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Abstract. The interaction between wind and an antenna prototype for the low-frequency 
radio telescope of the Square Kilometer Array (SKA) is experimentally tested in the wind 
tunnel of the Politecnico di Torino. The tests aim to predict the antenna behaviour during 
working conditions, i.e. mounted by means of five contact points to a metal grid on sandy 
ground in the Australian desert. 

The wind tunnel is characterised by a circular test section having a diameter equal to 3 m 
and a length equal to 5 m. The height and the distance between the lateral legs of the antenna 
are equal respectively to 2.2 m and 1.5 m. The tests were performed at increasing wind speed 
up to 110 km/h. The system under analysis is an aluminium antenna composed by four parts 
arranged in axial symmetry and each one made of fifteen rods and small plates/wire elements. 

A numerical parametric model of the system is developed to numerically study the 
dynamic behaviour of the antenna in the frequency range of interest. The model is able to 
handle very high modal density and closed spaced modes in multiplicity of four because of 
the symmetric structure as well as the different shapes of the elements forming the antenna. 
The wind tunnel results emphasise the fluid-structure coupling of aerodynamics modes and 
the critical aspects of the boundary conditions for a good prediction of the oscillations 
amplitