, in (e) and (f) the kicked
strength K = 2 is well above the critical point KC , and the ab-
sence of KAM tori and cantori means the Husimi distribution

and the classical trajectory can flood the phase space.
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FIGURE 4.9: (a)-(d) shows the time-averaged density matrices
for point T2 in Fig. 4.1(c) and points R5,R2,R3 in Fig. 4.4(d),
respectively. R2 and R5 belong to the same island of high
EE, whereas R3 belongs to a different high EE island. T2 uni-
formly explores the full Hilbert space and therefore is ergodic.
R2,R3,R5 explore a subset of the full Hilbert space, and there-
fore is not ergodic. R2 and R3 explore different regions of the
subspace, whilstR2 andR5 explore the same subspace, leading
to the notion that evolution from initial conditions belonging to
the same island will explore the same subspace, but different

islands explore different subspaces.
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displacement, whereas KAM cantori are permeable barriers which only slow
the diffusive growth. In contrast, Geisel et al. [GRR86] showed that in the quan-
tum case, both KAM tori and cantori correspond to the prohibition of diffusive
growth.

To locate the quantum critical point, corresponding to the breaking of the of
quantum cantori, in Fig. 4.10, we plot the time averaged fidelity of points R3

and R5 [F (ρ̂R3
, ρ̂R5

)] as a function of K for N = 500, 1000, 2000, 3000. Remark-
ably, the fidelity of points R3 and R5 begin to increase not at KC , but just after,
supporting the Giesel et al.’s result that cantori correspond to an impenetrable
barrier in the quantum case. In other words, Fig. 4.10 suggests that between
K = 0.97 and 1.3, there exists low EE cantori that prevents diffusive growth.
This behavior is supported in the Husimi distribution of Fig. 4.8 (c): in the quan-
tum case the Husimi distribution is localised (c), whereas the classical trajectory
has spread across the phase space (d). This is because here, K is not too far
above the critical point. Further increases in K sees the Husimi distribution
spread across the phase space (e).

The behavior of the EE described here are highly reminiscent of the proper-
ties of classical KAM tori, supporting our conjecture that the quantum equiva-
lent of KAM trajectories are tori regions of low EE. The Husimi distribution is a
useful tool for locating the quantum cantori. These properties suggests that the
methods used and quantum systems studied here, are a fruitful avenue to study
quantum KAM theory.

4.5 Summary

In this chapter we have explored the correspondence of EE and chaos in the
kicked top and kicked rotor. We have shown that high EE corresponds to global
chaos in ergodic systems. The key ingredient throughout the analysis has been
the careful use of the rotor-limit of the kicked top. We started from the popular
and largely used representation of the QKT as a multi-qubit system, and then we
extended it to the study of the QKR, take advantage of a correspondence existing
between the two systems, pointed out by Haake and Shepelyansky in [HS88].
An important result is that in taking the rotor-limit of the kicked top, we have
also shown that EE corresponds to local chaos in non-ergodic systems. We have
shown that the behavior of EE tori resembles that of KAM tori, and therefore
propose that entanglement should play an important role in any quantum KAM
theory.
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FIGURE 4.10: The time averaged fidelity of points R5 = (0, 0)
and R6 = (0, 2π), F (ρ̂R5 , ρ̂R6), as a function of K for N =
500, 1500, 2000, 2500, 3000. The fidelity of pointsR5 andR6 be-
gin to increase not at KC ' 0.971635, but just after, supporting
the idea that cantori correspond to an impenetrable barrier in

the quantum case.
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5 Imbalanced
Creutz-Hubbard model

In Chap. 2 the entanglement entropy (EE) was introduced as a characteristic
quantum property very useful in the analysis of many-body quantum systems.
The ground states of gapped-local Hamiltonians satisfy an area law for the
entanglement entropy that allows their efficient simulation with only classical
resources by using tensor network based numerical techniques introduced in
Chap. 3. For one-dimensional (1D) systems the EE is bounded by a constant in
the gapped phases, while in the proximity of a quantum phase transition (QPT)
it diverges logarithmically, where the central charge of the underlying confor-
mal field theory plays the role of universality-class scaling-factor.

In this chapter, we apply these concepts to a concrete interacting 1D fermionic
system, the imbalanced Creutz-Hubbard ladder, to explore new physics. This
system possesses a rich phase diagram and the interactions lead to very neat
interplay of strongly-correlated and topological effects.

The original results of this chapter are based on the article “Exploring interact-
ing topological insulators with ultracold atoms: The synthetic Creutz-Hubbard model”
[Jün+17], where a complete theoretical and numerical analysis of the synthetic
Creutz-Hubbard ladder is presented and where a possible experimental imple-
mentation with ultracold fermions in intensity-modulated optical lattices is also
proposed. Here we mainly focus on the numerical matrix product state (MPS)
simulations, in order to understand the model in all regimes and to locate ex-
actly its critical lines and the underlying conformal field theories. Wherever
possible (namely, in the limit of strong and weak interactions and in the interme-
diate regime) we compare these numerical results with analytical calculations,
but we make reference to the original paper for the details of the derivations,
which are beyond the scope of this thesis.

This chapter is organized as follows. Sec. 5.1 is devoted to a crash course
on topological insulators, where the main ingredients and terminology used in
the rest of the chapter are introduced. We conclude the section showing that
for 1D spin-systems, MPSs play a crucial role not only in the numerical simula-
tions, but also as a theoretical tool for the classification of the different possible
topological nontrivial phases. In Sec. 5.2 the imbalanced Creutz-Hubbard lad-
der is introduced. In Sec. 5.2.1 the non-interacting limit is reviewed, showing
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that this model leads to a topological insulator. In Sec. 5.2.2 the effects of Hub-
bard interactions are analyzed in the weak, strong and intermediate interacting
limit respectively. In Sec. 5.2.3 we completely identify the different phases of
the model, together with standard and topological QPT that connect them by
numerical density matrix renormalization group (DMRG) simulations.

5.1 Topological phases of matter

Topological features of quantum many-body systems provide a new paradigm
in our understanding of the phases of matter [Wen04] and give rise to a promis-
ing avenue towards fault-tolerant quantum computation [Kit03; Nay+08]. From
a condensed-matter perspective, such features lead to exotic ground states be-
yond the conventional phases of matter, which are typically understood by the
principle of symmetry breaking and the notion of a local order parameter. On
the contrary, these exotic states can only be characterised by certain topological
properties.

The integer quantum Hall effect, which is a paradigmatic example of such
peculiar phases [KDP80], requires the introduction of a topological invariant
to describe the different plateaus and their associated transverse conductivi-
ties [Tho+82]. Another interesting property of this state of matter is the bulk-
boundary correspondence, which relates such a topological conductivity, a bulk
property, to the existence of current-carrying edge states localized within the
boundaries of the system [Hal84]. Although the bulk of an integer quantum
Hall sample appears as a trivial band insulator, its boundary corresponds to a
chiral liquid [KF04].

As realized in a series of seminal works [Hal88; Kit01; KM05], these remark-
able properties are not unique to quantum Hall samples subjected to strong
magnetic fields. Instead, they arise in various models with different symmetries
and in different dimensions [AZ97; Sch+08; Kit09], the so-called topological in-
sulators and superconductors [HK10; QZ11], which also lead to the notion of
symmetry-protected topological (SPT) phases in the context of topological or-
der [Wen04]. Remarkably enough, some of these models have turned out to
be accurate descriptions of real insulating materials [Kön+07; Hsi+08; HK10;
QZ11], and promising candidates to account for observations in proximitized
superconducting materials [Mou+12].

In this section we review the main properties of topological insulators and
some useful methods for their characterization. For non-interacting systems, a
single particle description is possible and most of the topological features can
be extracted by the topology of the bulk’s bands (the so-called bulk-boundary
correspondence). For free fermions, a complete classification of their phases
is possible: there exist in fact only ten classes of symmetry for Hamiltonians,
corresponding to ten possible combinations of time-reversal, particle-hole and
chiral (or sub-lattice) symmetries.
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Switching on interactions has a twofold effect. On one side they can destroy
some topological phases, transforming the topological insulator in a trivial one.
On the other side, new topological classes, eluding the non-interacting classifi-
cation, may appear. From a practical point of view, in presence of interactions,
the calculation of Chern numbers, winding numbers, and other quantities re-
lated to bands curvature can become hard, although recently some possible al-
ternatives have been proposed. In the last decade, several works pointed out
that bulk entanglement properties of the ground state provide signatures of the
topological features for interacting systems. Here we focus on the entanglement
spectrum (ES) already introduced in Sec. 2.1: even if a general theory still lacks,
at least for spin chains the ES degeneracy is strictly related to the symmetries of
Hamiltonians and it is a powerful tool to distinguish between topological and
trivial phases.

5.1.1 Symmetry protected topological phases

In the traditional Landau-Ginzburg paradigm of QPT, some symmetries of the
Hamiltonian are spontaneously broken by the ground state when a critical point
is crossed. The symmetry-broken phase is always associated with a non-zero
order parameter, which vanishes in the symmetric phase. An example is the
spin-1/2 ferromagnetic Ising chain H = −∑i σ

x
i σ

x
i+1 − hσzi . The critical point

is h = 1 [Pfe70]. For h → ∞ the phase is paramagnetic, characterized by low
entanglement and exponentially decaying correlation functions; all spins point
along the z-direction and they are uncorrelated; the ground state is unique and
shares the Z2 symmetry with the Hamiltonian, due to the equivalence under
the exchange σz → −σz . For h → 0 the system is in a gapped ferromagnetic
phase; correlation functions decay exponentially but there is a long-range or-
der and nonzero entanglement; the magnetization is the order parameter and
the ground state is doubly degenerate, breaking the Z2 symmetry (it “chooses”
pointing up (+x) or down (−x)).

However, the Landau-Ginzburg paradigm fails in many interesting cases.
To give an example, let us consider a modified spin-1 Heisenberg chain H =∑
i
~Si~Si+1 +D(Szi )2: for D = 0, it is the standard Heisenberg model. In the limit

D → ∞ the ground state is gapped, the energy is minimized by Szi = 0 and
there is no long-range order. The ground state of the Heisenberg limit is also
disordered (there is no local order parameter) and gapped (Haldane conjecture
[Hal83], see also Sec. 3.2.1). Actually, the two limits correspond to different
phases separated by a critical point at DC (detectable from a gap closure [GS84]
as well as a diverging entanglement entropy [Vid+03; Pol+10]).

The ground state for D < DC is a new kind of quantum phase, the Haldane
phase. It turns out that also the ground state of the AKLT model [Aff+04] lies
in such a phase (as addressed in Sec. 3.2.1). Exploiting such analogy, one can
characterize the Haldane phase: (i) each spin-1 site is virtually splitted in two
spin-1/2 which form valence bonds with neighbors spins; (ii) for open boundary
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conditions and in the thermodynamic limit, two spins-1/2 at the extremes of
the chain remain uncoupled, resulting in two independent localized edge states.
The four possible ways to arrange the edge states (namely ++, −+, +− and
−−) turn out in a fourfold degeneracy of the ground state. The presence of
edge states resemble the gapless modes inducing the boundary current in the
quantum Hall effect. The Haldane phase is, in fact, an example of symmetry
protected topological (SPT) phase in 1D [GW09]: the Heisenberg model has
many symmetries (namely rotations, translation, time-reversal, inversion, etc.)
and it is, in fact, possible to add the Hamiltonian many terms which explicitly
break some symmetry, but the Haldane phase is preserved until the inversion
symmetry Sx,y,zj → Sx,y,z−j+1 is not broken [Pol+10]. In this sense, the phase is
“symmetry protected”.

From a quantum information perspective, the above-stated distinction can
be reformulate more precisely in terms of ground-state entanglement in a way
resulting useful in classifying phases in the interacting case [CGW10]. In this
view, two gapped phases (ground states) belong to the same equivalent class if
one can be transformed into the other by performing only local unitary transfor-
mations:

U = T
[
e−i

∫∞
0
dgH̃(g)

]
, (5.1)

where T denotes the time ordering and H̃(g) is a sum of local Hermitian terms.
Since local unitaries cannot create global (long-range) entanglement (LRE), if no
further symmetry constraints are present, two states belong to the same phase only
if they share the same LRE structure. Alternatively speaking, only states with
long-range entanglement can be in distinct phases. State with only short-range
entanglement (SRE) can be transformed in (i.e. are equivalent to) a product state.
The presence of long-range entanglement is a requirement for having “genuine”
topological order. In [CGW11a] is proved that in 1D and in absence of symme-
tries, all the gapped phases are actually equivalent to the trivial product state,
which implies that there is no genuine topological order in 1D. Instead, also
in 1D many nonequivalent phases with only SRE exist if symmetries are im-
posed. In this case, transformation (5.1) must be modified in order to admit
only symmetry-preserving local Hermitian terms. This approach gives back a
more formal definition of symmetry protected topological phase. The previous
example of the Haldane phase can be reformulated in this context. As a final
remark, let us noted that in [CGW10; CGW11a] (as in many related works) it is
crucial the use of MPSs and PEPS’ as representatives of gapped ground states of
local Hamiltonians.

5.1.2 Non-interacting fermionic topological insulators

A comprehensive classification exclusively based on the Hamiltonian symme-
tries exists for non-interacting systems [AZ97; Sch+08; Kit09]. According to the
Wigner theorem, any quantum mechanical symmetry can be implemented by ei-
ther a linear-unitary or an antilinear-antiunitary representation acting on the
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Hilbert space. We limit the discussion to global symmetries, while gauge sym-
metries are excluded. Symmetries can be spatial (if they act on the spatial part of
the Hamiltonian, e.g. rotations, reflections, translations) or non-spatial (time re-
versal, particle-hole, chiral). Firstly, we focus on the latter. We are interested on

FIGURE 5.1: The ten symmetry classes of single particle
Hamiltonians classified in terms of the presence or absence
of time-reversal, particle-hole and chiral symmetry. The last
three columns list all possible topologically nontrivial quantum
phases as a function of symmetry class and spatial dimension
d. For example, in d = 1 only five classes (AIII, BDI, CII D and
DIII) can host a topological phase. The symbol Z (Z2) means
that there is one phase for each integer (resp. for each integer
modulo 2). Band insulators corresponding to different integers
in the same symmetry class cannot be adiabatically deformed
one into another without closing the gap, i.e. without crossing

a phase transition. Reprinted from [Sch+08].

how symmetries are implemented on fermionic systems. Let c(†) be the canon-
ical fermionic annihilation (creation) operator. A unitary symmetry U acts on c
as c→ c′ = UcU−1 and the system is invariant under U if the canonical anticom-
mutations relations and the Hamiltonian are preserved: U{c, c†}U† = {c, c†}
and UHU−1 = H .

Time-reversal T is an antiunitary operator and therefore its matrix repre-
sentation T can be always expressed as a combination of a unitary UT and the
complex conjugation K, i.e. T = UTK. A system is T -invariant if anticommuta-
tion relations are preserved and if U†TH

∗UT = H . It turns on that U∗TUT = ±1,
leading to two different possible implementations of the symmetry.

Another antiunitary symmetry is the particle-hole (or charge conjugation)
C. Besides the anticommutations rules preservation, a non-interacting Hamilto-
nian must satisfy U†CH

TUC = −H in order to be C-invariant. Also in this case, a
further condition on UC holds: U∗CUC = ±1.
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Taking into account the last two symmetries T and C, a system can be in 9
different classes, which correspond to all the possible combinations among the
three occurrences of T via UT (i.e. +1, −1 or no symmetry 0) and the analogous
behaviors (+1, −1 or 0) for C.

For 8 of these combinations, that is when at least one of T or C is different
from zero, also the product S = T × C is uniquely determined. S is a special
unitary symmetry, called chiral. There can be a situation in which both T and
C are broken but S is satisfied. S differentiates from a standard unitary since a
Hamiltonian is S-preserving if U†SHUS = −H .

Finally, the tenth possibility occurs when no one of the symmetries is satis-
fied, that is in the case where only trivial global unitary symmetries are possible.
This tenfold classification is often called Altland-Zirnbauer (AZ) classification
[AZ97; Sch+08; Kit09]. An exhaustive table summarizing the ten classes and
their properties (if a class can host topological insulator, in which dimension
etc.) is shown in Fig. 5.1. For example, the quantum Hall insulator belongs to
class A (no symmetries at all). The Creutz ladder [Cre99] falls in the BDI class,
where the three symmetries are satisfied and T = C = S = +1. For experimen-
tal feasibility, in this chapter we will study a modified version of this ladder, the
imbalanced Creutz ladder, which belongs to the AIII class, where only the chiral
symmetry is satisfied (and it survives also in the presence of interactions).

Let us summarize how T , C and S act on fermionic operators and Hamilto-
nians:

T cj,σT −1 = U∗Tσ,σ′cj,σ′ , T c†j,σT −1 = c†j,σ′UTσ,σ′ ;

Ccj,σC−1 = UCσ,σ′c
†
j,σ′ , Cc†j,σC−1 = cj,σ′U

∗
Cσ,σ′ ;

Scj,σS−1 = USσ,σ′c
†
j,σ′ , Sc†j,σS−1 = cj,σ′U

∗
Sσ,σ′ ;

(5.2)

where we have introduced the index j, defining the position of the fermionic op-
erator on a lattice and the index σ stands for the internal degrees of freedom (e.g.
↑, ↓). For quadratic Hamiltonians on a periodic lattice it can be convenient work-
ing in momentum space: H =

∑
Ψ(q)†H(q)Ψ(q), where Ψ = (cσ(q), c†σ(q))t are

spinors and c
(†)
σ (q) is the Fourier transform of cj,σ (resp. c†j,σ). In this case, the

required constraints for the Hamiltonian being symmetric are:

UTH(q)∗U−1
T = H(−q);

UCH(q)∗U−1
C = H(−q);

USH(q)U−1
S = −H(q).

(5.3)

The previous relations imply several constraints on the form of the Hamilto-
nians. In the case of chiral symmetry, in the basis in which US is diagonal, H is
block off-diagonal:

H =

(
0 h(q)

h†(q) 0

)
, (5.4)

where h is aNA×NB matrix, withNA+NB = N . Furthermore, chiral symmetry
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gives rise to a symmetric spectrum with energy eigenvalues appearing in pairs:
if u(q) is an eigenstate with energy ε, USu(q) is also an eigenstate but with energy
−ε.

In terms of bulk properties, several topological invariants can be calculated
to characterize the phase. In lattice models, the Chern number [Tho+82] is
broadly used:

Cα =
1

2π

∫

BZ

dDqBα(q). (5.5)

HereD is the lattice dimension; α labels the band; q is the momentum, restricted
to the first Brillouin zone; Bα(q) = ∇q ×Aα(q) is the Berry curvature of the band,
defined as the curl of the Berry connectionAα(q) = i

∑N
b=1 u

α∗
b (q)∇quαb (q), where

uαb (q) are Bloch wave functions and b = 1, . . .N labels different sites in the unit
cell. The Chern number is an integer, which is nonzero if the sample is topo-
logically nontrivial. Chern number is deeply connected with the quantized Hall
conductance σH = Cαe

2/h, where e is the electron charge and h the Plank’s con-
stant [KDP80]. The integer nature of the Chern number reflects the robustness
of the phase against smooth deformations of the Hamiltonian parameters.

The Berry connection leads to the introduction of another relevant quan-
tity, the Berry-Zak phase [Ber84; Zak89] which is the phase accumulated by
an eigenstate of the Hamiltonian along a parallel transport across the Brillouin
zone:

φα =

∫

BZ

dDqAα(q). (5.6)

For chiral systems, the characteristic topological invariant is the winding
number [AOP16]. In 1D it is defined, in the notation of Eq. (5.4), as

W =
1

2πi

∫

BZ

dqTr
[
h−1(q)∂qh(q)

]
(5.7)

5.1.3 Topological insulators in presence of interactions

AZ classification ceases to work when interactions are added. For example, Fid-
kowski and Kitaev in [FK11] and independently Turner et al. in [TPB11], showed
that for interacting fermions in 1D, the BDI class collapses to only 8 phases (i.e.
it is characterized by Z8 instead that Z; the number of phases increases to 16 in
the presence of translational symmetry). On the other side, some SPT phases
exist only in presence of interactions (see e.g [LTH16] in 1D, [WPS13] in 3D).
For interacting bosons, a complete classification for arbitrary dimensions exists
[Che+12]. For interacting fermions, the classification is complete in 1D [FK11;
CGW11a; CGW11b; SPGC11], while results are partial in higher dimensions (see
[WG18] and references therein).
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In 1D, Jordan-Wigner transformations [JW28; Nie05]:

c†j → σ+
∏

k<j

σzk, cj →
∏

k<j

σzkσ
−;

σ+
j → c†j

∏

k<j

(
1− 2c†kck

)
, σ−j →

∏

k<j

(
1− 2c†kck

)
cj ;

(5.8)

map fermionic chains in spin chains (and vice-versa) and the symmetries of the
former can be more easily classified by studying the latter [CGW11b; SPGC11].
In particular, as an efficient representation of 1D gapped spin states, MPSs turn
out to be very useful thanks to the possibility to easily implement symmetries
and extract entanglement properties of the bulk, recovering the bulk-boundary
correspondence. In fact, even if not impossible [Hat06], for interacting systems
the calculation of topological invariants from bulk bands properties is not trivial
[ZMP14; GC+19].

5.1.4 Entanglement spectrum degeneracy as signature of topo-
logical order

As shown in [CGW11b; SPGC11] each phase of a spin system can be classified
according to all the inequivalent projective representations of the symmetry
group of the Hamiltonian. An operator u(g) is a projective representation of the
group of symmetry G if it behaves under composition as

u(g1)u(g2) = φ(g1, g2)u(g1g2), g1, g2 ∈ G. (5.9)

φ(g1, g2) ∈ C is a phase, the factor system of the projective representation. If
φ(g1, g2) = 1 the representation reduces to the usual linear representation 1.

Here we show that the degeneracy of the ES is even when the ground state of
a spin chain is in a nontrivial topological phase (namely, if the projective repre-
sentation of the Hamiltonian symmetry group is nonlinear), whereas there are
no constraints on the ES if the phase is non-topological and the representation
acts linearly. We will explicitly prove this statement in the particular example of
inversion symmetry, following the reasoning originally proposed in [Pol+10].

In [LH08], Li and Haldane introduced the ES in the context of the FQHE
as a fingerprint of topological order. As mentioned in Sec. 2.1 the ES in noth-
ing but the set of the Schmidt coefficient of a bipartition A/B of the system,

1More specifically, φ defines the class and satisfies φ(g2, g3)φ(g1, g2g3) = φ(g1, g2)φ(g1g2, g3).
If φ1 and φ2 are factor systems for two different classes (i.e. given g ∈ G, u1(g) is associated with
φ1(g1, g2) and u2(g) is associated with φ2(g1, g2)), the representation u1(g) ⊗ u2(g) is projective
with factor group φ1(g1, g2)φ2(g1, g2) and the corresponding class is φ = φ1 +φ2. The equivalence
class of the factor systems is abelian under such composition and forms the second cohomology group
of G, H2(G,C); the identity in H2(G,C) is the class of the linear representations of G. A classical
example is G = SO(3), where H2(SO(3),C) = Z2 whose two elements ±1 represent the integer
(linear) and half-integer (SU(2)) representations.
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FIGURE 5.2: A symmetry Σ acting unitarily on the physical
space (the physical index) can be equivalently considered as
acting projectively on the bonds as in Eq. (5.10). U is a pro-

jective representation of dimension χ

now interpreted as the spectrum of an “entanglement Hamiltonian” HA defined
by the reduced density matrix ρ(A) = e−HA . Consider a pure state |ψ〉 and its
MPS representation |ψ[Γ,Λ]〉 in the canonical form [Eq. (3.5)], invariant under
a local symmetry. In the context of MPS, it is a well-known result [PG+08] that
a symmetry acting unitarily on the physical space (the physical index) can be
equivalently considered as acting projectively on the bonds [Fig. 5.2]:

∑

s

Σss′Γ
s = eiθΣU†ΣΓsUΣ. (5.10)

Here Σ and UΣ are unitary matrices; in particular, UΣ is a projective representa-
tion of dimension χ. For a time-reversal symmetry Γm is replaced by Γ∗m on the
lhs and by ΓTm for inversion symmetry.

Consider the inversion symmetry (I) 2:

ΓsT = eiθIU†IΓsUI . (5.11)

Transposing both sides of the equation (iterating the transformation on the rhs),
we obtain:

Γs = ei2θI (UIU
∗
I)†Γs(UIU

∗
I). (5.12)

Using the canonical conditions [Eq. (3.7)] and the fact [UI ,Λ] = 0, we obtain:
∑

s

Γs†Λ2Γs =
∑

s

Γs†Λ2ei2θI (UIU
∗
I)†Γs(UIU

∗
I)

=
∑

s

Γs†Λ(UIU
∗
I)†ΛΓs = e−i2θI (UIU

∗
I)−1.

(5.13)

2I acts on the spins as Sx,y,zj → Sx,y,z−j+1. The modified Heisenberg Hamiltonian introduced in
Sec. 5.1.1 is invariant under I
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Inverting the last relation (taking the transposition and the complex conjuga-
tion) we finally get the crucial equation

ei2θIUIU
∗
I =

∑

s

Γs†ΛUIU
∗
IΛΓs, (5.14)

which means that UIU∗I is an eigenvector of the transfer matrix with eigenvalue
ei2θI . Since |ei2θI | = 1, the canonical conditions and the assumption that the
state is pure imply that

UIU
∗
I = eiωI1 (5.15)

(in fact the transfer matrix admits a unique eigenvector with unimodular eigen-
value, that is the identity). It follows that

(UIU
∗
I)−1 = UTI U

−1
I = e−iωI1⇒ UTI = e−iωIUI . (5.16)

Repeating this relation twice it also follows that e−2iωI = 1 and then ωI = {0, π}.
It turns out that the phase ωI identifies the projective class. The nontrivial topo-
logical case is ωI = π where, from Eq. (5.16), one has UTI = −UI , that is UI is
an antisymmetric unitary matrix. Since [UI ,Λ] = 0, the eigenspaces of Λ (cor-
responding to the eigenvalues Λα of the ES) are invariant under the action of
UI and these eigenspaces have even dimension kα (i.e. the multiplicity of the
eigenvalues of the ES is even). This follows from the fact that UαI (the projec-
tion of UI onto the kα-dimensional eigenspace) satisfies detUI = det[−UI ] =
(−1)kα detUI (UI is antisymmetric) and then kα is even because detUI 6= 0 (UI
is unitary).

The two discrete distinct values of ω correspond to two different phases and
there is no way to change from one phase to the other by means of contin-
uous transformations of the ground state, i.e. without crossing a QPT. How-
ever in both phases, the inversion symmetry is preserved, there is not a sponta-
neous symmetry breaking and hence such phase transition eludes the Landau-
Ginzburg paradigm. This is, in fact, a topological QPT.

The ω = π phase is the Haldane phase of the spin-1 Heisenberg model, as it
can be directly checked on the AKLT state. In canonical form, the AKLT state is
defined by Γs = σs and Λ = 1/

√
21. Under inversion σs → σsT = −σyσsσy ,

that is UI = σy and θI = π. Since σyσy∗ = −1, from Eq. (5.15) follows eiωI = −1
and a doubly degenerate ES.

Analogous results can be derived for many other symmetries as done in e.g.
[Pol+10; TPB11; Pol+12; PT12].

5.2 Imbalanced Creutz-Hubbard model

The subject of topological insulators and superconductors is not only at the fore-
front of academic research, but also at the focus of technological applications
[Kit03; Nay+08]. Despite the success, (i) there are still several paradigmatic
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models of topological models whose connection to real materials still remains
unknown, or even seems quite unlikely, as it occurs for the Hofstadter model with
magnetic fluxes on the order of the flux quantum [Hof76], or the Haldane model
[Hal88]. Moreover, (ii) most of the topological materials explored in the labo-
ratory so far do not display important electronic correlation effects [HA13]. This
is rather unfortunate in view of the richness of the fractional quantum Hall effect
[Lau83], where such correlations are responsible for a plethora of exotic topo-
logical phases of matter.

FIGURE 5.3: Phase diagram of the imbalanced Creutz-
Hubbard ladder: Phase diagram displaying a topological in-
sulator (TI) phase, and a pair of non-topological phases: an or-
bital phase with long-range ferromagnetic Ising order (OFM),
and an orbital paramagnetic phase (OPM). The horizontal axis
represents the ratio of the inter-particle interactions to the tun-
neling strength, whereas the vertical axis corresponds to the
ratio of the energy imbalance to the tunneling strength. The
dashed yellow line shows the transition points of the effec-
tive model in the strong-coupling effective (Ising) model. The
dashed red line indicates the transition as obtained from the
weak-coupling expansion. The red circle shows the transition
point in the balanced model at intermediate interactions. Stars
label numerical results, and the blue line is an extrapolation of
the phase-boundaries. The labels of the critical lines give the

central charge of their underlying conformal field theory.

In the present section we introduce a variant of the quasi-one-dimensional
(quasi-1D) Creutz topological insulator [Cre99], and study the effect of repul-
sive Hubbard-type interactions on the topological phase. This model shall be
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referred to as the imbalanced Creutz-Hubbard ladder. We argue that such
a model has all the required ingredients to become a workhorse in the study
of strongly-correlated topological phases in molecular and optical (AMO) plat-
forms, more particularly with ultracold gases of neutral atoms trapped in peri-
odic potentials made of light, i.e. optical lattices [BDZ08; LSA12; BDN12].

Starting from a flat-band regime, we show that the imbalance and the interac-
tions lead to a competition between a topological phase and two different phases
of orbital quantum magnetism. At large interaction strength, a long-range in-
plane ferromagnetic order arises, related to the symmetry-broken phase of an
orbital quantum Ising model; while the imbalance then drives a standard QPT
in the Ising universality class towards a paramagnetic phase. The full phase
diagram is shown in Fig. 5.3, where the yellow stars indicate the critical lines
obtained with MPS simulations.

The standard Creutz model describes a system of spinless fermions on a
two-leg ladder (see Fig. 5.4 (a)), which are created-annihilated by the fermionic
operators c†i,`, ci,`, where i ∈ {1, . . . , N} labels the lattice sites within each leg of
the ladder ` ∈ {u,d}. Fermions are allowed to hop vertically along the rungs of
the ladder with tunnelling strength tv, and horizontally along the legs of the lad-
der with a complex tunnelling t` = th(eiθδ`,u + e−iθδ`,d), where th is a tunnelling
strength, and δa,b is the Kronecker delta. The arrangement of complex phases in
the horizontal links leads to a net 2θ-flux gained by a fermion hopping around
a square unit cell, playing thus the role of the so-called Peierls phases of a mag-
netic field piercing the ladder. In addition, the kinetic part of the Hamiltonian
also includes a diagonal tunnelling of strength tdiag, yielding altogether

HC = −
∑

i

∑

`

(
t`c
†
i+1,`ci,` + tdiagc

†
i+1,`ci,¯̀ + tvc

†
i,`ci,¯̀ + H.c.

)
, (5.17)

where we use the notation ¯̀= d(¯̀= u) for ` = u (` = d).
This quadratic lattice model was put forth in Ref. [Cre99] as a simple toy

model to understand some of the key properties of higher-dimensional domain-
wall fermions [Kap92; CH94], which were introduced in the context of lattice
gauge theories to bypass the fermion-doubling problem [NN81a; NN81b]. For
periodic boundary conditions, this model leads to a couple of bands that dis-
play a pair of massive Dirac fermions with different Wilson masses m0,mπ at
momenta kD ∈ {0, π} [Ber+10] 3. For open boundary conditions, a pair of zero-
energy modes exponentially localized to the left/right edges of the ladder ap-
pear as one of the Wilson masses gets inverted (mπ < 0) when tv < 2tdiag. Con-
sidering the bulk-boundary correspondence discussed in the introduction, these
edge states resemble the surface current of the higher-dimensional topological
insulators. In fact, the change in polarisation of the system can be characterised
by a Zak’s phase (5.6), such that the appearance of these zero-energy modes co-
incides with a non-vanishing topological invariant, and the Creutz ladder yields

3Valid only for a flux 2θ = π, as we will assume.
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a

b

FIGURE 5.4: Standard and imbalanced Creutz ladder: Two-
leg ladder where fermions tunnel along the black links enclos-
ing a net flux 2θ along a closed plaquete: (a) standard Creutz
ladder (5.17), and (b) imbalanced Creutz ladder, which leads to

Eq. (5.20) in the π-flux limit.

a symmetry-protected topological phase in this regime. As discussed below, for
θ = π/2, this topological phase corresponds to a BDI topological insulator.

Since the objective of this work is to study correlation effects, we now con-
sider the simplest possible Hubbard interactions between the spinless fermions

HH =
∑

i

∑

`

(
Vhni,`ni+1,` +

Vv

2
ni,`ni,¯̀

)
, (5.18)

where Vh (Vv) are the density-density interaction strengths between fermions
residing in neighbouring sites along horizontal (vertical) bonds of the ladder,
and we have introduced the fermion number operators ni,` = c†i,`ci,`.

To make the system suitable for cold-atoms implementation, in the following
we will deal with a variant of the Creutz Hamiltonian: (i) we shall substitute
the vertical tunnelling by an energy imbalance between the legs of the ladder
εu = ∆ε/2 = −εd, which changes the symmetry class of the topological insulator
for θ = π/2 from BDI to AIII; (ii) we limit the interaction terms (5.18) to the
anisotropic regime Vh = 0; (iii) we set the amplitude of the diagonal hopping
equal to the one along the legs (|tdiag| = |t`| = t̃) and finally (iv) we fix the phases
in order to get a net π-flux through the plaquettes. The resulting Hamiltonian
(see Fig. 5.4 (b)), which we will refer to as the imbalanced Creutz-Hubbard
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Hamiltonian, is

HπCH = HπC + VHubb, HπC = HFB + Vimb, (5.19)

where we have introduced the kinetic term

HFB =
∑

i,`

(
−t̃c†i+1,`ci,¯̀ + is`t̃c

†
i+1,`ci,` + H.c.

)
(5.20)

with su/d = ±1. This term leads to a pair of flat bands, and a couple of zero-
energy topological edge states. The remaining terms

Vimb =
∑

i,`

∆ε

2
s`ni,`, VHubb =

∑

i,`

Vv

2
ni,`ni,¯̀, (5.21)

contain the Hubbard interactions and the energy imbalance, which can have
nontrivial effects on the flat-band physics, and induce a phase transition to other
non-topological phases of matter. In the following section, we present a new
formalism to understand such transitions.

The following subsections are devoted to the construction of the phase dia-
gram shown in Fig. 5.3. We start by discussing the solution of the non-interacting
imbalanced Creutz ladder, and the appearance of flat bands and fully-localized
edge states in the Hamiltonian (5.20) (see Sec. 5.2.1). This corresponds to the
vertical axis of the phase diagram. In Sec. 5.2.2, we initially examine the weakly-
interacting regime and show that the model maps onto a pair of weakly-coupled
Ising chains, which can be studied through a mean-field analysis (i.e. the region
in the vicinity of the vertical axis of Fig. 5.3). Then, we study the opposite limit
of very strong interactions (i.e. rightmost region of Fig. 5.3), and discuss the pos-
sible non-topological orbital magnetic phases that can arise. Finally, we explore
the intermediate regime. These different methods allow us to build an analyti-
cal prediction of the phase diagram of the model. Finally, in Sec. 5.2.3, we test
numerically the above predictions, and provide a detailed study of the phase
diagram by means of MPS numerical simulations.

5.2.1 Non-interacting limit: flat bands and edge states

We start by solving the kinetic part (5.20) of the π-flux Creutz-Hubbard Hamil-
tonian (5.19). For periodic boundary conditions, and after introducing the spinor
Ψ(q) = (cu(q), cd(q))t for the fermion operators in momentum space c`(q) =∑
i e−iqaici,`/

√
N , one finds

HFB =
∑

q∈BZ

Ψ†(q)B(q) · σΨ(q), (5.22)
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where σ = (σx, σy, σz) is the vector of Pauli matrices, and B(q) = 2t̃ (− cos(qa),
0, sin(qa)). By direct diagonalization, one finds that the system develops two flat
bands ε± := ε±(q) = ±2t̃, where q ∈ BZ = [−π/a, π/a) is the quasi-momentum,
and the lattice constant shall be set to a = 1 henceforth. The vanishing group ve-
locity associated with these bands, vg = ∂qε±(q) = 0, indicates that the ground
state must be insulating, regardless of the particular filling. This can be con-
sidered as a new type of insulator, namely a flat-band insulator, which corre-
sponds neither to the usual band insulator, nor to the Mott insulators. It shares
some properties with the former (i.e. no correlations), and with the latter (i.e.
localized fermions), but it differs from both insulators in the large degeneracy
of the ground state, except for half-filling conditions.

On top of this, the flat bands are also topological: the diagonalization of the
discrete chiral symmetry σy (s.t. σyH(q)σy = −H(q), withH(q) = B(q) ·σ) puts
the Hamiltonian (5.22) in a purely off-diagonal form, with elements Bx ± iBz ;
its complex phase gets a nontrivial winding numberW = sgn(t̃) 6= 0 [Maz+15].
Equivalently, we could consider the eigenvectors

q|ε±(q)〉 ∝
(

(Bx + iBz)
1/2,±(Bx − iBz)1/2

)t
(5.23)

and realize that they exhibit a uniform Berry connectionA±(q) = i〈ε±(q)|∂q|ε±(q)〉 =
1
2 . The uniform Berry connection leads to a finite Zak’s phase (5.6) ϕZak,± = π
for our topological flat bands. This Zak’s phase pinpoints the topological prop-
erties of the bands, and can be connected to a macroscopic observable: the po-
larization of the system [XCN10].

Interestingly enough, the Creutz ladder displays an infinite flatness parame-
ter without requiring long-range tunnelings, as necessary in higher-dimensional
models of topological flat bands [PRS13]. From this perspective, switching on
the leg imbalance ∆ε > 0 in Eq. (5.21) leads to some curvature in the energy
bands

ε±(q) = ±ε(q) = ±2t̃
√

1 + f−2 + 2f−1 sin q, (5.24)

where we have introduced the flatness parameter f = 4t̃/∆ε, which becomes
infinite for vanishing imbalance. The presence of the imbalance also drives
the system out of the BDI class and into the AIII class [AZ97; Sch+08; Kit09],
since Bz(q) = ∆ε/2 + 2t̃ sin q acquires a mixed parity under k ↔ −k and
therefore no effective time-reversal (UTH(−q)∗U†T = +H(q)) or particle-hole
(UCH(−q)∗U†C = −H(q)) operators can be found. Anyway, the discrete chiral
symmetry is still described by σy and the whole procedure described above can
be employed. The Berry connection of the bands becomes non-uniform due to
their curvature

A±(q) =
1 + f−1 sin q

2(1 + f−2 + 2f−1 sin q)
, (5.25)

which leads to the following Zak’s phase ϕZak,± = πθ(f − 1), where θ(x) is
the Heaviside step function. Hence, the Zak’s phase yields topological effects
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provided that the bands are sufficiently flat, i.e. f > 1. Conversely, when ∆ε >
4t̃, the curvature of the bands is large, i.e. f < 1, and no topological phenomenon
occurs. This marks a quantum phase transition between the AIII topological
insulator and a trivial band insulator, as shown in the vertical axis of Fig. 5.3.

To have an alternative view on these topological features, let us introduce
the so-called Aharonov-Bohm cages [Vid+00] (ABC), which will also become
very useful once interactions are switched on. In the π-flux Creutz ladder (5.20),
the fermions cannot tunnel two sites apart due to the Aharonov-Bohm effect
[Cre99] (see Fig. 5.5(a)). One can thus find single-particle eigenstates strictly
localized in cages formed by simple square plaquettes (see Fig. 5.5(c)). In second
quantisation, such ABC with energies ε± = ±2t̃ are

|+ 2t̃〉i = w†i,+|0〉, w†i,+ =
1

2

(
ic†i,u + c†i,d − c

†
i+1,u − ic†i+1,d

)
,

| − 2t̃〉i = w†i,−|0〉, w†i,− =
1

2

(
ic†i,u + c†i,d + c†i+1,u + ic†i+1,d

)
,

(5.26)

with i ∈ {1, . . . N} for periodic boundary conditions, where one identifies cN+1,` =
c1,`. Conversely, for open boundary conditions, these squared ABC can only be
defined for i ∈ {1, . . . , N − 1}, and simple counting shows that there are only
2(N − 1) possible states that can be accommodated in such flat bands. The two
missing states are zero-energy modes, εl = εr = 0, fully localized at the bound-
aries

|0〉L = l†|0〉, l† =
1√
2

(
c†1,u + ic†1,d

)
,

|0〉R = r†|0〉, r† =
1√
2

(
c†N,u − ic†N,d

)
.

(5.27)

For these particular weights, the fermions cannot tunnel one site apart due to the
Aharonov-Bohm effect (see Fig. 5.5(a), and are thus localized within a boundary
ABC (see Fig. 5.5(b), which corresponds to an edge state within the bulk-edge
correspondence of the topological insulator.

We can finally express the π-flux Creutz Hamiltonian (5.19) for open bound-
ary conditions as

HFB =

N−1∑

i=1

∑

α=±
εαw

†
i,αwi,α +

∑

η=l,r

εηη
†η . (5.28)

Although generic fillings can lead to a variety of interesting phases in the pres-
ence of interactions [Bar+19], potentially connected to fractional topological in-
sulators [PRS13], we shall only be concerned in this work with half-filling, i.e.
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FIGURE 5.5: Aharonov-Bohm cages in the Creutz ladder: (a)
Considering the tunnelling paths in the Creutz ladder (5.20),
one can identify two type of rhombic plaquettes that enclose
a synthetic π-flux (left). Therefore, a particle trying to tun-
nel two sites apart (middle) will be subjected to a destructive
Aharonov-Bohm interference that forbids this process. Accord-
ingly, particles are confined to the so-called Aharonov-Bohm
cages and cannot spread through the entire lattice. These cages
correspond to square plaquettes, except at the edges (b), where
destructive interference can also be found for a particle trying
to tunnel one site apart (right). (c) Aharonov Bohm cages with
the relative amplitudes for a single-particle state in two possible

flat bands, and in the two possible zero-energy edge modes.

N fermions, where the ground state of Eq. (5.28) is two-fold degenerate

|εg,L〉NI = l†w†1,−w
†
2,− · · ·w†N−1,−|0〉,

|εg,R〉NI = r†w†1,−w
†
2,− · · ·w†N−1,−|0〉,

(5.29)

and the ground-state energy is

εg,L = εg,R = −2t̃(N − 1). (5.30)

We thus see that the ground-state degeneracy corresponds to the two possible
choices in populating either of the zero-energy edge modes, and it is related to
the topology of the ladder (i.e. ring versus line with open edges).

The effects of the leg imbalance ∆ε > 0 in (5.21) can be understood from this
edge perspective by writing

Vimb =

N−1∑

i=2

timb

(
w†i−1,+ − w†i−1,−

)(
wi,+ + wi,−

)

+
∑

α=±

√
2timb

(
−l†w1,α − iαr†wN−1,α

)
+ H.c.,

(5.31)

where timb = −i∆ε/4 is an effective tunnelling induced by the imbalance, and
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has two relevant effects. The first line describes the hopping of fermions in
neighboring ABC, which leads to the aforementioned curvature of the bulk en-
ergy bands (5.24). The second line represents the hopping between the topo-
logical edge modes and the bulk ABC. As discussed in Sec. 5.2.2, both terms
conspire to induce a broadening of the edge modes in the regime 4t̃ ≤ ∆ε,
which is the regime where the topological Zak’s phase vanishes, signaling an
imbalance-induced topological phase transition.

5.2.2 Effects of interactions

Let us now address the fate of this topological phase as the Hubbard repulsion
is switched on, reporting only the those analytical results which are necessary
for the following discussions. The details of the calculations can be found in the
original paper [Jün+17].

Weak interactions: quantum Ising ladder. We start by exploring the weakly-
interacting regime t̃� Vv. Introducing the following rung operators

rj,1 =
ij√
2

(
icj,u + (−1)jc†j,d

)
,

rj,2 =
ij√
2

(
cj,u + i(−1)jc†j,d

)
,

(5.32)

an after a Jordan-Wigner transformation (5.8), it turns out that the non-interacting
imbalanced model HπC = HπC(t̃,∆ε) (5.19) can be rewritten as a two-leg quan-
tum Ising ladder 4

HπC =
∑

j

∑

n=1,2

(
−t̃σxj,nσxj+1,n +

∆ε

4
σzj,n

)
. (5.33)

The Hubbard repulsion are now expressed as a coupling between the two
legs of the quantum Ising ladder

VHubb = −Vv

4

∑

j

σzj,1σ
z
j,2 + const. (5.34)

4For open boundary conditions, this description allows an alternative interpretation of the edge-
state behaviour by writing the Ising model as a Kitaev-Majorana chain [Kit01]. The ferromagnetic
regime is associated with two uncoupled Majorana zero-energy modes on the opposing edges of the
system for each of the legs of the Ising ladder. Combining the two free Majoranas on either edge of
the Ising-ladder then yields the local fermionic edge modes defined in Eq. (5.27).
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For weak interactions, Vv � ∆ε, t̃, we can treat the influence of one Ising chain
on the remaining one with a mean-field approximation

HπCH ≈
∑

j,n

(
−t̃σxj,nσxj+1,n +

∆ε− Vvmn̄(∆ε, Vv, t̃))

4
σzj,n

)
, (5.35)

where we have introduced the transverse magnetization mn̄(∆ε, Vv, t̃) = 〈σzj,n̄〉
for each leg of the ladder, and n̄ = {2, 1} for n = {1, 2}. We thus observe a
renormalization of the imbalance parameter that controls the transverse field of
the Ising model, and thus leads to a shift of the critical point as the interaction
strength Vv increases. Accordingly, the topological phase of Sec. 5.2.1 survives
in a finite region of parameter space as the interactions are switched on. The
critical point ∆ε/t̃ = 4 flows towards smaller values of the imbalance as the
interactions increase

∆ε

t̃
= 4− 2

π

Vv

t̃
+O

(
V 2
v

t̃2

)
. (5.36)

This weak-coupling expansion defines a critical line in parameter space that sep-
arates the topological and non-topological phases, and agrees well with our nu-
merical findings for the phase diagram of the model, as discussed below (see
the red dashed line in Fig. 5.3).

Strong interactions: orbital Ising ferromagnet. Now we explore the opposite
limit of the Creutz-Hubbard ladder (5.19), namely the strongly-interacting regime
t̃� Vv. In the limit t̃ = 0, the ground state of the Creutz-Hubbard Hamiltonian
corresponds to a Mott insulator where the N fermions are distributed in the
ladder avoiding simultaneous occupancies of two sites within the same rung.

To second order of perturbation theory [MGY88], and considering the half-
filling regime, the relevant Hamiltonian describing the low-energy physics cor-
responds to an orbital quantum Ising model, namely

PrHπCHPr = 1
4JN + J

∑
i T

y
i T

y
i+1 + ∆ε

∑
i T

z
i , (5.37)

where the coupling J = −8t̃2/Vv and the leg imbalance ∆ε plays the role of an
effective transverse field. The above spin operators are defined as the orbital
analogue of the usual spin operators for electrons

T yi =
1

2

(
−ic†i,uci,d + ic†i,dci,u

)
, T zi =

1

2

(
c†i,uci,u − c†i,dci,d

)
. (5.38)

Finally, Pr = Πi(1 − ni,uni,d) is a Gutzwiller projector onto the subspace of
singly-occupied vertical rungs.

The 1D quantum Ising model can be exactly solved [Pfe70] by introducing a
Jordan-Wigner transformation (5.8), followed by a fermionic Bogoliubov trans-
formation [Bog59]. In comparison with the non-interacting ground state (5.29),
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which displays a topological two-fold degeneracy, the strongly-interacting ground
state for ∆ε < |J |/2 has a non-topological degeneracy related to the Z2 symme-
try of the Ising model. In this regime, the ground state develops long-range
order as a consequence of spontaneous symmetry breaking

limr→∞〈T yi T yi+r〉SI = 1
4

(
1− h2

) 1
4 , (5.39)

where h = 2∆ε/|J | < 1. This defines a critical line

∆ε

t̃
=

4t̃

Vv
, (5.40)

that separates the phase of long-range order, i.e. an orbital ferromagnet (OFM),
from the disordered phase, i.e. an orbital paramagnet (OPM), and is depicted
by a yellow dashed line in Fig. 5.3. As the leg imbalance is increased above a
critical value ∆ε

t̃
|c = 4t̃

Vv
, a standard quantum phase transition occurs between

the long-range ordered Ising ferromagnet and a disordered orbital paramagnet,
where all fermions tend to occupy the lower leg of the ladder. We note that this
transition is not of a topological origin, as it can be understood by a local order
parameter: the orbital magnetisation 〈T yi T yi+r〉SI → m2

y .

Intermediate interactions: extended Hubbard models. The long-range ferromag-
netic order is totally absent in the non-interacting topological ground-state (5.29),
where one finds

〈T yi T yi+r〉NI = 0. (5.41)

Accordingly, it is clear that one cannot connect the non-interacting topological
and strongly-interacting ferromagnetic phases adiabatically. Therefore, there
should be an interaction-induced topological quantum phase transition between the
symmetry-protected topological phase, and a state with magneto-orbital long-
range order, for intermediate interactions Vv/t̃.

To study intermediate interactions, it is convenient to rewrite the Hubbard-
interactions as a sum of three contributions VHubb = Vnn + Vpt + Vdt, expressed
in the ABC base (5.26)-(5.27). Vnn includes nearest-neighbour interaction between
fermions confined in adjacent ABC

Vnn =
Vv

2

∑

α=±
(nln1,α + nrnN−1,α) +

Vv

4

N−1∑

i=2

∑

α,β=±

ni−1,αni,β , (5.42)

where the ABC number operators are ni,α = w†i,αwi,α for α ∈ {+,−}, and nη =

η†η for η ∈ {`, r}.
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Vpt and Vdt are correlated tunnelling processes of two types. A pair-tunnelling
Hamiltonian

Vpt = J̃

N−1∑

i=2

(
w†i−1,+wi−1,−

(
w†i,−wi,+ + w†i,+wi,−

))
+ H.c. (5.43)

where J̃ = −Vv/4. In addition, we also obtain an inter-leg density-dependent
tunnelling

Vdt = Td

N−1∑

i=2

(ni−1,+ + ni−1,− − ni+1,+ − ni+1,−)w†i,+wi,−

+ 2Td

(
nlw

†
1,+w1,− − nrw†N−1,+wN−1,−

)
+ H.c.,

(5.44)

where Td = Vv/4 is the tunneling strength. The first line describes an inter-
leg tunnelling within the bulk of the ladder that depends on the density differ-
ence of the neighbouring ABC, and will be negligible for a ground state with
translationally-invariant bulk properties. On the other hand, the second line de-
scribes inter-leg tunnelings that occur at the boundaries of the Creutz-Hubbard
ladder, and depend on the density of the edge ABC . These terms are not negli-
gible for translational-invariant bulks, and will play a key role in the topological
phase transitions of the model.

For the balanced interacting model (∆ε = 0) the Hamiltonian reads HπCH =
HFB + Vnn + Vpt + Vdt and an effective boundary theory for intermediate inter-
actions Vv/t̃ can be derived.

Although the pair and density-dependent tunnellings in Eqs. (5.43)-(5.44)
modify the distribution of particle-hole pairs in the rungs of the virtual lad-
der, the nearest-neighbour interactions (5.42) do not change, since the num-
ber of neighbouring ABC that are occupied is preserved under such processes.
Therefore, in this limit, the nearest-neighbour interactions (5.42) can be substi-
tuted by a c-number, and only the flat-band (5.28) and the correlated-tunnelling
terms (5.43)-(5.44) have an important effect on the non-interacting ground states
(5.29). Moreover, as argued below Eq. (5.44), only the density-dependent tun-
nelling at the edges of the ladder will play a role to determine the order of the
translationally-invariant ground states.

According to this discussion, we can rearrange these terms asHπCH = Hedge+
Hbulk +Hb−e, where

Hedge = εll
†l + εrr

†r , (5.45)

stands for the Hamiltonian of the zero-energy edge modes. After introducing
the two spinor-operators

T̃ xi =
1

2

(
w†i,+wi,− + w†i,−wi,+

)
, T̃ zi =

1

2

(
w†i,+wi,+ − w†i,−wi,−

)
, (5.46)
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the bulk Hamiltonian becomes

Hbulk =
Vv

4
N +

N−1∑

i=1

4t̃T̃ zi +

N−1∑

i=2

4J̃ T̃ xi−1T̃
x
i , (5.47)

where J̃ = −Vv/4, which corresponds to a ferromagnetic Ising model in a trans-
verse field. This model can be solved exactly for periodic boundary conditions
[Pfe70] by means of a Jordan-Wigner transformation [JW28] T̃ zi = f†i fi − 1

2 and

T̃ xi = 1
2f
†
i eiπ

∑
j<i f

†
j fj + H.c., where f†i = (fi)

† are spinless fermionic opera-
tors. Considering periodic boundary conditions fN = f1, we would obtain the
energy bands for single-particle excitations

ε̃±(q) = ±ε̃(q) = ±2|J̃ |
√

1 + f̃2 − 2̃f cos q, (5.48)

where we have introduced the flatness parameter f̃ = 8t̃/Vv, such that we re-
cover perfect flat bands in the non-interacting regime Vv = 0. Analogously to
the non-interacting case, where the curvature f < 1 denoted the transition to the
non-topological imbalanced regime, here we have that f̃ = 1 locates the critical
point of the interaction-induced quantum phase transition at Vv

t̃
|c = 8, which

has been represented by a red circle in the phase diagram of Fig. 5.3.

5.2.3 Phase diagram of the Creutz-Hubbard ladder

Our considerations in the above sections already allowed us to determine the
possible phases of the model and their phase boundaries in certain parameter
regimes. In the following, we lay out the full phase-diagram of the model in
the (∆ε

t̃
, Vv

t̃
) plane using DMRG calculations. In Appendix B the matrix product

operator used for these simulation is described.
The analytic and numerical results for the phase diagram, collected in Fig. 5.3,

are described in the following subsections.

Topological insulator to orbital paramagnet phase transition. As shown in Sec.
5.2.2, the mapping of the Creutz ladder onto a quantum Ising ladder allows us
to predict a critical line (5.36) separating the topological insulator (TI) and the
orbital paramagnet (OPM) for sufficiently weak interactions. This critical line is
represented by a red dashed line that starts form the point ∆ε = 4t̃, Vv = 0 in
Fig. 5.3.

A good indicator for this quantum phase transition is the Ising transverse
magnetization or equivalently the density imbalance between the legs of the
Creutz ladder:

∆n =
1

N

∑

i

(
c†i,uci,u − c†i,dci,d

)
=

1

2N

∑

j

∑

n

σzj,n. (5.49)
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FIGURE 5.6: Paramagnetic susceptibility and energy gaps
along the TI-OPM-transition: Left: The divergence of the
magnetization susceptibility χ∆n with growing system size in-
dicates the critical point for a cut through the phase-diagram at
Vv = 4.0 (left inset: occupation imbalance ∆n, right inset: fitted
finite-size scaling of the susceptibility maxima assuming up to
second-order corrections, ∆εc(N) = ∆εc(1 + aN−1 + bN−2)).
Right: The dashed lines show the finite size results for the en-
ergy gap ∆, which is non-zero in both the TI- and the OPM-
phase. The quantity δ (solid lines), on the contrary, is zero in
the TI-phase due to the presence of zero energy modes, but
achieves a non-vanishing value in the OPM phase. Blue: N = 8,
orange: N = 16, green: N = 32, red: N = 64, violet: N = 128,
brown: N = 256. The vertical line (black) indicates the transi-

tion point (∆εc = 1.857).

Both can be easily calculated numerically using the DMRG code.
We can determine the critical line by studying the divergence of the imbal-

ance susceptibility χ∆n = ∂〈∆n〉/∂(∆ε/t̃) (Fig. 5.6 (left)).
As an alternative means of identifying the TI phase, we can study the be-

haviour of the ground-state degeneracy in the Creutz-Hubbard model with vari-
able filling. We therefore introduce the single- and two-particle energy gaps

∆ = lim
N→∞

1
2 [E(N + 2) + E(N − 2)− 2E(N)] , (5.50)

δ = lim
N→∞

[E(N + 1) + E(N − 1)− 2E(N)] , (5.51)

where E(x) is the ground-state energy of a system with x particles. It can be
shown that the two quantities coincide for gapless systems (∆ = δ = 0) and
conventional insulators (∆ = δ 6= 0). In a topological insulator, however, δ = 0
due to the presence of zero-energy edge modes while ∆ 6= 0 measures (half) the
band-gap. In Fig. 5.6 (bottom), we show that the predicted behaviour is indeed
observed.
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The critical points obtained through these different observables are repre-
sented by yellow stars in the left part of Fig. 5.3. As can be seen from these
results, the analytical prediction of the phase boundary (5.36) is reasonably ac-
curate even for quite large interactions, where the exact critical line given by
DMRG departs from a straight line, and bends up.

FIGURE 5.7: Ferro- and paramagnetic magnetization along the
OFM-OPM-transition: Left: Paramagnetic magnetization sus-
ceptibility for a cut through the phase diagram at Vv = 16t̃ and
different system sizes (inset: fitted finite-size scaling of the sus-
ceptibility maxima assuming up to second-order corrections,
∆εc(N) = ∆εc(1+aN−1 +bN−2)). Right: Ferromagnetic mag-
netization along the same line. Blue: N = 8, orange: N = 16,
green: N = 32, red: N = 64, violet: N = 128. The light
blue vertical line (dashed) in the top figure indicates the criti-
cal point (here: ∆εc/t̃ = 0.266). The black dashed curves indi-
cate the analytical predictions of an Ising model with the same
critical point (and a saturation of the ferromagnetic magnetiza-
tion 〈T yi 〉max = 0.48). The effective Ising model in Eq. (5.38)

suggests ∆εc/t̃ = 0.25 and 〈T yi 〉max = 0.5.

Orbital ferromagnet to orbital paramagnet phase transition. In Sec. 5.2.2, we in-
troduced an effective orbital Ising model in the limit of very strong interactions,
which allowed us to predict a critical line (5.40) separating the OFM and OPM.
This critical line is represented by a yellow dashed line in Fig. 5.3.

Indeed by measuring the paramagnetic and ferromagnetic magnetization
(〈T zi 〉 resp. 〈T yi 〉 in Eq. (5.38)), we confirm that these quantities scale equally,
and identify the phase-transition point also for finite interactions (Fig. 5.7) 5.

We observe for both quantities an Ising-like scaling, which differs from the
strong-coupling prediction only by a renormalization of the critical point and of
the maximum ferromagnetic magnetization (comp. Fig. 5.7).

5Technically, we determine the paramagnetic magnetization by measuring the fermionic ob-
servable that defines T zi , which is proportional to the leg density imbalance discussed above (see
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FIGURE 5.8: Paramagnetic magnetization susceptibility along
the TI-OFM-transition: Blue: N = 8, orange: N = 16, green:
N = 32, red: N = 64, violet: N = 128, brown: N = 256.
The black dashed lines indicate the TD-result in a TFIM-model.
Inset: The finite-size scaling of the maxima of the susceptibil-
ity yields (Vv/t̃)c,num = 8.003 (here fitted via Vv,c,num(N) =
Vv,c,num(1 + aN−1)), in good agreement with the analytical re-

sult (Vv/t̃)c = 8 .

The critical points obtained through these magnetizations are represented by
yellow stars in the right part of Fig. 5.3. As can be seen from these results, the
analytical prediction of the phase boundary (5.36) is reasonably accurate even
for moderate interactions.

Topological insulator to orbital ferromagnet phase transition. For intermediate in-
teractions we predicted the extension of the topological phase along the (0, Vv

t̃
)

axis of the phase diagram until a critical point Vv

t̃
= 8. Beyond this point,

the long-range ordered orbital Ising magnet sets in, and the topological edge

Eq. (5.38)). In order to avoid problems due to incomplete symmetry breaking when studying the fer-
romagnetic order-parameter 〈T yi 〉 (i.e. between the possible alignments in the ferromagnetic phase),
we determine instead the zero-momentum component of the orbital magnetic structure factor

STyTy (k) =
1

N2

∑
i,j

eik(i−j)
〈
T yi T

y
j

〉
, (5.52)

which yields the desired ferromagnetic magnetization in the thermodynamic limit 〈T yi 〉 =

(STyTy (0))1/2.
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modes disappear into the bulk. This critical point is represented by a red circle
in Fig. 5.3.

The numerical analysis (Fig. 5.8) confirms the validity of the effective Ising-
model derived in Eq. (5.47), and the exact location of this critical point. More-
over, in the case of finite imbalance (∆ε 6= 0), the divergence of the paramagnetic
susceptibility serves as a criterion for the determination of the phase-boundary
(see inset Fig. 5.8). The critical points obtained by these means are represented
by yellow stars in the middle part of Fig. 5.3.
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FIGURE 5.9: (Left) Scaling of the entanglement entropy for
critical points on the different transition lines. The prefactor
c in S(l) = c

6
ln( 2N

π
sin πl

N
) + const. identifies the central charge

of a critical phase. Here we show the entanglement entropy
in systems with N sites and fit the data for N/4 < l ≤ N/2 .
The fitting results for the TI-OPM transition yield c = 1.003 for
Vv/t̃ = 4.0,∆ε/t̃ = 1.857, N = 128 (blue line), the OFM-OPM
transition yield c = 0.524 for Vv/t̃ = 16,∆ε = 0.266, N = 128
(green line), and the TI-OFM transition yield c = 0.503 for
Vv/t̃ = 0,∆ε/t̃ = 8, N = 256 (yellow line). All these nu-
merical fits agree considerably well with the model predictions
c ∈ {1, 1/2, 1/2}. (Right) Degeneracies of the entanglement
spectrum for different phases. For a ladder of length L = 128
and for a bipartition in the half chain, the twenty lower eigen-
values of the ES are depicted for the three different phases. The
dots represent the degeneracy of the corresponding eigenvalue.
In the TI phase, for Vv/t̃ = 4 and ∆ε/t̃ = 1.5 the eigenvalues
are all doubly degenerate. In the OPM phase, for Vv/t̃ = 4 and
∆ε/t̃ = 2, and in the OFM phase for Vv/t̃ = 9 and ∆ε/t̃ = 0.2
almost all the eigenvalues are not degenerate. Following the
convention, the ES is defined as a logarithmic rescaling of the
Schmidt values,−2 log(λi). We found the same behaviour else-

where in the phase space.
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5.2.4 Entanglement analysis of phase transitions

So far, we have used a conventional condensed-matter approach to explore nu-
merically the phase diagram of the model, which is based on exploiting energy
gaps, susceptibilities, and correlation functions to identify phases with long-
range order or symmetry-protected topological phases, and critical lines that
separate them. Here we used the modern complementary approach, based on
the ground-state entanglement, as introduced in details in previous chapters.

Conformal field theories for the critical lines. We argued above that the syn-
thetic Creutz ladder for sufficiently weak interactions can be understood as a
couple of Ising models of length L = N with a renormalized transverse field.
Accordingly, the corresponding CFT (see Sec. 2.2.2) should have central charge
of c = 1/2 + 1/2 = 1, such that we would expect the scaling [Eq. (2.19)] S(l) =
1
6 ln

(
2N
π sin πl

N

)
+ a.

For the strongly-interacting regime, we showed that the OFM-OPM quan-
tum phase transition can be predicted in terms of a single Ising model of length
L = N in a transverse field. Accordingly, the corresponding CFT should have
central charge of c = 1/2, and S(l) = 1

12 ln
(

2N
π sin πl

N

)
+ ã.

Finally, in the intermediate interacting regime of Sec. 5.2.2, we argued that
the relevant physics to understand the TI-OFM phase transition is approximated
by another Ising model and therefore S(l) = 1

12 ln
(

2N
π sin πl

N

)
+ a′.

We confirm the above predictions through the numerical determination of
the central charge along the critical lines in three representative cases (see Fig.
5.9 (left)). We find central charge values agreeing with c = 1/2 for the TI-OFM
and the OFM-OPM-transition. The charge c = 1 along the TI-OPM-transition
originates from the hybrid nature of the Ising-model describing it (see Eq. (5.33)).
Building on these results, we depict the central charges of the three critical lines
of our phase diagram in Fig. 5.3.

Entanglement spectrum characterization of the topological insulating phase. In
the previous sections we provided many indicators that ensure the nontrivial
topological nature of the TI phase, namely the presence of localized edge states
and degenerate ground state. But, differently from non-interacting systems, for
interacting systems, an invariant quantity which incontestably determines the
topological class is not still available. However, as proven in detail in Sec. 5.1.4
a strong signature of the presence of topological order can be extracted from the
study of the entanglement spectrum (ES). As shown in Fig. 5.9 (right) in the im-
balanced Creutz-Hubbard model, the ES in the TI phase is not trivial, with double
degenerate eigenvalues, whereas in the OPM and OFM phases the ES is trivial and
almost completely not degenerate, supporting the presence of topological order.
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5.3 Summary

In this chapter we applied a variety of analytical and numerical techniques on
the study of a concrete fermionic model, the imbalanced Creutz-Hubbard lad-
der, which falls in the AIII topological class. By adding on-site repulsive interac-
tions only, we can induce phase transitions of different universality classes into
an orbital ferro- or para-magnetic phase. We then advance on the understand-
ing of the competition between topological features and interaction effects in
quantum many-body systems. The tensor network based methods introduced
in Chap. 3 allowed to detailing study the phase diagram and the quantum phase
transitions as well as a characterization of the topological insulating phase by
the analysis of the entanglement spectrum.
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6 Bell Correlations at Ising
quantum critical points

This chapter is of crucial interest in this dissertation, since the role of entangle-
ment entropy and nonlocality in characterizing quantum critical points (QCP)
will be compared in a concrete foundamental many-body system, a long-range
(power-law decaying 1/rα interactions) ferromagnetic Ising chain. We first es-
tablish spin squeezing as a necessary condition to violate the permutational in-
varinat Bell inequalities (PIBI) introduced in Sec. 2.3.4, in a Bell scenario involv-
ing identical measurement settings on all qubits. Based on numerical matrix
product states (MPSs) adapted to long-range interactions and analytical linear
spin-wave computations, we show that spin squeezing is a generic feature close
to the QCP, leading to a maximal violation for α < d in the thermodynamic
limit. Interestingly, the violation of the PIBI is maximal for all-to-all interactions,
where the semi-classical spin-wave theory is exact. Bipartite entanglement en-
tropy (EE), on the other hand, shows the opposite behavior, being maximal for
nearest-neighbour interactions.

6.1 Introduction

Nonlocal correlations, witnessed by the violation of Bell inequalities (BIs), mark
the strongest departure from classical physics that correlated quantum systems
may exhibit [Bru+14]. To violate a BI, entanglement among the individual de-
grees of freedom is necessary (albeit not sufficient [Wer89]). Such quantum cor-
relations are typically fragile against thermal effects, especially when consider-
ing many degrees of freedom. Nevertheless, thermalization is not always detri-
mental to entanglement: indeed, quantum critical points (QCPs) [Sac11] repre-
sent a special instance of equilibrium states, where multipartite entanglement
is stabilized at all length scales [Hau+16]. Multipartite entanglement survives
also at finite temperature in the quantum-critical regime, but thermal effects
reduce the range of the correlations [Hau+16; GSP18; FR19]. In addition to en-
tanglement, are there QCPs which stabilize also nonlocal correlations among the
individual components of the system? An important result from quantum infor-
mation theory shows that all non-product pure states, including those at QCPs,
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possess bipartite nonlocal correlations [Gis91]. Demonstrating and quantify-
ing the presence of nonlocal correlations among a macroscopic number of de-
grees of freedom is, in general, a very challenging task [Bru+14]. Nonetheless,
a permutationally invariant Bell inequality (PIBI) involving only first and sec-
ond moments of collective observables was derived recently [Tur+14; Tur+15b],
which is especially revelant for a collection of N qubits. The preparation, in a
Bose-Einstein condensate (BEC), of massively entangled states of two-level atoms
violating this inequality, was subsequently reported [Sch+16].

In the BEC experiment, violatation of the PIBI was achieved through the
dynamical generation of spin-squeezed states [Sch+16; Pez+18]. On the other
hand, spin squeezing is known to be present at the QCP of the transverse-field
ferromagnetic (FM) Ising model (TFIM), at least for a sufficiently large num-
ber d of spatial dimensions [FR18; GSP18]. Here, we investigate nonlocal cor-
relations at the QCP of the TFIM with power-law decaying (1/rα) interactions,
interpolating between infinite-range (α = 0) and nearest-neighbour (α→∞) in-
teractions. Besides its fundamental interest as a paradigmatic model for quan-
tum phase transitions, this model has been implemented in various quantum
simulators [Ber+17; Zha+17; Cha+18].

6.2 Bell inequality violation and spin squeezing

We consider the Bell scenario (N, 2, 2) faced in Sec. 2.3.4, here realized in a N -
qubits quantum state, where every qubit (labelled by the index i) is subjected to
two local dichotomic projective measures (already introduced in Eq. (2.46)):

M(i)
n =Mn = cos θσz + sin θσy,

M(i)
m =Mm = cosφσz + sinφσy,

(6.1)

corresponding to two possible directions n̂ and m̂ defined by the angles φ and θ.
Note that we dropped the index i since we restrict to the fully symmetric case,
where the measures are the same for each qubit (see discussion below Eq. (2.46)).

We aim at certifying the nonlocal nature of the resulting correlations, rely-
ing on 1- and 2-body expectation values. More specifically, we consider BIs
involving symmetric combinations of such correlators, i.e. the PIBI established
in [Tur+14] (and discussed in this thesis in Sec. 2.3.4, Eq. (2.45)) which here we
rewrite for the sake of readability:

W = 1− 1

N
Sn +

1

4N
(Snn − 2Snm + Smm) ≥ 0, (6.2)

where

Sk :=

N∑

k=1

〈Mk〉 Skw :=

N∑

k,w=1
k 6=w

〈M(i)
k M(j)

w 〉, (6.3)
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with k̂, ŵ ∈ {n̂, m̂}. PIBI (6.2) must be fulfilled by any statistical model obey-
ing Bell locality hypothesis. Given a quantum state, we look for optimal mea-
surement directions (n̂, m̂) in order to maximally violate inequality (6.2). Note
that we follow a different approach than in [Tur+14]: there (as explained below
Eq. (2.46)) the authors fixed the Bell operator (the rhs of Eq. (6.2)) and hence
calculated the quantum state which maximally violate the inequalities; here we
are instead already provided with a given quantum state, the ground state of a
concrete model, and look for the optimal measurements in order to violate the
inequality. This optimization can be performed analytically where all observers
measure the same observables. First, introducing â = (n̂− m̂)/|n̂− m̂|, defining
the collective spin ~J =

∑N
i=1 ~σi/2, and using elementary spin algebra, Eq. (6.2)

can be recast in the equivalent form [Sch+16]

W = 1− |Cn|+ (â · n̂)2(ζ2
a − 1) ≥ 0 , (6.4)

where Cn = 〈Jn〉/(N/2) ≡ 1 − r < 1 and ζ2
a = 〈(Ja)2〉/(N/4) are the first and

second moments of the collective spin along, respectively, directions n̂ and â,
scaled to the coherent spin state values. ζ2

a is the squeezing parameter already
met in Sec. 2.1.4, Eq. (2.13).

Notice that measuring the collective spin projectively along n̂ and â does
not realize a Bell scenario, but witnesses the ability to prepare many-spin states
exhibiting nonlocality if the spins are individually measured along n̂ and m̂
[Sch+16]. Indeed, Eqs. (6.2) and (6.4) have a different status. On the one hand,
Eq. (6.2) allows for a device-independent test of nonlocality, valid even if indi-
vidual measurement axes are not well-controlled, and even if the individual sys-
tems are actually not qubits but have an arbitrary physical structure. The only
assumption leading to Eq. (6.2) – beyond Bell locality hypothesis – is that two
possible measurement settings can be freely chosen on each party, each of which
yielding two possible outcomes [Tur+14; Tur+15b]. On the other hand, Eq. (6.4)
relies on extra physical assumptions: applicability of quantum-mechanical spin
algebra and correct calibration of measurement axes [Sch+16].

We define ẑ as the mean spin direction: 〈 ~J〉 ∝ ẑ. If â · ẑ 6= 0, then ζ2
a ∝ N ,

precluding violation of Eq. (6.4) for large N . Hence, axis â must be chosen
perpendicular to ẑ. Then, the minimal value of W is obtained if â is along
the direction of minimal variance ~J . Violation of inequality (6.4) then requires
ζ2
a < 1 (namely, spin squeezing [KU93; Pez+18]), while maintaining the largest

possible spin length (r � 1). Then, we choose n̂ = ẑ cosφ + â sinφ, yielding
W = (1− ζ2

a) cos2 φ− (1− r) cosφ+ ζ2
a . The minimal W is

Wmin = ζ2
a −

(1− r)2

4(1− ζ2
a)

> −1

4
, (6.5)

achieved for cosφ = (1 − r)/[2(1 − ζ2
a)]. The second measurement direction is

m̂ = ẑ cosφ− â sinφ. Maximal violation of inequality (6.4) is achieved for perfect
squeezed states (ζ2

a → 0 and r → 0), possible only for N →∞.
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FIGURE 6.1: (a) BI violation and (b) bipartite EE (b) for the
one-dimensional long-range TFIM (N = 40). Stars are ex-
trapolations for N → ∞ of the maximum of EE. (c): bipar-
tite EE and maximal violation of BI Eq. (6.2) for N = 170 and
α = 1.2. Black dashed lines: k-producibility bounds [Tur+19]
(see text) for k = 10 and k = 30. (d): for α = 1.2, critical
point extrapolated for N → ∞. Both maximum of EE and
maximal violation of the BI occur for the same transverse-field.
The fit used for the the extrapolation N → ∞ is of the form
hc(N) = hc(∞) + aN−2/3. In fact, finite-size scaling theory
predicts hc(N) − hc(∞) ∼ L−1/ν with ν the exponent of the
correlation length. For infinite-range interactions, L is replaced
by N1/dc where dc = 3 is the upper critical dimension of the
quantum Ising model [BJP82]. Hence, taking the mean-field ex-
ponent ν = 1/2 (expected for infinite-range interactions), we

obtain hc(N)− hc(∞) ∼ N−2/3.



6.3. Ferromagnetic Ising model 103

6.3 Ferromagnetic Ising model

We investigate violation of Eqs. (6.2) and (6.4) at the QCP of the TFIM, with
power-law FM interactions:

H = − 1

γ0

∑

i 6=j

γijS
x
i S

x
j − h

∑

i

Szi (6.6)

where γij = |li− lj |−α, and Sai = x, y, z = σai /2 are s = 1/2 spin operators. i and
j run over the sites of a d−dimensional square lattice of size N = L× (L/2)d−1,
and li denotes the position of spin i. We introduced γk = N−1

∑
i6=j exp[−k ·

(lj − li)]γij , and, to have a well-defined thermodynamic limit also for α < d, we
normalized the interaction term to γk=0. Mean-field theory predicts a QCP for
h = hc = 1, separating paramagnetic (PM) (for h > hc) from FM phases (h < hc).
The exact QCP is in general at 1/2 ≤ hc ≤ 1; in the d = 1 nearest-neigbour limit,
hc = 1/2 [Sac11]. In the PM phase, spins are aligned along ẑ; in the FM phase,
they sponteneously align along z̃ = ẑ cos θ± x̂ sin θ, with cos θ = h in mean-field
theory.

At the QCP, fluctuations of the magnetization along x̂ diverge as a power-law
with the system size, namely 〈(Jx)2〉/N ∼ Nθ(α) with a critical exponent θ(α).
On the other hand, due to the presence of the transverse-field, the system main-
tains a finite magnetization along ẑ, so that 〈Jz〉/N = O(1). In virtue of Heisen-
berg inequality for the collective spin, this opens the possibility for squeez-
ing the fluctuations of Jy , as ζy = 〈(Jy)2〉/N ≥ O(N−θ(α)). While quantum-
critical spin squeezing is indeed present when α = 0 [DV04; FR18], for nearest-
neighbour interactions it is present for d ≥ 2 but absent in d = 1 [LMW13;
FR18]. FM power-law interactions increase the connectivity of the Ising model,
and can be viewed as effectively increasing the physical dimension of the sys-
tem. Hence, we may expect spin squeezing, as well as the resulting violation
of inequality (6.2), to exhibit a nontrivial behavior when varying the power-law
exponent α at the QCP. In particular, in d = 1, we may expect a violation for
small values of α, but not in the nearest-neighbour limit α → ∞. This scenario
is indeed confirmed by our numerical DMRG results, consistently with LSW
analytical predictions.

6.4 DMRG results in one dimension

Our DMRG algorithm variationally finds the ground state of the model using
an MPS ansatz with bond dimension χ = 100. The long-range interactions are
implemented on a matrix product operator (MPO) following the prescriptions
in [CDV08; FND10b]. We can employ chains of length up to N = 170. The
details about the construction of this MPO are illustrated in Appendix C. From
the ground state in MPS representation, one can straightforwardly calculate the
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two-body correlators. The optimization of the angles θ and φ in order to ob-
tain the maximal violation of the PIBI is numerically performed following the
algorithm presented in [Tur+19].

FIGURE 6.2: BI violation at the QCP of the d = 1 TFIM, for
different values of α. Dots: finite size DMRG calculations
(N = 150, 160, 170). Diamonds: extrapolations for N → ∞
(using N = 30, 40, . . . , 170). Stars: LSW results (N = 105).
Inset: extrapolation for α = 0.2, of the form Wmin(N) =
Wmin(∞) + aN−1/3. Analytical results for α = 0 [DV04] pre-
dict that 〈Jz〉 → N/2 and 〈(Jy)2〉 ∼ N2/3, and thus Wmin =
−1/4 + aN−1/3 from Eq. (6.5). As LSW theory predicts that for
any α < 1, the model is equivalent to the α = 0 limit, it is nat-
ural to expect that a similar scaling law holds up to α = 1. For
α > 1, there is no reason to expect the same exponent. How-
ever, for α ≤ 2.2, probably becaus of strong finite-size effects in
numerical simulations, we could not observe deviations from

the α = 0 behavior and therefore we used the same fit.

On Fig. 6.1(a), we plot the maximal violation of the BI [Eq. (6.2)], as a func-
tion of the transverse-field h and of α. For values of α . 3, nonlocal correla-
tions are detected in the vicinity of the QCP, with maximal violation for α → 0.
For α & 3, no violation is detected, consistently with the quasi-absence of spin
squeezing at the nearest-neighbour QCP [LMW13; FR18]. Fig. 6.1(b) shows von
Neumann half-chain EE. Regardless of α, forN →∞, EE is maximal at the QCP.
The quantum-critical origin of the BI violation is demonstrated on Fig. 6.1(b), as
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maximal EE and maximal violation of Eq. (6.2) occur for the same transverse-
field in the thermodynamic limit. On Fig. 6.2, we plot, varying the power-law
exponent α and system sizeN , the maximal violation of Eq. (6.2) obtained at the
finite-size precursor hc(α,N) of the QCP (defined as the value of h for which
Wmin is minimal). For α < d and N → ∞, LSW theory (detailed below) pre-
dicts that Wmin → −1/4. Due to strong finite-size effects, our extrapolation for
N ≤ 170 does not exactly match this prediction (see inset of Fig. 6.2). However,
increasing α, we clearly see a weakening violation of Eq. (6.2), up to α & 3 where
no violation is detected any more.

As show in [Tur+19], observing a violation exceeding the value of β(k) given
in Eq. (2.49), certifies an entanglement depth of at least k+ 1 1. Such bounds are
indicated on Fig. 6.1(a, inset). In particular, a violation Wmin → −1/4, as ob-
served at the critical point for α < 1, certifies a diverging entanglement depth
[Tur+19]. Such bounds are indicated on Fig. 6.1(a, inset). In particular, a vi-
olation Wmin → −1/4, as observed at the critical point for α < 1, certifies a
diverging entanglement depth [Alo+19], genuine multipartite entanglement.

6.5 Linear spin-wave theory

Linear spin-wave (LSW) theory is expected to give an accurate semi-classical
description of the many-body state. Indeed, as FM long-range interactions harden
quantum fluctuations about the mean-field ground state, it is especially accurate
for small values of α. In fact, it will be shown that LSW theory even becomes
exact in the thermodynamic limit for α < d. In the following, we choose FM or-
der along +x. After a Holstein-Primakoff (HP) mapping of the spin operators
to bosonic modes 2, we obtain the LSW Hamiltonian:

HLSW =
max(1, h)

2

∑

k

(P̂kP̂−k + ω2
kX̂kX̂−k) , (6.7)

which is valid up to second order in HP operators. We introduced ωk =
√

1− γk
hγ0

in the PM phase, and ωk =
√

1− h2γk
γ0

in the FM phase. In terms of the HP

bosonic operators b(†)k at wave-vector k, X̂k and P̂k are defined as

X̂k =
bk + b†−k√

2
; P̂k =

b−k − b†k
i
√

2
, (6.8)

1See Sec. 2.1.2: a state ρ is k-producible if it is a mixture of tensor products of states involving
at most k spins [Tót12; Hyl+12]. The entanglement depth is the minimal value of k such that ρ is
k-producible.

2 The HP mapping takes the form: Szj = (cos θ)(1/2 − b†jbj) − (sin θ)(bj + b†j)/2 ; Sxj =

(sin θ)(1/2−b†jbj)+(cos θ)(bj+b†j)/2 ; Syj = (bj−b
†
j)/(2i), where all expressions are valid up to or-

derO(b3j ). bj are bosonic operators which, in Fourier space, read: bk = N−1/2
∑
j exp(−ik · rj)bj .
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such that [X̂k, P̂k′ ] = iδk,k′ , and [X̂k, X̂k′ ] = [P̂k, P̂k′ ] = 0. The LSW Hamilto-
nian of Eq. (6.7) is diagonalized by the Bogoliubov rotation βk = X̂k

√
ωk/2 +

iP̂−k/
√

2ωk, such that HLSW = max(1, h)
∑

k ωk(β†kβk + 1/2). Written in the
form of Eq. (6.7), the physical meaning of the LSW mapping is especially trans-
parent.

Indeed, the two quadratures P̂k and X̂k represent fluctuations of the collec-
tive spin in the two directions transverse to the mean spin orientation, namely
(in the LSW approximation): P̂k = Jy

k /
√
N/2 and X̂k = J x̃

−k/
√
N/2, with

x̃ = x cos θ − z sin θ and Ju
k =

∑
j exp(ik · rj)(u · ~Sj). Within LSW theory,

their fluctuations are simply harmonic, and the sectors corresponding to differ-
ent wave-vectors k are decoupled from each other. Finally, Eq. (6.7) allows one
to directly read the eigen-frequencies of the collective spin fluctuations, namely
Ek = max(1, h)ωk. Approching the critical point at h = 1, ωk=0 becomes gap-
less, implying a divergence of the fluctuations of the X̂0 quadrature (and, cor-
respondingly, squeezing of the P̂0 quadrature). In terms of the collective spin
degrees of freedom ( ~J =

∑
i
~Si ≡ ~Jk=0), one indeed finds

〈(J x̃)2〉 =
N

4ω0
; 〈(Jy)2〉 =

Nω0

4
. (6.9)

The divergence of the fluctuations of the order parameter (here, Jx = J x̃ cos θ)
is a generic signature of a critical phase transition (quantum or thermal). The
squeezing of fluctuations transverse to the order parameter (namely of Jy), on
the other hand, is a genuine signature of quantum criticality which has no classical
analog [FR18]. In the present case, it signals the presence of genuine multipartite
entanglement at the QCP [PS09; FR18; GSP18], which translates into a maximal
violation of the multipartite Bell inequality Eq. (6.2). LSW predicts a perfect
squeezing of Jy fluctuations at the QCP (ζy = ω0 = 0), so that from Eq. (6.5),
the minimal value of W is simply

Wmin = − (1− r)2

4
[at the QCP] . (6.10)

At the LSW level of approximation, the Bell-inequality violation at the QCP
has thus a very transparent interpretation, involving solely the reduction of the
mean spin length by quantum fluctuations.

Predictions from LSW theory are reliable as long as the mean spin length,

1− r = (2/N)〈J z̃〉 = 1− (2/N)
∑

k

〈b†kbk〉 , (6.11)

is moderately reduced by the occupation of HP bosonic modes, namely r � 1.
We find that r = (2N)−1

∑
k(1 − ωk)2/ωk. For α < d, γk6=0/γ0 → 0 for N → ∞

[FNR17], so that ωk 6=0 → 1, and r ∼ (2N)−1(1 − ω0)2/ω0. In other words,
all quantum fluctuations apart from those of the collective spin are effectively
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FIGURE 6.3: BI violation (a) and bipartite EE (c) for the d = 2
long-range TFIM calculated from LSW. (b) Cut across the line
α = 3 of the phase diagrams [dashed-dotted line on panels
(a) and (c)]. Dashed lines: classical (Wmin ≥ 0) and quantum
(Wmin ≥ −1/4) bounds of the PIBI. EE is computed for half
a torus of size Lx = 200 times Ly = 100, and rescaled to the

boundary area (A = 2Ly).
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frozen out. For any h 6= 1, we find that r → 0 : LSW theory is asymptotically
exact at any finite detuning from the QCP. The situation is different for α >
d. On the one hand, away from the QCP, ωk is gapped, so that r is always
finite. The only possible instance of (infrared) divergence for r is then at the
QCP, where ωk ∼ kz with a dynamical exponent z = min[1, (α− d)/2] [FNR17].
The condition for infrared divergence of r is then equivalent to the divergence
of
∫
dkkd−1/kz at low k, i.e. to the condition z ≥ d. This condition is only met

for α ≥ 3 (z = 1) in d = 1, where the divergence is logarithmic. Otherwise, r
converges forN →∞ to a finite value, which must satisfy r � 1 for LSW theory
to be reliable 3.

Remarkably, for α < d, Wmin → −1/4 in the thermodynamic limit, corre-
sponding to the maximal possible violation of the considered BI [Tur+14]. This
property is illustrated on Fig. 6.2 in d = 1, and on Fig. 6.3(a) in d = 2, where
Wmin is plotted across the phase diagram. It may seem surprising that the limit
of infinite-range interactions, leading to a complete suppression of quantum
fluctuations at k 6= 0 in the ground state, is identified as maximally nonlocal.
Indeed, in contrast, as shown on Fig. 6.3(c), in d > 2 bipartite EE is strongly sup-
pressed for α→ 0, obeying at most a log(N) scaling for α < d [Lat+05] instead of
a Ld−1 (area-law) scaling. This feature should be understood as a specificity of
the (permutationally invariant) BI we have considered, rather than an intrinsic
property of the many-body state. In general, for all α, we always find maximal
violation of the PIBI at criticality, where bipartite EE is also maximal [Fig. 6.3(b)],
demonstrating the quantum-critical origin of the correlations leading to non-
locality detection. Finally, we notice that for d = 2, in contrast to d = 1, nonlocal
correlations are detected at the QCP for any value of α. This observation is con-
sistent with the presence of spin-squeezing for nearest-neighbour interactions
in d = 2 [FR18].

6.6 Summary

We investigated the violation of a permutationally invariant Bell inequality (PIBI,
Eq. (6.2)) induced by a quantum critical point (QCP). We identified spin squeez-
ing – in a general sense – as a necessary ingredient to violate the PIBI when
identical measurements are performed on a collection of qubits. Focusing on
the ground state of the ferromagnetic TFIM, we showed that power-law decay-
ing interactions favor the development of spin squeezing at the QCP, leading to
a maximal violation of the PIBI in the limit of infinite-range interactions. Our re-
sults are relevant to various experimental platforms implementing the quantum
Ising model with power-law interactions, like trapped ions [Zha+17], Rydberg

3 For d = 3, the maximal value for r is r ≈ 0.045 for nearest-neighbour interactions at the QCP;
for d = 2, we find r . 0.122. LSW theory is thus reliable all over the phase diagram for d = 2, 3. In
d = 1, we find r ≈ 0.1 for α ≈ 2 at the QCP, but already r ≈ 0.3 for α = 2.4, indicating a strong
effect of quantum fluctuations for larger values of α. We thus complement our LSW approach by
DMRG calculations in d = 1.
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atoms [Ber+17] and nano-photonic structures [Cha+18] (the last only recently
proposed, but not yet implemented). In particular, BI violation is expected to be
robust against thermal noise [FR18; GSP18] and particle losses [Tur+14].
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7 Tensor networks in higher
dimensions

So far in this dissertation, we considered systems in one dimension (1D), as in
the case of the long-range Ising chain in Chap. 6 or in quasi-1D, the Creutz-
Hubbard ladder treated in Chap. 5. The quantum kicked top studied in Chap. 4
is instead invariant under permutation of any particle and because of that in
treatable as a point-like adimensional system and its dynamical evolution is
easily numerically followed with exact diagonalization routines. In Chap. 6
and Chap. 5 the density matrix renormalization group (DMRG) introduced in
Sec. 3.3 was extensively used, as the most powerful algorithm to calculate the
ground states of gapped 1D systems. In higher dimensions, an equally efficient
algorithm is still missing. In this chapter, still in the framework of the tensor
networks (TNs) [Chap. 3], we propose a few-body model algorithm that can be
efficiently solved by classical simulations, to accurately capture the ground-state
properties of the infinite many-body system in higher dimensions.

We start reviewing the state of the art of existing numerical algorithms used
to simulate high dimensional quantum many-body systems. Our TN-based al-
gorithm follows the tradition of those methods which map the full-body prob-
lem in few-body one where the rest of the system is approximated as a “bath”
or “environment” (famous examples are the mean-field theory and the dynam-
ical mean-field theory). The algorithm we propose is in fact a high-dimension
extension of the “ab-initio optimization principle” introduced in [Ran16] and
in detail reported in Sec. 7.2. In Sec. 7.3 we derive the algorithm for two- and
three-dimensions. We benchmark it in Sec. 7.4: the 2D case is tested by calculat-
ing the ground-state energy of the Heisenberg model on honeycomb lattice; then
we apply our approach to the 3D simple cubic lattice, where the ground-state
properties of Heisenberg anti-ferromagnet and the quantum phase transition of
transverse Ising model are investigated. In Sec. 7.5 possible connections with
experiments are discussed. In Sec. 7.6 we summarize the results of the chapter.
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7.1 Numerical algorithms for high dimensional quan-
tum many-body problems

7.1.1 Quantum many-body systems in one, two and three di-
mensions

Technically, one-dimensional models are the simplest to solve, even for strong
interactions among their components, although quantum fluctuations in 1D are
particularly large [Gia03]. The 1D systems play important roles in electronics
and spintronics, as they provide specific possibilities in controlling transport and
reveal exotic excitations such as Majorana fermions [NP+10; Suo+17]. They can
be naturally viewed as the edges of two-dimensional (2D) systems, which may
appear as edge states [Wen04; QZ11]. 2D systems are obviously more demand-
ing, whereas from a physical point of view they can be taken as playgrounds
for novel concepts and exotic states such as anyonic excitations [Wen04; Yos13],
frustrated antiferromagnetism [ML05; Sac11], spin liquids [SB16], topological order
and topological phase transitions, and graphene-like systems [Net+09], etc.

In principle, the three-dimensional (3D) models are even more interesting, as
they are much closer to reality of our daily things. Because of their extreme com-
plexity, the adoption of various approximations to treat them is totally unavoid-
able. The three dimension is closer to the upper critical dimension, and one may
expect that the mean-field theories would work well for them. A paradigmatic
example is the Bose-Hubbard model, which can be nicely explored by bosonic
dynamic mean-field theory (DMFT) [And+10]. Such few, but well-controlled sys-
tems can serve as validation, calibration and benchmark for various numerical
and analytical methods. Still, there are also 3D models that are extremely de-
manding to be understood, such as, among others, the spin ice [NMS13] with
pyrochlore lattice [GM14], that is a highly frustrated magnet; the Fermi-Hubbard
model, which is usually invoked to describe high temperature superconductivity of
cuprates that consist of strongly correlated 2D planes weakly coupled in the
transverse direction ([Lee07], see also [Imr+14] for a quantum simulation with
ultracold atoms). The (3 + 1)D lattice gauge theories at high densities and tem-
perature are also beyond the possibilities of the existing codes and machines.
Generally, different approximate analytical methods might generate converse
results, leading to unnecessary controversies in many cases. It turns out that
finding reliable and efficient numerical methods to solve 3D quantum many-
body problems is very desirable.

7.1.2 Tensor networks: state of the art

The DMRG [Whi92] is widely recognized as a major breakthrough in the cal-
culations of the ground states in 1D systems and it has been extensively used
in Chap. 5 and Chap 6. Originally proposed as a mere numerical tool, the re-
formulation of the DMRG as a variational algorithm in terms of matrix product
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states (MPS) [Sch11] leads to the proposal of the more general formalism of ten-
sor networks (TNs) [CV09; Orú14; VMC08; Ran+19] introduced it Chap. 3. TNs
provide a very general ansatz for the wave functions and they have rapidly
evolved into a promising powerful tool to study large or even infinite size sys-
tems in two dimensions. In contrast to quantum Monte Carlo (QMC), TNs do not
suffer from the notorious “negative-sign” problem [TW05; Whi+89] and allow
for a direct access to frustrated spin systems and fermionic models away from
half-filling.

We introduced the basis of the TN formalism in Chap. 3, where we un-
derlined that to what extent the TN is feasible depends on the amount of en-
tanglement of the states to be simulated. The efficiency (computational mem-
ory and time) of the TN approaches is also determined by the capability of
the current computers. In the standard formulations, TN works quite well for
low-entangled states since they, by construction, satisfy an area law for the
entanglement entropy [Sec. 2.2]. This fact explains the efficiency of the MPS-
based algorithms in 1D. For the same reason, the MPS-based algorithms (e.g.
DMRG) work well for small 2D systems, but are strongly limited when the size
grows [WS98; SW12; VMC08]. By acknowledging this, many different compet-
ing approaches have been developed. Among others, a purely 2D ground-state
TN ansatz, the projected entangled pair state (PEPS), was proposed as a nat-
ural extension of MPS. PEPS fulfils the 2D area law of entanglement entropy
[VMC08; CV09; Orú14; Ver+06], while the multiscale entanglement renormal-
ization ansatz (MERA) [Vid07b] bears particular advantages for studying criti-
cal models.

Within the existing TN algorithms, a lot of works were done on 2D quan-
tum as well as 3D classical models, where the simulations consist in the con-
tractions of 3D TNs [Vid07a; Vid07b; VC04a; Jor+08; JWX08; LN07; GLW08;
Xie+09; Xie+12; YGW17; NO96; OV09; Orú12; Nis+00; Cor16; Van+16; Phi+15;
GSL13]. This well-known quantum-classical equivalence [Suz76] becomes very
explicit in the TN terminology, and is utilized frequently in the TN approaches
for ground-state [Vid07a; VC04a; Jor+08; JWX08] and thermodynamic [BXG96;
Li+11; Ran+12; Ran+13; CCD12] studies on discrete and even continuous [VC10]
systems. However, for 3D ground-state simulations, we are essentially facing
the contractions of four-dimensional TNs [Ten17; BOWR15], which are hardly
treatable even with small bond dimensions. Therefore, developing efficient 3D
quantum algorithms is strongly desired, in particular for infinite quantum sys-
tems.

7.1.3 “Bath-stimulated” methods

For 3D quantum models, many interesting issues remain to be explored or even
unsolved to a large extent [Bal10; GBH94; NMS13; MR06; Ram94]. They have
been the subject of intensive studies in recent years and many numerical meth-
ods were developed to handle them. Several approaches were proposed beyond
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the standard mean-field and renormalization group methods, such as the linked
cluster expansions [OHZ06; Jos+15; Coe+16], and the functional renormalization
group method [Met+12; Iqb+16]. On the other hand, the numerical simulations
are extremely challenging and the finite-size algorithms, including exact diag-
onalization (ED) and DMRG, suffer severe finite-size effects, therefore they are
quite consuming for large systems and can access infinite systems only by utiliz-
ing finite-size scaling. A separate discussion should be reserved for QMC. This
is indeed a finite-size algorithm but, whenever applicable (namely for bosons or
for fermions but only if the negative-sign problem is cured), the finite-size ef-
fects are strongly reduced thanks to the huge number of sites/particles one can
reach in the simulations (of the order of thousands or hundreds of thousands).

To treat the correlations in many body systems, one usually starts by evok-
ing the ideas of “mean-field”, “bath” or boundary conditions. Analytical meth-
ods such as the Hartree-Fock mean-field theory and the saddle point approxima-
tion in path integral are commonly used. In fact, for lattice models the mean-
field idea goes back to the single-site Weiss method, applied first for classical
magnetic models [Wei07]. Contemporary mean-field methods for lattice mod-
els include Guztwiller ansatz for bosons and/or fermions, or pairing approaches
(Bogoliubov-like for bosons, or Bardeen-Cooper-Schrieffer-like for fermions) —
for an overview of these and other methods see Ref. [LSA12] and references
therein. In the context of the present work it is important to mention the “clus-
ter mean-field theory” (CMFT), where the mean field à la Weiss is combined with
exact diagonalization on clusters (for recent developments see [Yam09; RTX14]
and references therein). It is also worth mentioning the “entanglement mean-
field theory” (EMFT) [DS12a; DS12b], which for spin models is formulated on
few spin clusters, demanding self-consistency of entanglement properties. Both
CMFT and EMFT are close to the standard MFT that can give quite accurate
description of standard Landau-Ginsburg ordered and disordered phases, but
typically only far from criticality.

For thermal and open systems, one popular way is to introduce a “heat bath”
to mimic the interactions between the system and the environment [Zur82]. Re-
garding numerical approaches, the density functional theory (DFT), also known as
ab-initio first-principle calculations [She10], was built by extending the Thomas-
Fermi approximation of homogeneous electron gas to the inhomogeneous elec-
tron system [Tho27]. Its huge success in condensed matter physics, quantum
chemistry, and materials science largely relies on the simplicity and unification,
“using a popular code, a standard basis, and a standard functional approximation”
[She10].

In order to handle strong correlations, several schemes were developed in
the spirit of DFT. The examples include the dynamical mean-field theory [MV89;
GK92; Geo+96] that maps a lattice model (such as the Hubbard model) onto a
quantum impurity model subject to self-consistent conditions, and the density-
matrix embedding theory (DMET) [KC12] that was proposed aiming at a better
consideration of the entanglement, thanks to the accompanying advances in
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FIGURE 7.1: The system on an infinite lattice is transformed
into one defined on finite clusters embedded in the entangle-
ment bath. We take the (8 + 8)-site and (18 + 12)-site clusters
for the simulations on honeycomb lattice, where the first con-
tains 8 physical (blue balls) and 8 bath sites (red balls), and the
second contains 18 physical and 12 bath sites. The entangle-
ment bath is calculated by choosing two sites as the supercell
(small circle). The legs stand for the interactions between the

connecting sites.

both quantum information science [Hor+09] and condensed matter physics [Ami+08].
However, it is difficult to use these algorithms to study long-range ordered
states or phase transitions. To probe the disordered ground-states (e.g. the spin
liquids in the infinite frustrated systems), it was proposed to signal the disor-
dered nature by simulating a finite system with random boundary conditions
[YMCS17].

7.1.4 Our proposal: mimicking many-body systems by few-body
ones

In general, as illustrated in Fig. 7.1, the central idea of our work is to optimally
find the few-body Hamiltonian to mimic the infinite model, without any prior
knowledge of the ground state. The few-body model contains the physical sites
in a finite cluster and the “bath” sites around it. The few-body Hamiltonian con-
sists of two parts: the interactions among the physical sites (blue balls) within
the cluster, and those [Eq. (7.21)] between the boundary physical sites and the
bath sites (red balls). The physical-bath interactions are represented by some
local Hamiltonians, which reproduce the quantum entanglement between the
cluster and the bath, in such a way that the many-body effects from the infinite
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environment are well captured in the few-body simulations. Then the ground-
state information of the infinite system is encoded in the reduced density matrix
of the few-body ground state after tracing the bath degrees of freedom.

The theoretical scheme we propose is a higher-dimensional generalization of
the ab-initio optimization principle (AOP) formulated with TN [Ran16], and
originally developed for infinite 1D systems with translational invariance. The
idea is to find the simplest eigenvalue equations that encodes the infinite TN
contraction problem. For the purpose of the present work, the main advantage
of the AOP is its flexibility and implications in high dimensions: without any
substantial conceptual changes, the AOP can be readily extended to 2D and
even 3D systems with high efficiency. Furthermore, the dynamic correlation
length and the first excitation gap can be straightforwardly extracted (see Ap-
pendix D.5 for details).

Our scheme consists of two stages: (i) compute physical-bath Hamiltonian
and (ii) solve the few-body Hamiltonian.

1. In the first stage, by choosing the dimension D of the bath site and a su-
percell that obeys the translational invariance, we start from the original
Hamiltonian of the system and construct a set of self-consistent eigen-
value equations. Their solution gives the Hamiltonian Ĥ∂ [Eq. (7.21)]
that describes the interactions between a physical and a bath sites. Such
equations in fact encode an optimal zero-loop TN approximation of the
state. This approximation directly enters the thermodynamic limit with a
Bethe TN state ansatz [LCP00; NC13], and already gives us the first glance
of the ground state with good accuracy especially for the gapped states
[JWX08; Ran+12; Ran+13; BOWR15; LCP00; NC13].

2. The aim of the second stage is to construct the few-body Hamiltonian
ĤFB , and solve its ground state |Φ̃〉 by e.g., DMRG (with certain dimension
cut-off’s denoted by χ). ĤFB is formed by all the physical interactions
inside a chosen cluster and several physical-bath interactions given by Ĥ∂ .
The choice of the cluster is very flexible. The ground-state properties of the
infinite system is then encoded in the ground state |Φ̃〉 of ĤFB . In other
words, quantities such as energy, magnetization and entanglement of the
infinite ground state are obtained from the density matrix of |Φ̃〉 by tracing
all the bath degrees of freedom [Eq. (7.23)].

Our numerical results show, for instance, that the Heisenberg model on in-
finite honeycomb lattice is accurately simulated by a ĤFB that only contains
Np = 18 physical sites surrounded byNb = 12 bath sites. For the 3D Heisenberg
models on infinite simple cubic lattice, the ground-state properties including the
critical behaviors near the quantum phase transition point are faithfully cap-
tured with only Np = 8 physical and Nb = 24 bath sites. The discrepancy (such
as energy) compared with the state-of-the-art TN algorithm is around O(10−3).

The algorithm built from our scheme possesses several advantages (see Ap-
pendix D.6). It can directly reach the thermodynamic limit by means of the
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physical-bath interactions on the boundary, hence it has no conventional finite-
size effects compared with the finite algorithms such as ED and DMRG. The
strongly-correlated effects of the infinite models are accurately considered, and
the many-body features, e.g., entanglement and criticality, can be efficiently cap-
tured, thus our scheme goes beyond the mean-field-based methods such as DFT
[She10] and DMFT [MV89; GK92; Geo+96]. Comparing with DMFT where the
original model is approximated by an impurity model in a bath, we approximate
the infinite-size system into a few-body model that contains its original interac-
tions and the emergent physical-bath interactions. The accuracy is enhanced by
fully considering all interactions in the cluster, thus outperforms the Bethe TN-
based algorithms [JWX08; Ran+12; Ran+13; BOWR15; LCP00; NC13]. In higher
dimensions, the computational cost of our scheme is much lower than, e.g., the
TN renormalization group algorithms [LN07; Vid07b; VC04a; VC04a; NO96;
OV09; Orú12; Nis+00]. It has no sign problem [Whi+89] thus can be used to
simulate frustrated and fermionic systems.

The construction of ĤFB makes it possible to investigate the many-body ef-
fects in experiments by designing the few-body models — quantum simulators
described by the predicted Hamiltonians. The many-body behaviors are ex-
pected to be observed in the bulk of the few-body model. The feasibility of re-
alizing ĤFB in cold atom experiments is supported by several facts observed in
our numerical simulations: the few-body Hamiltonian has the same interaction
length as the original Hamiltonian; with a proper tolerance of error, sayO(10−2),
the size of the few-body model can be very small. Especially for spin-1/2 mod-
els on simple cubic lattice, we show that it is sufficient to use only the spin-1/2’s
as the bath sites. The few-body Hamiltonian then is just a small spin-1/2 system
that includes some special interactions (given by Ĥ∂) on the boundary.

7.2 Ab-initio optimization principle approach in one
dimension

Understanding the 1D AOP [Ran16; Tir+18a] will be a lot of help to understand
the higher-dimensional version. The idea of AOP scheme [Ran16] is, without
any previous knowledge of the ground state, to transfer the infinite system to a
finite one embedded in an entanglement bath. In the language of TN, the idea is
to encode the contraction of an infinite TN in a simplest-possible local function
that can be exactly computed, with smallest-possible number of inputs. Let us
take the following translationally invariant Hamiltonian as an example, which
reads

Ĥ =
∑

n

Ĥn,n+1, (7.1)

with Ĥn,n+1 the two-body interaction.
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Stage One: calculate the entanglement bath. The first stage is to calculate the
entanglement bath represented by a set of tensors dubbed as boundary tensors.
They are obtained by solving a set of self-consistent eigenvalue equations [see
Eqs. (7.4)-(7.6) below]. These equations are parametrized by the Hamiltonian as
well as by the boundary tensors themselves, thus they can be solved in an alter-
native way: starting from an arbitrary guess, we update one boundary tensor
by fixing all others as the parameters of the equations, and iterate such a proce-
dure for every tensor until the fixed point is reached. Given the Hamiltonian,
the next step is to prepare the cell tensor that parameterize the self-consistent
equation. One firstly chooses a supercell that obeys the translational invariance,
e.g. two adjacent sites. The bulk interaction is simply the coupling between
these two spins, i.e. ĤB(i, j) = Ĥ(i, j). Then we define the two-body opera-
tor F̂ ∂(i, j) = I − τĤ(i, j) (this shift does not change the ground state) as the
shifted interaction on the boundary of the supercell and do the singular value
decomposition as

F̂ ∂(i, j) =
∑

a

F̂L(i)a ⊗ F̂R(j)a. (7.2)

F̂L(i)a and F̂R(j)a are two sets of one-body operators (labeled by a) acting on
the left and right spins of F̂ ∂(i, j), respectively. We dub a as the boundary index.

The cell tensor is defined as the product of the (shifted) bulk Hamiltonian
with F̂La and F̂Ra as

F̂(i, j)a1a2
= F̂R(i)a1

H̃B(i, j)F̂L(j)a2
, (7.3)

with H̃B(i, j) = I − τĤB(i, j).
Then, with two boundary tensors |V [x]) (guessed or previously obtained in

the last iteration) and the cell tensor F̂(i, j), we define three eigenvalue equa-
tions [Fig. 7.2] as

Ĥ(i, j)µ′1µ2
µ1µ2

=
∑

a1a2

(V [1]|a1µ1µ′1
F̂(i, j)a1a2

|V [2])a2µ2µ′2
, (7.4)

M
[1]

a1µ1µ
′
1

a2µ2µ
′
2

= 〈Ã[1](i, j)|µ′1µ′2F̂(i, j)a1a2
|Ã[1](i, j)〉µ1µ2

, (7.5)

M
[2]

a1µ1µ
′
1

a2µ2µ
′
2

= 〈Ã[2](i, j)|µ′1µ′2F̂(i, j)a1a2
|Ã[2](i, j)〉µ1µ2

. (7.6)

By solving the leading eigenvector of Ĥ(i, j) given by Eq. (7.4), we obtain
the central tensor |A(i, j)〉µ1µ2µ3µ4

. The central tensor can be considered as a
state in the Hilbert space of the supercell labeled by two virtual indexes. Mean-
while, |V [x]) is obtained as the (left) leading eigenvector of M [x] [Eqs. (7.5) and
(7.6)]. M [x] is defined by the isometries |Ã[x](i, j)〉 that is obtained by the QR
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FIGURE 7.2: The illustration of the self-consistent eigenvalue
equations [Eqs (7.4)-(7.5)] of 1D AOP approach.

decomposition of |A(i, j)〉. For example for x = 1, we have

|A(i, j)〉µ1µ2 =
∑

ν

|Ã[1](i, j)〉νµ2R
[1]
νµ1

. (7.7)

|Ã[1](i, j)〉 is orthogonal, satisfying
∑

µ2

〈Ã[1](i, j)|µ1µ2
Ã[1](i, j)〉µ′1µ2

= Iµ1µ′1
. (7.8)

These isometries play the role of the renormalization group flow in the standard
DMRG [Whi92]. Similarly, |V [x])axµxµ′x can be understood as a “state” defined
in the space of the boundary index ax labeled by µx and µ′x

1. One can see that
these equations are parametrized by the solutions of others, and can be solved
in an alternative way in practice.

In the language of TN, Eqs. (7.4)-(7.6) encode an infinite TN that represents
the imaginary time evolution for the ground state [Fig. 7.3]. Defining the local scalar
function shown in the top of Fig. 7.3 it is easy to see that this function is max-
imized at the fixed point of the self-consistent equations. Then, one can recon-
struct an infinite MPO multiplied with an MPS and its conjugate by repetitively
replacing |V [x]) by M [x]|V [x]). Still, the scalar function is maximized, meaning

1To distinguish from the states in physical Hilbert space |∗〉, the symbol |∗) is used to denote a
state in the space of boundary indexes {a}.
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FIGURE 7.3: The illustration of the encoding scheme for a 2D
TN. The infinite TN represents the imaginary time evolution of

the ground state.
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the MPS is the dominant eigenstate of the MPO. One can again iteratively re-
place one MPS by the product of the MPS and the MPO to reconstruct the whole
infinite TN. Note such a reconstruction can be understood in an opposite order:
by going from the bottom to the top of Fig. 7.3, it actually gives a contraction
scheme of the TN 2.

There are two important constraints to realize such a reconstruction. In the
step from the local scalar function to MPO, we have (V [x]|V [x]) = 1 since it
should be the eigenstate of M [x]. In the second step from the MPO to the whole
TN, we require that the MPS is normalized, which is actually a non-local con-
straint. In the original proposal of the 1D AOP [Ran16], this constraint is turned
to be local with some tricks under the assumption that all eigenvalue problems
are Hermitian. In the generalized 1D version [Tir+18a] presented above, the
MPS is normalized because of the orthogonality of |Ã[x](i, j)〉.

Stage two: construct the few-body Hamiltonian and solve it. Now we explain the
few-body Hamiltonian that mimics the ground state of the infinite 1D chain.
By reviewing Eq. (7.3), the matrix [Eq. (7.4)] whose eigenstate gives |A(i, j)〉µ1µ2

can be written as the product of three parts: one bulk term and two boundary
terms. The bulk term contains simply the physical interactions of the original
model. The boundary parts are defined as

Ĥ∂(n, x)µxµ′x =
∑

ax

F̂L(R)(n)ax |V [x])axµxµ′x . (7.9)

The few-body Hamiltonian for the 1D simulator is obtained as

ĤFB =
∑

〈i,j〉∈cluster

Ĥ(i, j) +
∑

〈x∈cluster,n∈bath〉

Ĥ∂(n, x). (7.10)

where Ĥ∂(n, x) satisfies Ĥ∂(n, x) = I − τĤ∂(n, x) +O(τ2).

7.3 Higher-dimensional ab-initio optimization prin-
ciple approach

To present the approach in high dimensions, we take the 2D spin model with
nearest-neighbor couplings on honeycomb lattice as an example. The implemen-
tation can be easily generalized to other models on 2D and 3D lattices.

2Formally these self-consistent equations have a unique fixed point, then the contraction scheme
shown in 7.3 will be robust. In some cases, for example, when the TN represents the inner product of
a topological iPEPS and its conjugate, a new and nontrivial degeneracy will emerge. Each equation,
while seen solely, has unique dominant eigenvalue, but the equation set as a whole have more than
one fixed points that are orthogonal to each other. It has been revealed that the number of the fixed
points (named the ring degeneracy) can be used to detect the Zn topological orders even with the
noises that break the Zn symmetries [Che+19].
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FIGURE 7.4: The left figure shows Eq. (7.11). The right one
shows the construction of the cell tensor given by Eq. (7.12).

Stage One: calculate the entanglement bath. In a complete analogy to the 1D
case, in the first stage consists in calculating the boundary tensors which mimic
the entanglement bath. The resulting set of self-consistent eigenvalue equations
is shown in Eqs. (7.13)-(7.17).

Though our method is based on the TN representation of the imaginary-time
evolution with Trotter-Suzuki decomposition [SI87] like several existing meth-
ods [Vid07a; VC04a; Jor+08; NO96; OV09; Orú12], the idea here is to encode the
TN in the eigenvalue equations instead of contracting the TN 3. On the other
hand, the implementation in this stage is borrowed from the generalization of
DMRG on an infinite tree [LCP00; NC13], which can be easily extended to 3D
models with high efficiency. In the DMRG language, the (convergent) boundary
tensors can be understood as the infinite environment of the tree brunches.

To begin with, one chooses a supercell that obeys the translational invari-
ance, e.g. two sites connected by a parallel bond (see the smallest shaded circle
in Fig. 7.1), and construct the cell tensor that parametrizes the eigenvalue equa-
tions. The bulk interaction is simply the coupling between these two spins, i.e.
ĤB(i, j) = Ĥ(i, j). For the interactions between two neighboring supercells, we
define the two-body operator F̂ ∂(i, j) = I − τĤ(i, j) and analogously to the 1D
case [Eq. 7.2] do the singular value decomposition [Fig. 7.4] as

F̂ ∂(i, j) =
∑

a

F̂L(i)a ⊗ F̂R(j)a. (7.11)

To obtain the TN of the imaginary-time evolution, we define the cell tensor
that is the product of the (shifted) bulk Hamiltonian with F̂La and F̂Ra [Fig. 7.4]
as

F̂(i, j)a1a2a3a4
= F̂L(i)a1

F̂L(i)a2
F̂R(j)a3

F̂R(j)a4
H̃B(i, j), (7.12)

with H̃B(i, j) = I − τĤB(i, j). Note that both F̂ ∂(i, j) and H̃B(i, j) can be dif-
ferent from the current choice. F̂ ∂(i, j) can be different when the model has

3The idea of utilizing eigenvalue equations for statistic or many-body systems has been used
earlier by Baxter, Nishino, et al.. See for example [Bax78; NO95]
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FIGURE 7.5: The graphic representations of Ĥ(i, j) in Eq. (7.13)
and M [3] in Eq. (7.16) are given in the left and middle figures,
respectively. The QR decomposition [Eq. (7.18)] of the central
tensor |A(i, j)〉 is shown in the right figure, where the arrows

indicate the orthogonality of |Ã[3](i, j)〉 [Eq. (7.19)].

long-range interactions, and H̃B(i, j) can be different when choosing different
subsystems to define the supercell. F̂(i, j) 4 can be understood as a set of quan-
tum operators defined in the Hilbert space of the supercell (spins i and j) labeled
by the boundary indexes a1, a2, a3 and a4. Similar to 1D AOP [Ran16], τ is in
fact the Trotter step, and F̂(i, j) gives the TN representation of I − τĤ with an
error O(τ2).

Then, with the boundary tensors |V [x]) (guessed or previously obtained in
the last iteration) and the cell tensor F̂(i, j), we define five eigenvalue equations
as

Ĥ(i, j)µ′1µ
′
2µ
′
3µ
′
4

µ1µ2µ3µ4

=

∑

a1a2
a3a4

(V [1]|a1µ1µ′1
(V [2]|a2µ2µ′2

F̂(i, j)a1a2
a3a4

|V [3])a3µ3µ′3
|V [4])a4µ4µ′4

,
(7.13)

M
[1]

a1µ1µ
′
1

a3µ3µ
′
3

=

∑

a2a4µ2

µ′2µ4µ
′
4

(V [2]|a2µ2µ′2
〈Ã[1](i, j)|µ′1µ′2

µ′3µ
′
4

F̂(i, j)a1a2
a3a4

|Ã[1](i, j)〉µ1µ2
µ3µ4

|V [4])a4µ4µ′4
,

(7.14)

M
[2]

a2µ2µ
′
2

a4µ4µ
′
4

=

∑

a1a3µ1

µ′1µ3µ
′
3

(V [1]|a1µ1µ′1
〈Ã[2](i, j)|µ′1µ′2

µ′3µ
′
4

F̂(i, j)a1a2
a3a4

|Ã[2](i, j)〉µ1µ2
µ3µ4

|V [3])a3µ3µ′3
,

(7.15)

4In the following, we simplify the indexes when mentioning a tensor if it causes no confusion.
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M
[3]

a1µ1µ
′
1

a3µ3µ
′
3

=

∑

a2a4µ2

µ′2µ4µ
′
4

(V [2]|a2µ2µ′2
〈Ã[3](i, j)|µ′1µ′2

µ′3µ
′
4

F̂(i, j)a1a2
a3a4

|Ã[3](i, j)〉µ1µ2
µ3µ4

|V [4])a4µ4µ′4
,

(7.16)

M
[4]

a2µ2µ
′
2

a4µ4µ
′
4

=

∑

a1a3µ1

µ′1µ3µ
′
3

(V [1]|a1µ1µ′1
〈Ã[4](i, j)|µ′1µ′2

µ′3µ
′
4

F̂(i, j)a1a2
a3a4

|Ã[4](i, j)〉µ1µ2
µ3µ4

|V [3])a3µ3µ′3
.

(7.17)

By finding the leading eigenvector of Ĥ(i, j) given by Eq. (7.13), we obtain a
tensor |A(i, j)〉µ1µ2µ3µ4

dubbed as central tensor with µ1, µ2, µ3 and µ4 called
virtual indexes according to the TN terminology. The central tensor can be con-
sidered as a state in the Hilbert space of the supercell labeled by four virtual
indexes.

Meanwhile, |V [x]) is obtained as the (left) leading eigenvector of M [x] [Eqs.
(7.14)-(7.17)]. One can see that M [x] is defined by the isometries |Ã[x](i, j)〉 that
is obtained by the QR decomposition of |A(i, j)〉 (referring to the x-th virtual
bond µx) of the central tensor. For example for x = 3, we have [Fig. 7.5]

|A(i, j)〉µ1µ2µ3µ4
=
∑

ν

|Ã[3](i, j)〉µ1µ2νµ4
R[3]
νµ3

. (7.18)

|Ã[3](i, j)〉 is orthogonal, satisfying
∑

µ1µ2µ4

〈Ã[3](i, j)|µ1µ2µ3µ4 |Ã[3](i, j)〉µ1µ2µ′3µ4
= Iµ3µ′3

. (7.19)

These isometries play the role of the renormalization group flow in the tree
DMRG [LCP00; NC13]. Again, |V [x])axµxµ′x can be understood as a “state” de-
fined in the space of the boundary index ax labeled by µx and µ′x. The graphic
representations of Ĥ(i, j) and M [3] are given in Fig. 7.5 as examples.

One can see that these equations are parametrized by the solutions of others,
and can be solved in an alternative way in practice. One can start with four
random |V [x])’s and calculate |A(i, j)〉 by solving the leading eigenvector of Eq.
(7.13). Then one obtains |Ã[x](i, j)〉’s using Eq. (7.18) and update the |V [x])’s
according to Eqs. (7.14)-(7.17). Repeat this process until the central tensor and
all boundary tensors converge.

In fact, the ground-state properties can already be well extracted by the cen-
tral tensor |A(i, j)〉. For example, the reduced density matrix of the supercell
ρ̂(i, j) = Tr/(i,j)|Ψ〉〈Ψ| (with |Ψ〉 denoting the ground state of the infinite model)
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FIGURE 7.6: The left figure shows the bath Hamiltonian Ĥ∂
[Eq. (7.21)] that gives the interaction between the correspond-
ing physical and bath site. The few-body Hamiltonian in Eq.
(7.22) is formed by the shifted bulk Hamiltonian and Ĥ∂ be-
tween every physical site on the boundary and a neighboring
bath site. For simplicity, the middle figure only illustrates four
of the Ĥ∂ ’s. The right one shows the ground-state ansatz of
AOP approach, which is the bulk state of the few-body Hamil-
tonian entangled with several branches of infinite tree PEPS. In
fact, the number of tree branches should equal to the number of
the physical sites on the boundary (i.e. the number of Ĥ∂). For

conciseness, we only illustrate four of the tree branches.

is well approximated by the central tensor as

ρ̂(i, j) ≈
∑

µ1µ2µ3µ4

|A(i, j)〉µ1µ2µ3µ4
〈A(i, j)|µ1µ2µ3µ4

. (7.20)

Since each boundary tensor can be understood as the environment of an in-
finite tree branch, the original model is actually approximated at this stage by
one defined on an infinite tree. Note that when only looking at the tree locally
(from one site and its nearest neighbors), it looks the same to the original lat-
tice. Thus, the loss of information is mainly long-range, i.e. from neglect loops.
Though it has been shown numerically by many previous work that the tree
approximation is very accurate especially for gapped systems [JWX08; Ran+12;
Ran+13; BOWR15], we are still facing the difficulty of controlling the effects (er-
rors) brought by such an approximation. More discussions about such a tree
approximation are given in the Appendix D.1, starting from the state ansatz be-
hind our approach. One can also find more details in the forth section of a recent
review [Ran+19]. To further improve the precision in a systematic way, the next
stage is to embed a much larger subsystem in the entanglement bath.

Stage two: construct the few-body Hamiltonian and solve it. The second stage
is to choose a finite cluster and use the obtained boundary tensors to construct
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a few-body Hamiltonian. All interactions inside the cluster will be fully con-
sidered to reduce the error from the tree approximation. The entanglement bath
mimics the environment of the infinite tree branches, thus the algorithm directly
accesses the thermodynamic limite and there is no conventional finite-size error
that appears in, e.g. ED, DMRG or QMC.

The embedding is based on the generalizations of Ĥ(i, j) [Eq. (7.13)] in stage
one. From the formulation given above, one can see that Ĥ(i, j) is actually the
product of two parts. The first is the shifted Hamiltonian that contains all in-
teractions inside the supercell (two neighboring sites in our example), and the
second is in fact the physical-bath interactions [Fig. 7.6], whose Hamiltonian
(Same to Eq. (7.9) in 1D AOP) is written as

Ĥ∂(n, x)µxµ′x =
∑

ax

F̂L(R)(n)ax |V [x])axµxµ′x . (7.21)

Now we extend the supercell to a chosen larger cluster, where the few-body
Hamiltonian denoted by ĤFB is written as

ĤFB =
∏

〈x∈cluster,n∈bath〉

Ĥ∂(n, x)
∑

〈i,j〉∈cluster

[I − τĤ(i, j)]. (7.22)

Same as Ĥ(i, j), ĤFB is also formed by two terms [Fig. 7.6]. The first term is
the product of several bath Hamiltonians that mimic the interactions between
the cluster and the environment, and in the second term, the summation in Eq.
(7.22) contains all couplings inside the cluster.

The entanglement bath only “interacts” with the physical sites nearby ac-
cording to the coupling distance of the original Hamiltonian. In our example
with nearest-neighbor couplings, every physical sites on the boundary inter-
act with a bath site, and thus, the number of Ĥ∂(n, x) in the product above
scales with the length of the boundary of the cluster. For this reason, ĤFB is
the product/summation of sparse or local matrices, and its ground state can be
efficiently solved by using the finite-size approaches, such as ED or DMRG.

Note that if one takes the cluster as the supercell with two sites, Eq. (7.22)
becomes exactly Eq. (7.13). The bath calculation itself can be considered as using
ED to solve the ĤFB that contains only the supercell and the bath. The cluster
can be arbitrarily chosen according to the computational capacity, and it does
not have to obey the translational invariance of the model.

With the ground state |Φ̃(i, j, · · · )〉{µ} of ĤFB , the physical properties such
as energy, magnetization, etc., can be obtained from the density operator ρ̃ by
tracing all degrees of freedom of the bath sites as

ρ̃(i, j, · · · ) =
∑

{µ}

|Φ̃(i, j, · · · )〉{µ}〈Φ̃(i, j, · · · )|{µ}. (7.23)
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Stage one (Bethe 

approximation)

FIGURE 7.7: The ground-state energyE (per site) of the Heisen-
berg model on honeycomb lattice. The cluster we choose is
(Np + Nb)-site where Np and Nb denote the number of phys-
ical and bath sites, respectively (see Fig. 7.1). The ED on the
18-site cluster with periodic boundary condition suffers severe
finite-size effects, and the tree approximation (simply from the
bath calculations) underestimates long-range correlations. Our
results are consistent with second renormalization group (SRG)
of TN, showing that both finite-size effects and the error from

the tree approximation are largely reduced.

Again, this is a generalization of Eq. (7.20).

Comparing the 1D and higher-dimensional AOP versions, we can see many
connections, including the idea of defining the eigenvalue equations, the con-
straints for the encoding/reconstruction process, and the emergence of the few-
body Hamiltonians. The differences are also crucial. For 1D quantum sys-
tems, we can directly encode the imaginary-time-evolution TN. In higher di-
mensions, the tree approximation is introduced. The essential reason is to sat-
isfy the second constraint, which is the normalization of the state ansatz (see
Appendix D.1). The normalization of a standard TN state (e.g., on square lat-
tice) requires an extra loop of TN encoding or contraction. The AOP algorithm
to directly encode the (D+ 1)-dimensional imaginary-time-evolution TN for D-
dimensional quantum system (D ≥ 2) is still an open issue. This will lead to a
general form of the few-body Hamiltonians (see Appendix D.4).
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FIGURE 7.8: Finite-size effects of AOP from the ground-state
magnetization (absolute value) and the bond energies e =

〈ŜiŜj〉 of the Heisenberg model on honeycomb lattice. Here
we choose a cluster with Np = 18 physical and Nb = 12 bath
sites. Each peak shows the absolute values of the local mag-
netization of the physical sites, which ranges from M = 0.329
(center) to 0.347 (boundary). We take D = 8 and χ = 60. For
comparison, the results from the tree approximation in the first
stage are e = −0.360 and M = 0.347, and those from SRG are
e = −0.363 and M = 0.310. QMC is supposed to give the most

reliable result M = 0.22 [RRY89; Cas+06].

7.4 Numerical results

7.4.1 Heisenberg model on honeycomb lattice

We simulate the ground-state properties of the Heisenberg model on honey-
comb lattice, which is on a gapless point and considered to be challenging to
simulate. The Hamiltonian is the summation of the two-body interactions as

Ĥ =
∑

〈i,j〉

Ĥ(i, j). (7.24)

For Heisenberg model, we have Ĥ(i, j) = JxŜ
x(i)Ŝx(j)+ JyŜ

y(i)Ŝy(j) +JzŜ
z(i)Ŝz(j),

with Ŝα(i) (α = x, y, z) the α component of the spin-1/2 operators on the i-th
site and Jα the coupling constants.

In stage one, the bath is calculated by choosing two neighboring sites as the
supercell. It means ĤFB that appears in this stage contains Np = 2 physical and
Nb = 4 bath sites. For stage two, we choose two different clusters to construct
ĤFB , which containsNp = 8 physical sites surrounded byNb = 8 bath sites and
Np = 18 physical sites with Nb = 12 bath sites, respectively [Fig. 7.1]. We utilize
finite DMRG [Whi92] to solve the ground state of ĤFB .
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FIGURE 7.9: The ground-state energy E of the Heisenberg
model on simple cubic lattice versus χ is shown in the left fig-
ure. The simulation by QMC on a (10× 10× 10) lattice with pe-
riodic boundary condition gives E = −0.902. The inset shows
the cluster with Np = 8 physical (blue balls) and Nb = 24 bath
sites (red balls) used in the second stage in our AOP approach
for the simulations on cubic lattice. The legs stand for the in-
teractions between the connecting sites. In the right one, we
show the staggered magnetization Ms and correlation length ξ
of the ground state (see Appendix D.5 for a definition). We take

D = 2 and 3.

The ground-state energy E with different dimensions of the bath site D = 4
and 8 is shown in Fig. 7.7. One can see that E converges rapidly by increasing
the dimension cut-off of DMRG χ toE = −0.543 and−0.544 for the two clusters,
respectively. With larger D, the bath will be able to carry more entanglement
and lead to a better accuracy. The accuracy will also be improved by increasing
χ since the result will approach to the exact ground state of ĤFB with no DMRG
error. When χ is sufficiently large, the errors inside the cluster due to the tree
approximation, Trotter discretization and truncations will vanish.

For a comparison, the ground-state energy by ED on such a cluster of 18
spins [Fig. 7.1] with periodic boundary condition is E = −0.561, which suf-
fers severe finite-size effects. The result solely by bath calculation (tree approx-
imation) is E = −0.540, and by second renormalization group (SRG) [Xie+09]
of TN is E = −0.545. SRG belongs to the state-of-the-art TN approaches for
simulating 2D ground states with a high accuracy. The difference compared
with our results are only O(10−3). QMC results for the model are [RRY89]
E = −0.5445(10), comparable with our results.

To further investigate the effects of the finiteness of the clusters, we calculate
the nearest-neighbor bond energies e = 〈ŜiŜj〉 and the staggered magneti-
zations with the cluster of Np = 18 and Nb = 12 [Fig. 7.8]. The changes of
both quantities in different positions of the cluster is mostly O(10−2). By com-
paring with the tree results in the bath calculation and SRG, we find that the
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FIGURE 7.10: Staggered magnetization per site Ms and dy-
namic correlation length ξ of the ground state of the transverse
Ising model on simple cubic lattice. The results obtained in
Stage one (Bethe approximation) and Stage two are shown for
comparison. We take D = 2, χ = 10, and D = 3, χ = 20. The
quantum phase transition is found to occur at hc = 2.66. The
critical behavior of Ms is obtained by fitting the data from the
results of Stage two near hc, where we haveMs ∝ (hc−hx)0.48.

bond energies and magnetization on the boundary of the cluster are very close
to the tree results, and in the middle where the “boundary effects” as well as the
difference between our results and the SRG are minimal. Nevertheless, QMC
simulations deviate from our results, giving a lower staggered magnetization
(MQMC = 0, 22 < 0.347).

Our simulations show that without increasing the computational cost much,
the finite-size effects are suppressed by introducing the entanglement bath, and
at the same time the error from the tree approximation are reduced by choosing
larger clusters.
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7.4.2 Spin models on simple cubic lattice.

We investigate the ground-state properties and quantum phase transitions in
the spin models on simple cubic lattice. For bath calculations, the supercell is
chosen to be two neighboring sites, giving a ĤFB with Np = 2 physical and
Nb = 10 bath sites. In stage two, we choose a cubic with Np = 8 physical and
Nb = 24 bath sites to construct ĤFB (inset of Fig. 7.9).

Heisenberg model. The ground-state energy E, the staggered magnetiza-
tion Ms and dynamic correlation length ξ of the antiferromagnetic Heisenberg
model on simple cubic lattice are shown in Fig. 7.9. The energy converges to
E = −0.904, while that from QMC [PST98; Hua+16] on a (10 × 10 × 10) lattice
with periodic boundary condition is E = −0.902 5. Note the result from the tree
approximation in the first stage is E = −0.892, which is already quite accurate.
ForMs and ξ, the finite-size effects are much stronger for our QMC calculations.
The AOP simulations show that Mu = 0 (uniform magnetization), Ms = 0.445
and ξ = 0.405. Our results are consistent with the widely accepted consensus,
that its ground state is an antiferromagnetic ordered (Néel) state with a short
correlation length.

Ising model. The quantum phase transition of the anti-ferromagnetic quan-
tum Ising model in a transverse field (IMTF) on simple cubic lattice [Fig. 7.10]
is also analized. The Hamiltonian reads Ĥ =

∑
<i,j> Ŝ

x(i)Ŝx(j) + h
∑
i Ŝ

z(i).
For a comparison, we try different dimension cut-offs with D = 2, χ = 10, and
D = 3, χ = 20. The critical field is found to be around hc = 2.66, consistent with
the results from other algorithms (Table 7.1).

Our results show that from the few-body Hamiltonian, the scaling behav-
ior in the critical region can be faithfully captured and the critical exponents
are consistent with the results obtained by other methods. Meanwhile, obvious
improvement in Stage two is observed compared with Stage one (Bethe approx-
imation with a small cluster). By fitting the data in Stage two of D = 3 and
χ = 20 near the critical point, we find

Ms ∝ (hc − hx)β , (7.25)

with β = 0.48, in agreement with the exact result, that is the mean-field critical
exponent β = 0.5. In fact the upper critical dimension for the quantum IMTF is
3. Note that the exponent from the fitting on the data of Stage one is not reliable,
which gives β = 1.

Finally, we also calculate the dynamic correlation length ξ, which shows a
peak at the critical point. Nevertheless, the critical exponents we found are not
correct, for reason that are explained in Appendix D.5.

5 We are indebted to Y.-Z. Huang for providing these QMC data, where the worm algorithm is
used with the inverse temperature around 50
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TABLE 7.1: The values of the critical field hc with the cluster
quantum Monte Carlo (cQMC) [BD02], linked-cluster expan-
sions (LCE) [Coe+16], mean-field theory (MFT) [SIC12], and

our AOP simulations in Stages one and two.

QMC LCE MFT Stage one Stage two
hc 2.57906(3) 2.65 3 2.8 2.66

7.5 Discussions about experimental realizations

Our work provides a way of using few-body experiments to mimic many-body
features of infinite systems. Since the few-body Hamiltonian only contains a
handful of sites with local interactions, one could design cold-atom experiments
to realize it in a lab. Specifically speaking in our examples, Ĥ∂ is the interaction
between a physical spin and an artificial spin with D (bath) degrees of freedom.
Here, we assume that Ĥ∂ is Hermitian, which should be true due to the structure
of the eigenvalue equations [Eqs. (7.14)-(7.17)] of the boundary tensors, where
we have |V [x])aµµ′ = |V [x])∗aµ′µ. The task here is to get the coupling constants
explicitly for implementing experiments.

To this end, let us transform Ĥ∂ to the standard summation form. We define
Ĥ∂ that satisfies

Ĥ∂(n, x) = I − τĤ∂(n, x) +O(τ2). (7.26)

It means to the first order of τ , Ĥ∂ is the evolution operator of a Hamiltonian
Ĥ∂ for an infinitesimal imaginary time, similar to the 1D case [Eq. (7.10)]. This
relation is true because in Eq. (7.21), F̂L(R) is obtained by the decomposition of
I − τĤB , and the boundary tensor |V [x]) has the similar structure since it forms
an continuous MPS [Tir+18a; VC10] in the imaginary time direction.

Then, similar to Eq. (7.10), the few-body Hamiltonian in Eq. (7.22) can be
rewritten in a standard summation form as ĤFB = I − τĤFB +O(τ2) with

ĤFB =
∑

〈i,j〉∈cluster

Ĥ(i, j) +
∑

〈x∈cluster,n∈bath〉

Ĥ∂(n, x). (7.27)

The two summations contain the physical and physical-bath interactions, re-
spectively, and all terms are local as discussed above. Again, ĤFB is the evolu-
tion operator of ĤFB for an infinitesimal imaginary time to the first order of τ ,
i.e. ĤFB ≈ e−τĤFB .
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The coupling constants of the physical-bath interactions can be calculated by
expanding Ĥ∂ as

Ĥ∂(n, x) =
∑

αα′

Jαα′(n, x)Ŝα′(n)Ŝα(x). (7.28)

with Jαα′(n, x) the physical-bath coupling constants and {Ŝα} and {Ŝα′} the
corresponding spin operators (including identity) that give the complete basis
for the Hermitian matrices. {Ŝα} is in fact the physical spin operators. For
{Ŝα′}, one can generally choose the generators of SU(N) groups, which give a
complete basis for an N-by-N Hermitian matrix. Then the bath spins should be
SU(N) spins. If a symmetry [MG02; Wei12] is used in the tensors, for example
SU(2) symmetry for spin models, the bath spins are SU(2) spins with higher
total momentum, and one will explicitly have the coefficients from the elements
of ĤFB . Moreover, it is possible to translate the whole few-body Hamiltonian
into the second-quantized picture, by expanding it with the bosonic or fermionic
operators. The key is that the chosen operator basis have to completely expand
the physical-bath Hamiltonian.

From our numerical results, we can see that the properties of the infinite
model can be accurately mimicked by very small bath dimension D and cluster
size. Suppose we set the tolerance of the experimental error as O(10−2). In this
case, the cluster can be chosen as two sites. Then we have Np = 2, with Nb = 4
for honeycomb lattice and Nb = 10 for simple cubic lattice. For the spin-1/2
models on simple cubic lattice, the dimension of the bath sites can be chosen
as D = 2. This means the bath spins are simply spin-1/2, same as the physical
ones, which makes it easy to implement in experiments.

In short, the steps to mimic an infinite many-body system with a few-body
model are the following:

• Starting from the Hamiltonian of the target model [e.g. Eq. (7.24)], com-
pute the physical-bath Hamiltonian Ĥ∂ [Eq. (7.21)] by our AOP algorithm.

• Write Ĥ∂ into Ĥ∂ by Eq. (7.26), so that the total Hamiltonian of the few-
body model is in a standard summation form [Eq. (7.27)].

• According to the symmetry of the system, choose a set of matrix basis to
expand Ĥ∂ [Eq. (7.28)]. The basis will determine which kind of spins
will be used as the bath sites, and the expansion coefficients will be the
coupling constants.

• Build the few-body experiment with several physical sites in the bulk and
bath sites on the boundary (e.g., Fig. 7.1 or the inset of Fig. 7.9). The cou-
pling constants in the bulk are the same as the target model, and the cou-
pling constants on the boundary are given by the expansion coefficients of
Ĥ∂ .
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• Observe the properties of the bulk, which mimics the ground state of the
infinite system.

7.6 Summary

We propose an ab-initio TN approach that allows for accurate survey of the
ground states of infinite many-body systems in higher dimensions by an ef-
fective few-body models embedded in an “entanglement bath”. On one hand,
our scheme gives to birth to a flexible and efficient numeric algorithm for quan-
tum lattice models. Our approach can directly access the thermodynamic limit
by introducing the physical-bath interactions, which outperforms the finite-size
methods such as ED and DMRG. The embedding idea allows for efficient and
accurate simulations of infinite 3D quantum models, surpassing the existing
TN methods. It is free from the “negative-sign” problem and can access to frus-
trated spin and fermionic models. It can accurately capture many-body features
including entanglement, phase transitions and critical behaviors, thus it goes
beyond the DFT-based approaches. It could be readily applied to other (d ≤ 3)-
dimensional systems and could be generalized to (d ≥ 4)-dimensional models.
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8 Conclusions and
perspectives

In this thesis - mainly using a numerical approach and assisted, whenever pos-
sible, by some analytical calculations - several open problems in the realm of
the strongly correlated many-body quantum systems (MBQS) have been ap-
proached from the point of view of entanglement and nonlocality, the most
paradigmatic phenomena that depart from a classical description of nature and
characterize the quantum realm.

In the first of two preliminary chapters [(Chap. 2)], we formally reviewed
part of the (huge) literature concerning respectively entanglement and Bell non-
locality, limiting to those concepts useful in the rest of the dissertation and there-
fore paying special attention to the recent advances concerning the results in
lattice many-body systems. The Von Neumann entanglement entropy (EE) is
defined as the unique entropy measure for bipartite pure states and particularly
the area law for the EE has been illustrated for systems in different dimensions.
Such a law states that for the ground states of gapped-local Hamiltonians the
EE grows proportionally with the surface of the bipartition, instead than with
the volume, as occurs for a generic state. Importantly, in one-dimension (1D), a
logarithmic violation of the area-law at criticality gives insights about the uni-
versality class of the quantum phase transition (QPT), described by the charac-
teristic central charge of the underlying conformal field theory.

Entanglement area-law is crucial in the success of tensor-network (TN) tech-
niques, which Chap. 3 is dedicated. TNs provide an ansatz to represent quan-
tum states and operators as a contraction of small tensors. In their 1D version
“matrix product states” (MPS) or higher-dimensional “projected entanglement
pair state” (PEPS), TNs by construction satisfy the area law. Several algorithms
in such formalism - the most famous, in 1D being the “density matrix renormal-
ization group” (DMRG) - are available to efficiently simulate the ground state of
gapped Hamiltonians and we have made extensive use of them in chapters 5, 6
and 7.

In Chap. 4 we studied in detail two simple but paradigmatic dynamical sys-
tems, the quantum kicked top (QKT) and the quantum kicked rotor (QKR),
which both have chaotic behavior in their classical version. We showed that
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bipartite entanglement entropy is a good signature of quantum chaos in this
systems. While such correspondence was already well know in the case of the
QKT, we extended it to the QKR, which differently from the former is a non-
ergodic system. The steps towards these results can be summarized as follows:

• the classical kicked top can be obtained as the thermodynamic limit of a
multi-qubit fully interacting quantum system. To connect the quantum
description to the classical one, we choose the initial state to be the spin-
coherent state. The EE is calculated taking a bipartition between one qubit
and the rest of the system. After a Floquet unitary evolution, one consider
the time-averaged EE.

• The entanglement-chaos correspondence is defined by the strong corre-
spondence between the time-averaged EE quantum phase diagram and
the classical Poincaré map. A high EE production corresponds to global
chaos in this ergodic system. A low EE conversely corresponds to periodic
classical orbits.

• The main advantage of this approach is that it can be realized in experi-
ments with superconducting qubits.

• The QKR was then analized in a similarly, exploiting the “rotor-limit of the
kicked top” for the first time pointed out by Haake and Shepelyansky in
[HS88]. An important result is that in taking this limit we have also shown
that EE corresponds to local chaos in non-ergodic systems.

• An important feature of the classical kicked rotor is the presence of a
Kolmogorov-Arnol’d-Moser (KAM) phase transition driven by the kick-
ing strength and distinguishing two regimes: for lower kicks extendend
regular periodic orbits (KAM tori) isolate different sectors of the Poincaré
map, preventing global chaos. At the KAM transition, the last tori is bro-
ken and trajectories can spread across the whole phase space. We have
shown that the behavior of EE tori resembles that of KAM tori, and there-
fore conjectured that entanglement should play an important role in any
quantum KAM theory.

An interesting avenue of future investigation would be to formally understand
what the role of bi-partition choice plays in quantum chaos. Furthermore, it
would be interesting to understand the role of the entanglement in the well
known mapping between the QKR and the Anderson localization of a particle
in a 1D lattice as established by Fishman, Grempel and Prange in [FGP82].

In Chap 5, a complete theoretical and numerical analysis of the imbalanced
Creutz-Hubbard ladder is presented. This model is a quasi-1D interacting fermionic
system, which schematically can be viewed as two 1D lattices with inter- and
intra-leg hopping and an energy imbalance between the two ladders. In its non-
interacting regime, the Creutz ladder hosts a topological insulating phase. The
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survival of topological effects when interactions are added is still broadly unex-
plored and the Creutz-Hubbard model is a nontrivial model where these prob-
lems can be studied, with the advantage of being able to be tested in labora-
tory with ultracold atoms experiments. In order to understand the model in
all regimes and to locate exactly its critical lines and the underlying conformal
field theories, numerical DMRG and MPS simulations were performed. Wher-
ever possible (namely, in the limit of strong and weak interactions and in the
intermediate regime) we compared these numerical results with analytical cal-
culations. The main novel results we found in this study can be summarized as
follows:

• In absence of interactions, the imbalance Creutz ladder hosts a symme-
try protected topological insulator (TI) in the symmetry class AIII (chiral
class), characterized by flat bands and fully-localised edge states.

• The TI is not directly destroyed by adding Hubbard interactions and in-
deed spreads across a relevant sector of the parameter space. Such a phase
is still physically characterized by a degenerate ground state because of the
presence of localized zero-energy edge-modes and by a doubly degenerate
entanglement spectrum.

• For sufficiently weak interactions, the physics is approximated by a cou-
ple of Ising models with a renormalized transverse field connecting them.
According to this, the TI and the orbital paramagnet (OPM) are separated
by a QPT whose central charge is c = 1, i.e. double the central charge of a
single Ising model.

• At large interaction strength, a long-range in-plane ferromagnetic order
arises, related to the symmetry-broken phase of an orbital quantum Ising
model, while the imbalance then drives a standard QPT in the Ising uni-
versality class (central charge c = 1/2) towards the OPM phase.

• For intermediate interaction strength, another Ising model describes the
physics and the TI-OFM QPT is characterized by central charge c = 1/2.

It would be very interesting to study the imbalanced Creutz-Hubbard model
at different fillings and to explore the possibility of finding topological phases
of matter that disappear for vanishing interactions. In this respect, the analytic
and numerical methods hereby presented may be generalized to other fillings,
allowing to go beyond mean-field arguments that support the existence of such
interesting ground states.

Chap. 6 contains important results that are crucial to shed light on the role of
nonlocality in MBQS. We considered a ferromagnetic spin-half Ising model in a
transverse-field with power-law (1/rα) ferromagnetic interactions, studying its
ground-state phase diagram and QPT for α varying from α = 0 to α→∞, with
a complementary analysis of EE and nonlocality, the latter measured via the
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violation of the permutationally invariant BI with one- and two-body correlators
(PIBI) derived in [Tur+14].

• We exactly locate the QPT by comparing the divergence of the EE with
the maximal violation of the PIBI. This observation, obtained via analyti-
cal spin-wave calculations and numerical DMRG computations, is traced
back to the squeezing of collective-spin fluctuations generated by quantum-
critical correlations.

• We observe a maximal violation for infinite-range interactions (α = 0),
namely when interactions and correlations are themselves permutation-
ally invariant.

Beyond the Ising model considered in this paper, we expect our results to
hold for critical points corresponding to the spontaneous breaking of an Ising
Z2 symmetry – for any range of interactions in d > 1, and for sufficiently long-
range power-law interactions in d = 1. Extending our study to higher-order
symmetries [U(1), SU(2), etc.] is, however, a nontrivial task, which may require
the derivation of novel BIs.

Being invariant under the permutation of any of the N parties involved in
the Bell scenario, the BI we have considered is especially suited to investigate
nonlocal correlations in N -body states themselves permutationally invariant.
This absence of spatial structure was indeed realized in the BEC experiment,
whereN atoms share one spatial mode, as well as in the ground-state of all-to-all
interacting models. However, general quantum-critical states, like conventional
many-body states, do usually have a nontrivial spatial structure. As the PIBI
only depends on the two-body reduced density-matrix averaged over all pairs,
the possibility to capture nonlocal features of QCPs is thus not obvious. The
spatial structure of entanglement, on the other hand, is rather revealed through
bipartite Schmidt decomposition, capturing entanglement at a many-body level.
Developing further conceptual and technical tools to investigate nonlocal corre-
lations in spatially structured many-body states is an important challenge for
ongoing studies [WSN17].

In Chap. 7 we proposed a new TN-based scheme of constructing the few-
body models that can be easily accessed by theoretical or experimental means,
to accurately capture the ground-state properties of infinite MBQS in higher di-
mensions. The general idea is to embed a small bulk of the infinite model in an
“entanglement bath” so that the many-body effects can be faithfully mimicked.
The approach we proposed is efficient, simple, flexible, sign-problem free, and
it directly accesses the thermodynamic limit.

In practice, our numerical simulations show that with only a handful of sites,
the few-body models can accurately capture the many-body features of the infi-
nite systems. With less than 18 physical and 12 bath sites, the difference between
our results and the state-of-the-art TN methods is less thanO(10−3). For the spin
models on a simple cubic lattice, the properties of the quantum phase transitions
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in a magnetic field, including the phase transition point and critical exponents,
are faithful captured by the few-body model containing only 8 physical and 24
bath sites.

On the other hand, the few-body Hamiltonian only contains local interac-
tions among a handful of sites, it can be realized by, e.g., cold atoms or ions.
It is possible to further improve the experiments by using the trick of synthetic
gauge fields, where the higher spins, for instance, can be extended to lower spins
in a synthetic dimension [Cel+14]. We suggest investigating infinite many-body
systems by realizing the predicted few-body Hamiltonian with cold atoms or
ions.
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A Appendix to Chap. 4

A.1 Proof that ergodic system maximise entanglement
entropy

The linear entanglement entropy defined as S = 1−trρ2 is maximized when trρ2

is minimized. The density matrix ρ, is an Hermitian operator of unitary trace.
We want to prove that trρ2 is minimised if all the diagonal elements ρ11 = ρ11 =
· · · = ρNN = 1/N , i.e. if the system is ergodic. This is a constrained optimization
problem, solvable with the Lagrange multipliers method. The constraint is trρ =
1. The quantity to minimize is trρ2 = ρ2

11 + ρ2
11 + · · · + ρ2

NN . We define the
Lagrangian as:

L = ρ2
11 + ρ2

22 + · · ·+ ρ2
NN − λ

(
ρ11 + ρ22 + · · ·+ ρNN − 1

)
. (A.1)

We want to minimize L with respect to ρii and λ, ∂Lρii = ∂L
λ = 0. The system to

solve is: 



2ρ11 − λ = 0;

2ρ22 − λ = 0;

· · ·
2ρNN − λ = 0;

ρ11 + ρ22 + · · ·+ ρNN − 1 = 0.

(A.2)

The solution of this system is ρ11 = ρ11 = · · · = ρNN = 1/N .

A.2 Derivation of tangent space of CKT

The generalised iterative map xn+1 = f(xn) of Eq. (4.11), is linearised to give its
associated tangent map δxn+1 = f(xn+δxn)−f(xn), where xn = (Xn, Yn, Zn).
We explicitly do the calculation in detail for the coordinate X (Y and Z follow
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in a similar fashion).

dXn+1 = f(Xn + δXn)− f(Xn)

= (Xn + dXn) cos
{
β
[
(Yn + dYn) sinα+ (Zn + dZn) cosα

]}

−
[
(Yn + dYn) cosα− (Zn + dZn) sinα

]
sin
{
β
[
(Yn + dYn) sinα

+ (Zn + dZn) cosα
]}
−Xn cos[β(Yn sinα+ Zn cosα)]

+ (Yn cosα− Zn sinα) sin[β(Yn sinα+ Zn cosα)].

(A.3)

Expanding the expression and keeping only the terms up to the first order in
dXn, dYn and dZn, we obtain,

dXn+1 = Xn cos
[
(βYn sinα+ βZn cosα) + (βdYn sinα+ βdZn cosα)

]

+ dXn cos
[
βYn sinα+ βZn cosα

]

− Yn cosα sin
[
(βYn sinα+ βZn cosα) + (βdYn sinα+ βdZn cosα)

]

− dYn cosα sin
[
βYn sinα+ βZn cosα

]

+ Zn sinα sin
[
(βYn sinα+ βZn cosα) + (βdYn sinα+ βdZn cosα)

]

+ dZn sinα sin
[
βYn sinα+ βZn cosα

]

−Xn cos
[
βYn sinα+ βZn cosα

]

+ Yn cosα sin
[
βYn sinα+ βZn cosα

]

− Zn sinα sin
[
βYn sinα+ βZn cosα

]
.

(A.4)

Using the relation cos(x+ dx)− cos(dx) = − sin(x)dx we get

dXn+1 = −Xn sin
(
βYn sinα+ βZn cosα

)
d(βYn sinα+ βZn cosα)

− Yn cosα cos
(
βYn sinα+ βZn cosα

)
d(βYn sinα+ βZn cosα)

+ Zn sinα cos
(
βYn sinα+ βZn cosα

)
d(βYn sinα+ βZn cosα)

+ dXn cos
[
βYn sinα+ βZn cosα

]

− dYn cosα sin
[
βYn sinα+ βZn cosα

]

+ dZn sinα sin
[
βYn sinα+ βZn cosα

]
.

(A.5)

Finally, grouping the dXn, dYn and dZn terms, we write down the tangent map
in its standard linear form dxn+1 = L(xn)dxn in Eq. (4.13).
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A.3 Derivation of the tangent space of the CKR

The generalised iterative map xn+1 = f(xn) of Eq. (4.24), is linearised to give
its associated tangent map δxn+1 = f(xn + δxn)− f(xn), where xn = (Φn, Pn).

δPn+1 = Pn + δPn +K sin(Φn + δΦn)−
(
Pn +K sin Φn

)

= δPn +K cos(Φn)δΦn.
(A.6)

δΦn+1 = Φn + δΦn +
Pn+1 + δPn+1

I
− Φn −

Pn+1

I

= δΦn +
δPn+1

I
= δΦn +

δPn +K cos(Φn)δΦn
I

=
(
1 +

K

I
cos Φn

)
δΦn +

δPn
I
.

(A.7)
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B Appendix to Chap. 5

B.1 MPO for the imbalanced Creutz-Hubbard model

In this appendix we derive the matrix product operator (MPO) for the imbal-
anced Creutz-Hubbard Hamiltonian studied in Chap. 5 which we rewrite here
for the sake of readability:

HπCH =
∑

i,`

(
−t̃c†i+1,`ci,¯̀ + is`t̃c

†
i+1,`ci,` + H.c.

)
+
∑

i,`

∆ε

2
s`ni,` +

Vv

2
ni,`ni,¯̀,

(B.1)
The interactions are schematically shown in the top of Fig. B.1, for a ladder of
N = 4 fermionic sites. We label the down(up) rung-sites with odd(even) num-
bers for reasons that will be clear in the following.

To encode the Hamiltonian in an MPO, we need to express it in terms of local
spin operators in a one-dimensional (1D) chain. After a Jordan-Wigner transfor-
mation (5.8), the fermionic Hamiltonian is in fact mapped in the following spin
Hamiltonian

Hspin
πCH = t̃

L−1∑

j=1

(
σ+

2j+1σ
−
2j + σ+

2jσ
−
2j+1

)
(B.2)

+
(
σ+

2j+2σ
z
2j+1σ

z
2jσ
−
2j−1 + σ+

2j−1σ
z
2jσ

z
2j+1σ

−
2j+2

)
(B.3)

+
(
−iσ+

2j+2σ
z
2j+1σ

−
2j + iσ+

2jσ
z
2j+1σ

−
2j+2

)
(B.4)

+
(
iσ+

2j+1σ
z
2jσ
−
2j−1 − iσ+

2j−1σ
z
2jσ
−
2j+1

)
(B.5)

+

L∑

j=1

∆

2
(n2j − n2j−1) (B.6)

+VV (n2jn2j−1) . (B.7)

where L = 2N . Each row of the previous equation corresponds to a different
kind of interaction in the 1D mapping:

• (B.2) the diagonal/nearest-neighbor (solid green lines in Fig. B.1);

• (B.3) the diagonal/third-nearest-neighbor (dashed green lines in Fig. B.1);
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FIGURE B.1

• (B.4) the horizontal-down/odd-next-nearest-neighbor (dashed purple lines
in Fig. B.1);

• (B.5) the horizontal-up/even-next-nearest neighbor (solid purple lines in
Fig. B.1);

• (B.6) the imbalances. They pick a minus for the odd sites (dashed blue
lines in Fig. B.1) and a plus for odd sites (solid blue lines in Fig. B.1);

• (B.7) the Hubbard interactions.

To write down the MPO, we take advantage of the method of the “finite states
automata” [CDV08; FND10a] explained in Sec. 3.2.3. To give an example, let us
consider the Hamiltonian’s terms (B.2) between the sites 2j and 2j + 1, which
read:

1⊗ 1⊗ · · · t̃σ−2j ⊗ σ+
2j+1 ⊗ 1⊗ · · · ⊗ 1. (B.8)

The Hermitian conjugate must be also considered. Note that these terms appear
in the Hamiltonian with the first operator σ+

2j lying always in an even site and
the second in the next (odd) one. To translate this interaction in the language of
the automata, we enter in the automaton in the state 1, then we go in the state 2
(5 for the Hermitian conjugate) applying σ+ and finally we exit after applying a
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FIGURE B.2: Finite state automaton for the imbalanced Creutz-
Hubbard MPO.

t̃σ−. To take into account the fact that such interactions involve only alternated
couples of sites where the first site is even-labeled (i.e. there are no terms of the
form 1 · · · t̃σ−2j−1σ

+
2j · · ·1), we introduce a two-dimensional vector of coupling

constants ~J
(1)
D which picks the value t̃ if the second σ operator is in an odd

position and the value zero otherwise. Similar arguments are considered for
the remaining interactions. It results that we need an automaton of 9 internal
states, which is depicted in Fig. B.2, where the following vectors of couplings
are introduced:

~J
(1)
D =

(
0
t̃

)
, ~J

(3)
D =

(
t̃
0

)
, ~Jε =

(
∆ε
2

∆ε
2

)
,

~JV =

(
V
0

)
, ~JP =

(
−it̃
+it̃

)
, ~J∗P =

(
+it̃
−it̃

)
.

(B.9)

The resulting MPO has a two-site translation invariance and is composed by
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the following tensors:

W [i] =




1 σ+ 0 0 σ− 0 0 n ~Jεn

0 0 σz 0 0 0 0 0 ~J
(1)
D σ−

0 0 0 σz 0 0 0 0 ~JPσ
−

0 0 0 0 0 0 0 0 ~J
(3)
D σ−

0 0 0 0 0 σz 0 0 ~J
(1)
D σ+

0 0 0 0 σz 0 σz 0 ~J∗Pσ
+

0 0 0 0 0 0 0 0 ~J
(3)
D σ+

0 0 0 0 0 0 0 0 ~JV n
0 0 0 0 0 0 0 0 1




. (B.10)

for i = 2, . . . , L− 1, and

W [1] =
(
1 σ+ 0 0 σ− 0 0 n ~Jεn

)
,

W [L]† =
(
~Jεn ~J

(1)
D σ− ~JPσ

− ~J
(3)
D σ− ~J

(1)
D σ+ ~J∗Pσ

+ ~J
(3)
D σ+ ~JV n 1

)
.

(B.11)
Furthermore, it is necessary to fix the number of particles to half-filling. Since

we are interested in the ground state of HπCH , this can be done adding an ex-
tra term in the Hamiltonian that gives an extra positive energy (a penalty with
respect to the ground state) if the system is outside of the half-filling.

Hspin
πCH → Hspin

πCH +Hhf = Hspin
πCH + C

(
N̂ − N

2
1,

)2

(B.12)

where N̂ =
∑
i,` ni,` is the (total) number-of-particle operator ForC large enough,

the energies of all the eigenstates with a wrong number of particle are positively
shifted and the true ground state will be the one with the lowest energy. In spin
representation Hhf reads

Hhf = C

(
N̂ − N

2
1

)2

= C
∑

i

(
ni −

1

2
1

)∑

j

(
nj −

1

2
1

)
=
C

4

∑

i 6=j

σzi σ
z
j+

C

4
N1,

(B.13)
which translates in the following MPO tensors

W [i] =



1

C
4 σ

z C
4 1

0 1 σz

0 0 1


 . (B.14)
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Adding this contribute to the MPO, we finally obtain

W [i] =




1 σ+ 0 0 σ− 0 0 n C
4 σ

z ~Jεn+ C
4 1

0 0 σz 0 0 0 0 0 0 ~J
(1)
D σ−

0 0 0 σz 0 0 0 0 0 ~JPσ
−

0 0 0 0 0 0 0 0 0 ~J
(3)
D σ−

0 0 0 0 0 σz 0 0 0 ~J
(1)
D σ+

0 0 0 0 σz 0 σz 0 0 ~J∗Pσ
+

0 0 0 0 0 0 0 0 0 ~J
(3)
D σ+

0 0 0 0 0 0 0 0 0 ~JV n
0 0 0 0 0 0 0 0 1 σz

0 0 0 0 0 0 0 0 0 1




, (B.15)

W [1] =
(
1 σ+ 0 0 σ− 0 0 n C

4 σ
z ~Jεn+ C

4 1
)
,

W [L]† =
(
C
4 1n

~J
(1)
D σ− ~JPσ

− ~J
(3)
D σ− ~J

(1)
D σ+ ~J∗Pσ

+ ~J
(3)
D σ+ ~JV n σz 1

)
.

(B.16)
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C Appendix to Chap. 6

C.1 MPO for long-range Ising chain

In the following we derived the matrix product operator (MPO) used to simu-
late the one-dimensional long-range ferromagnetic Ising Hamiltonian in a trans-
verse field studied in Chap. 6. Apart from a renormalization factor, the Hamil-
tonian (6.6) for a 1D chain with open boundary conditions reads

H = −
∑

i6=j

1

rα
σxi σ

x
j − h

∑

i

σzi , (C.1)

where r = |i − j|. While for finite-range Hamiltonians with some translation-
invariance, the MPO is an exact tensor network representation of the original
Hamiltonian, for generic interactions some approximation is required. Hamilto-
nians with exponential or power law decaying interactions can be efficiently en-
coded in a translational invariant MPO. Following the original idea in [CDV08;
FND10a] one starts from considering the series expansion of the interaction-
function

1

rα
=

K∑

i

aib
r−1
i (C.2)

where ai and bi are parameters founded by a non-linear least square minimiza-
tion of the function

f(a1, . . . , aK , b1, . . . , bK) =

N∑

i=1

rc∑

r

(
aib

r−1
i − 1

rα
)2 (C.3)

N being the length of the chain. The upper cutoff indicates the integration do-
main (chain’s length) and was set to rc = 10000. f is reduced increasing the
number K of the coefficients used in the approximation. For our simulations,
where we used chains of length up to N = 200, K = 9 is enough to well approx-
imate the interaction strengths as shown in Fig. C.1(a).

Once the number of coefficients is fixed, the form of the MPO can be derived
using the method of the “finite states automata” explained in Sec. 3.2.3, follow-
ing the prescriptions in [CDV08; FND10a]. For our Ising model the scheme of
the automaton is depicted in Fig. C.1(b), which results in the following local
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FIGURE C.1: (a) Approximation of the power-law decaying in-
teractions 1/rα (the black solid line is the exact function) by
the function (C.2) (dotted lines) and relative errors (solid lines)
[Eq. (C.3)], as function of the number of coefficients K for
α = 1.5. (b) finite state automaton for the Hamiltonian (C.1).

tensors for the MPO:

W [i] =




1 a1σ
x · · · · · · aKσ

x hσz

0 b11 · · · · · · σx

...
. . . b21

. . . σx

...
. . .

...
bK1

0 · · · · · · 0 1




. (C.4)

for i = 2, . . . , N − 1. The initial and final sites are

W [1] =
(
1 a1σ

x · · · aKσ
x hσz

)
; W [N ] =




hσz

σx

...
1


 . (C.5)

Note that the auxiliary dimension of the MPO is c = K + 2.
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D Appendix to Chap. 7

D.1 State ansatz behind our approach in higher di-
mensions

At the first stage, the ansatz is an infinite tree PEPS that optimally approximates
the ground state in the rank-1 sense [DLDMV00; Ran+13]. This can be seen from
the tensor network (TN) encoded in the self-consistent eigenvalue equations.
Starting from Eq. (7.13), one can substitute each of the boundary tensors |V [x])’s
by the contraction of the other three |V [x])’s, |Ã[x]), (Ã[x]| and the cell tensor F̂
according to Eqs. (7.14)-(7.17). We are using the fact that |V [x]) is the eigenvector
ofM [x]. By doing so repetitively, an infinite tree PEPS formed by |A〉 and |Ã[x])’s
can be grown to reach the thermodynamic limit. At the same time, the TN that
gives (I − τĤtree) appears, where Ĥtree is the Hamiltonian defined on the tree.
The local interactions of Ĥtree are exactly the same with the original model as
long as one only looks at a loop-free subsystem, thus Ĥtree provides a reasonable
approximation. Such a tree PEPS minimizes the energy of Ĥtree.

For better understanding the approximation of the state on, e.g., an infinite
square lattice, we could “grow” the tree in such a way that it fills the whole
square lattice. Inevitably, some |V [x])’s on the boundary of the tree will gather
at the same site. The tensor product of these |V [x])’s in fact gives the optimal
rank-1 approximation [DLDMV00] of the tensor that forms the bulk of tree TN
(translational invariant). Now, if one uses the full-rank tensor to replace its rank-
1 version (the tensor product of four |V [x])’s), one will have the TN of I − τĤ
(with H the target Hamiltonian on square lattice) instead of I − τĤtree, and the
tree PEPS becomes the one defined on the square lattice. Such a picture can
be understood in the opposite manner: imaging that one has the “correct” TN
defined on the square lattice, what we do is to replace certain tensors by its
rank-1 approximations to destruct all the loops of the TN. In this sense, the tree
PEPS defined on the original lattice (not actually a Cayley tree or Bethe lattice
[Cay78; Bet35]) in stage one provides the optimal loop-free approximation of
the ground state, where the loops are destructed by the rank-1 tensors. It would
be very helpful to refer to the figures and the discussions in Ref. [[Ran+13]] that
are given considering TN contractions.

There are several issues we shall stress. Firstly, one will actually not do the
above substitutions to reconstruct the tree PEPS. It is automatically encoded
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in the self-consistent equations. The “reconstruction picture” is proposed only
to understand the ansatz behind the approach. Secondly, one may notice that
the self-consistent equations proposed here are slightly different from those for
the rank-1 decomposition of a single tensor [DLDMV00]. The reason is that in
our case, the normalization of the PEPS should be considered when doing the
rank-1 approximation. We here borrow the idea of iDMRG on the tree PEPS
[LCP00; NC13] to satisfy this constraint. The third issue is about the uniqueness
of the reconstruction of the tree PEPS. Indeed, the contraction of three |V [x])’s,
|Ã[x]), (Ã[x]| and F̂ to substitute |V [x]) is not unique. However, it is unique when
we require the presence of |Ã[x]), (Ã[x]| and F̂ , in order to recover the TN’s of
I − τĤ as well as the tree PEPS. This is due to the uniqueness of the rank-1
decomposition, which is argued to be a concave problem [DLDMV00].

Such a tree approximation is also closely related to the iPEPS algorithms
called simple update [JWX08; Ran+12; BOWR15], where the infinite PEPS is
updated by considering the local environment. After reaching the fixed point,
the PEPS satisfies a set of self-consistent equations, which lead to a similar tree
structure [Ran+12]. Even some long-rang effects are ignored, simple update are
still quite accurate especially for gapped states.

Aimed at reducing the error of the tree approximation, the second stage of
our approach is to construct the few-body Hamiltonian ĤFB on a larger cluster
by reusing the bath obtained in the first stage, and then calculate the ground
state of ĤFB with a finite-size algorithm. The ansatz behind can be considered
as a generalized tree PEPS. In the center of the PEPS, the tensor contains all the
physical sites inside the cluster, connected with several infinite tree brunches
that are the same to those appearing in stage one. The bath sites carry the entan-
glement between the physical sites in the cluster and these infinite tree brunches.

D.2 “Finite-loop” effects

Thanks to the infinite tree brunches in the PEPS ansatz, our algorithm does not
suffer the conventional finite-size effect in the algorithms such as ED, QMC or
DMRG. Thus, the effects from the finiteness of the cluster in the second stage are
essentially different. In the first stage, the system size is already infinite because
the bath encodes the information of an infinite tree in the eigenvalue equations.
Only the loops beyond the supercell are destroyed in an optimal manner (rank-1
approximation of the tensors) [Ran+13]. In stage two, there will be no tree error
inside the cluster since all interactions there are fully considered. If the cluster
contains larger loops than the cell tensor used in stage one, the precision will be
improved. On the other hand, there will be no improvement if one increases the
size of the cluster without having larger loops. For this reason, the “finite-size
effects” of AOP mean the errors caused by the finiteness of the considered loops.
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D.3 Computational cost

The motivation to use the tree approximation is its efficiency especially for 3D
quantum models. The computational cost of the first stage is that of the gener-
alized DMRG on an infinite tree PEPS [LCP00; NC13], which roughly scales as
O(d2N0D3z) with d the dimension of the physical Hilbert space on one site, N0

the number of physical sites in the supercell, D the dimension of a virtual index
and z the coordination number of the lattice 1.

To solve the few-body Hamiltonian, the computational cost (leading term)
with ED scales as O(dNDN∂ ) (N and N∂ the number of physical and bath
sites, respectively), and that with DMRG scales asO[(N +N∂) max(d,D)3χ6] (χ
the bond dimension cut-off of DMRG). The cost is similar to solving a nearest-
neighbor finite-size system that contains two kinds of sites, whose local Hilbert
space is of dimension d (physical) and D (bath), respectively. Surely one can
choose other algorithms to solve the few-body Hamiltonian in the second stage,
such as QMC or finite PEPS algorithms [LCB14a; Zha+16]. Benefits from the fact
that the few-body Hamiltonian is the product (or summation) of local couplings,
the efficiency will be similar to that when applying to the standard (short-range)
Hamiltonians. In addition, it is possible to update the bath simultaneously in
stage two, and the computational cost would be approximately identical to the
cluster update schemes of TN.

D.4 General forms of few-body Hamiltonian

As discussed above, the dominant error comes from the destruction of the loops.
As a consequence, the interactions between the bath and the physical sites are
the tensor product of local terms

ĤFB =
∏

〈x,n〉

Ĥ∂(n, x). (D.1)

It means that in the standard summation form, there are no bath-bath interac-
tions (Fig. D.1). The tree branches in the ground-state ansatz are not connected
to each other from anywhere else than the central part.

One can adopt other TN algorithms such as the cluster or full update schemes
[VC04a; Jor+08; WV11; LCB14b; NO96; OV09; Orú12; Cor16; Van+16; Xie+09;
Xie+12] to obtain the physical-bath interactions. Then the Hamiltonian will not
simply be the tensor product, but generally given by

ĤFB =
∑

{α}

∏

〈x,n〉

Ĥ∂(n, x)αx,n . (D.2)

1This is actually the leading term of the cost without using any tricks, such as taking advantage
of the sparse property.
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Bath

sites

Interacting

physical sites

FIGURE D.1: (Color online) The illustrations of three kinds of
possible few-body Hamiltonians that contain several interact-
ing physical and bath sites. All the physical interactions (black
lines) inside the chosen cluster should be fully considered. The
left figure illustrates the one by using the tree DMRG for the
physical-bath interactions Ĥ∂ (blue dashes), where there are no
bath-bath interactions. By choosing other algorithms (e.g., SRG
or CTMRG) to calculate Ĥ∂ , it is possible to also have nearest-
neighbor (middle figure) or even long-range (right figure) bath-

bath interactions (red dots).

Then the bath-bath interactions will appear in the standard summation form.
See the illustrations of three possible situations in Fig. D.1. The extra sum-
mations will lead to another (similar) PEPS ansatz beyond the one with tree
branches, which should better mimics the infinite environment. However, the
computational cost with the currently known methods will become much more
sensitive to the coordination number and the dimensionality of the model, mak-
ing the 3D ground states extremely difficult to access.

D.5 Discussions about imaginary-time evolution pic-
ture and criticality in higher dimensions

The idea of approximating an infinite Hamiltonian with a finite effective one
has been proposed for the time evolution of 1D quantum systems [PVM12].
An important difference in our work is that the “evolution” of the finite effec-
tive model is constructed not from a new Ĥ but with a shift (I − τĤ) that is
in fact the imaginary-time evolution operator. It brings several operational ad-
vantages for simulating the ground states, in particular, of higher-dimensional
systems. The triangular structure of the Hamiltonian is avoided here, thus the
eigenvalue equations for the boundary tensors have stable solutions and the
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entanglement bath is well-defined. The few-body Hamiltonians with the bath
of higher-dimensional systems can be easily constructed as the summations of
local terms.

Our scheme makes it possible to adopt the (1 + 1)-D scaling theories for
characterizing criticality [Vid+03] to higher-dimensional models. It is known
that any TN algorithms, essentially, cannot give directly a divergent correlation
length at the critical point. For 1D quantum systems, it has been shown that at
the critical point, any MPS with a finite bond dimension is gapped and possesses
a finite correlation length ξ [Vid+03] satisfying

ξ ∼ Dκ, (D.3)

with D the bond dimension of the MPS and κ its scaling exponent. One can see
that with a finite D, ξ is always finite, and the information of the criticality is
in hidden the algebraical scaling behavior when D increases. For the scaling of
magnetic field h near the critical point, the algebraic behavior of ξ versus h can
still survive, however, the value of the exponent might be inaccurate.

For a 2D PEPS, one has to compute the contraction of a 2D TN (e.g., by iTEBD
with MPS) to get its correlations using finite dimension cut-offs, and thus the re-
sults will still be finite [Pen+17]. To tackle this difficulty, it has been proposed
that the divergence of the correlations can be studied by the scaling of the bond
dimension of the MPS, from which the central charge of the conformal field the-
ory to characterize the criticality can be accurately obtained [Vid+03; Pen+17].

In our approach, the dynamic correlation length of the ground state ξ is given
by the correlation length of an infinite MPS formed by |V [x]) in the imaginary
time direction, written as |ψ̃〉 =

∑
{µ}
∏ |V [x])axµxµ′x . Such an MPS (dubbed as

time MPS) is quasi-continuous (discretized up to the Trotter step τ → 0). Let us
explain how to get ξ in the AOP approach. In higher dimensions, the scheme is
similar.

The dynamic correlation function of the ground state is defined as 〈Φ|Ŝe−βĤ Ŝ|Φ〉/e−βE−
〈Φ|Ŝ|Φ〉2 with |Φ〉 the ground state andE the ground-state energy. In our frame-
work, it is the contraction of a TN, where the two operators are put in the same
column. Thanks to the encoding scheme, such a contraction becomes the con-
traction of a tensor stripe (Fig. D.2). This stripe is the product of ĤFB ’s [Eq.
(7.22), also called the transfer matrix] with the two operators in between. The
dynamic correlation length is defined as [Tir+18b]:

ξ =
τ

log Λ0 − log Λ1
, (D.4)

with Λ0 and Λ1 the two largest eigenvalues of ĤFB (equivalently of the transfer
matrix in the imaginary-time direction)

An advantage of the dynamic correlation properties is that we find much
less finite-loop or finite-dimension-cutoff effects than the spatial correlations.
This is also supported by a recent DMRG work [Pen+17], where the finite-size
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FIGURE D.2: (Color online) The illustrations of the computation
of the correlation functions in 1D AOP.

effects are found to be much smaller for the dynamic correlations. Meanwhile,
a finite dimensional matrix cannot give a critical spectrum. It means one cannot
directly obtain a divergent correlation length at the critical point, and a scaling
of the dimension would be necessary to identify the criticality. How to do such
kind of scalings for 2D and 3D states is still an open question.

For the Ising model on the cubic lattice studied, we have tried to extract the
critical exponent of the dynamical correlation function as

ξ ∝ (hc − hx)−σ, (D.5)

with σ = 0.25 near the critical point in Stage two. In Stage one, we have σ = 0.23.
The exact mean-field exponent of the (spatial) correlation length is σ = 0.5.
The discrepancy might be have several reasons: the correlation length in the
critical region will diverge with the scaling of the bath dimension D as well as
the DMRG dimension cut-off χ (unlike Ms which converges to zero). Thus, it is
difficult to directly extract the exponent of ξ with fixed dimensions. The good
thing is that the algebraic behavior of ξ is clearly observed. What is open is how
to get an accurate value of σ by the scaling factors versus not only hx but also
χ and D. However, recently in [Tir+18b], the relation between dynamic and
spatial correlation length in TNs, at least for 1D systems, has been studied more
in details, which could eventually be extended to higher dimensional systems.
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FIGURE D.3: (Color online) Relations between AOP and several
existing algorithms (PEPS, DMRG and ED) for the ground-state
simulations of 2D and 3D Hamiltonian. The corresponding
computational set-ups in the first (bath calculation) and second
(solving the few-body Hamiltonian) stages of AOP algorithm

are given above and under the arrows, respectively.

D.6 Relations to other algorithms

By taking certain limits of the computational parameters, the relations among
our approach and other algorithms are illustrated in Fig. D.3. The simplest situ-
ation is to take the dimension of the bath sites dim(µx) = dim(µ′x) = 1, and then
Ĥ∂ can be written as a linear combination of spin operators (and identity). Thus
in this case, |V [x]) simply plays the role of a mean field. If one only uses the bath
calculation of the first stage to obtain the ground-state properties, the algorithm
will be reduced to the tree DMRG [LCP00; NC13]. If one takes the minimal
supercell with D = 1 in stage one, the entanglement bath will be reduced to a
magnetic mean field. By choosing a large cluster, the DMRG [Whi92] simulation
in stage two becomes equivalent to the standard DMRG for solving the cluster
in a mean field. If one uses D = 1 and chooses a supercell of a tolerably large
size in the first stage without entering stage two, or if one chooses a small cluster
with D = 1 in stage one and uses ED in stage two to solve the few-body Hamil-
tonian with a tolerably large cluster, our approach will become the ED on the
corresponding finite system in a mean field. By taking proper supercell, cluster,
algorithms and computational parameters, our approach outperforms others.
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D.7 Generalization to (d ≥ 4) dimensions

Benefiting from its flexibility, it is possible to generalize our approach to even
(d ≥ 4)-dimensional quantum models. The main problem to be tackled is the
computational cost. In the second stage by using DMRG for example, the cost
increases polynomially with the size of the cluster, thus also polynomially with
the dimensionality d. In the first stage with tree DMRG, the cost increase expo-
nentially with d, which makes the simulations for higher-dimensional models
extremely expensive. Luckily, the main task here is to solve (2d + 1) number of
self-consistent eigenvalue equations, say five [Eq. (7.13)-(7.17)] for 2D, seven for
3D and nine for 4D quantum systems. One way to lower the cost from exponen-
tial to polynomial expenses is to use a finite algorithm such as DMRG to solve
each eigenvalue problem. It is certain that the stability and efficiency have to be
tested.

D.8 Open issues

Several following-up issues are to be further investigated. The flexibility allows
for possible incorporating with other methods. For example, the TN techniques
with symmetries [MG02; Wei12] can be introduced to lower the computational
cost so that much larger clusters can be reached in the second stage. Besides the
tree DMRG [LCP00; NC13], the other TN optimization schemes such as TN vari-
ational techniques [Phi+15; Van+16; Cor16] and tensor renormalization group
algorithms [LN07; OV09; Orú12; Xie+09; Xie+12; YGW17] can be adapted when
the cost is tolerable. The finite-size scaling of the cluster should be explored. Our
approach could also be readily generalized to higher-dimensional bosonic and
fermionic lattice models. The entanglement embedding idea with the physical-
bath Hamiltonian proposed here can be adopted to develop novel algorithms
for infinite systems by hybridizing with other methods such as QMC, finite or
tree PEPS algorithms [LDX12; LCB14a; Zha+16], or the approaches in material
sciences and quantum chemistry, such as DFT [She10] and DMET [KC12].



161

Bibliography

[Ací+07] Antonio Acín et al. “Device-Independent Security of Quantum
Cryptography against Collective Attacks”. In: Physical Review Let-
ters 98.23 (June 2007), p. 230501.

[ADR82] Alain Aspect, Jean Dalibard, and Gérard Roger. “Experimental
test of Bell’s inequalities using time-varying analyzers”. In: Phys-
ical Review Letters 49.25 (1982), p. 1804.

[Aff+04] Ian Affleck et al. “Rigorous results on valence-bond ground states
in antiferromagnets”. In: Condensed Matter Physics and Exactly Sol-
uble Models. Springer, 2004, pp. 249–252.

[AGR81] Alain Aspect, Philippe Grangier, and Gérard Roger. “Experimen-
tal tests of realistic local theories via Bell’s theorem”. In: Physical
Review Letters 47.7 (1981), p. 460.

[Alo+19] Albert Aloy et al. “Device-independent witnesses of entangle-
ment depth from two-body correlators”. In: Physical Review Let-
ters 123.10 (2019), p. 100507.

[Ami+08] Luigi Amico et al. “Entanglement in many-body systems”. In: Re-
views of Modern Physics 80.2 (2008), p. 517.

[And+10] Peter Anders et al. “Dynamical mean field solution of the Bose-
Hubbard model”. In: Physical review letters 105.9 (2010), p. 096402.

[AOP16] János K Asbóth, László Oroszlány, and András Pályi. “A short
course on topological insulators”. In: Lecture notes in physics 919
(2016).

[Arn13] V. I Arnol’d. Mathematical methods of classical mechanics. Vol. 60.
Springer Science & Business Media, 2013.

[AZ97] Alexander Altland and Martin R Zirnbauer. “Nonstandard sym-
metry classes in mesoscopic normal-superconducting hybrid struc-
tures”. In: Physical Review B 55.2 (1997), p. 1142.

[Bak+09] Waseem S Bakr et al. “A quantum gas microscope for detect-
ing single atoms in a Hubbard-regime optical lattice”. In: Nature
462.7269 (2009), p. 74.

[Bal10] Leon Balents. “Spin liquids in frustrated magnets”. In: Nature
464.7286 (2010), p. 199.



162 BIBLIOGRAPHY

[Bar+19] S Barbarino et al. “Topological Devil’s staircase in atomic two-leg
ladders”. In: New Journal of Physics 21.4 (2019), p. 043048.

[Bax78] Rodney J Baxter. “Variational approximations for square lattice
models in statistical mechanics”. In: Journal of Statistical Physics
19.5 (1978), pp. 461–478.

[BB84] Charles H Bennett and Gilles Brassard. Proceedings of the IEEE In-
ternational Conference on Computers, Systems and Signal Processing.
1984.

[BCK15] G. P. Brandino, J.-S. Caux, and R. M. Konik. “Glimmers of a quan-
tum KAM theorem: insights from quantum quenches in one-dimensional
Bose gases”. In: Physical Review X 5 (4 2015), p. 041043.

[BD02] Henk WJ Blöte and Youjin Deng. “Cluster Monte Carlo simu-
lation of the transverse Ising model”. In: Physical Review E 66.6
(2002), p. 066110.

[BDN12] Immanuel Bloch, Jean Dalibard, and Sylvain Nascimbene. “Quan-
tum simulations with ultracold quantum gases”. In: Nature Physics
8.4 (2012), p. 267.

[BDZ08] Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger. “Many-
body physics with ultracold gases”. In: Reviews of Modern Physics
80.3 (2008), p. 885.

[Bel04] John Stewart Bell. Speakable and unspeakable in quantum mechan-
ics: Collected papers on quantum philosophy. Cambridge University
Press, 2004.

[Bel64] John S Bell. “On the einstein podolsky rosen paradox”. In: Physics
Physique Fizika 1.3 (1964), p. 195.

[Bel66] John S Bell. “On the problem of hidden variables in quantum me-
chanics”. In: Reviews of Modern Physics 38.3 (1966), p. 447.

[Ben+93] Charles H Bennett et al. “Teleporting an unknown quantum state
via dual classical and Einstein-Podolsky-Rosen channels”. In: Phys-
ical Review Letters 70.13 (1993), p. 1895.

[Ben+96] Charles H Bennett et al. “Mixed-state entanglement and quan-
tum error correction”. In: Physical Review A 54.5 (1996), p. 3824.

[Ber+10] Alejandro Bermudez et al. “Wilson fermions and axion electrody-
namics in optical lattices”. In: Physical review letters 105.19 (2010),
p. 190404.

[Ber+17] Hannes Bernien et al. “Probing many-body dynamics on a 51-
atom quantum simulator”. In: Nature 551.7682 (2017), p. 579.

[Ber77] M. V. Berry. “Regular and irregular semiclassical wavefunctions”.
In: Journal of Physics A: Mathematical and General 10.12 (1977), p. 2083.



BIBLIOGRAPHY 163

[Ber84] Michael Victor Berry. “Quantal phase factors accompanying adi-
abatic changes”. In: Proceedings of the Royal Society of London. A.
Mathematical and Physical Sciences 392.1802 (1984), pp. 45–57.

[Bet35] Hans A Bethe. “Statistical theory of superlattices”. In: Proceedings
of the Royal Society of London. Series A-Mathematical and Physical
Sciences 150.871 (1935), pp. 552–575.

[BGP10] Jean-Daniel Bancal, Nicolas Gisin, and Stefano Pironio. “Looking
for symmetric Bell inequalities”. In: Journal of Physics A: Mathe-
matical and Theoretical 43.38 (2010), p. 385303.

[BJP82] R. Botet, R. Jullien, and P. Pfeuty. “Size Scaling for Infinitely Coor-
dinated Systems”. In: Physical Review Letters 49 (7 1982), pp. 478–
481.

[BK84] D. Bensimon and L. P. Kadanoff. “Extended chaos and disappear-
ance of KAM trajectories”. In: Physica D: Nonlinear Phenomena 13.1
(1984), pp. 82 –89. ISSN: 0167-2789.

[BKM10] G. P. Brandino, R. M. Konik, and G. Mussardo. “Energy level dis-
tribution of perturbed conformal field theories”. In: Journal of Sta-
tistical Mechanics: Theory and Experiment 2010.07 (2010), P07013.
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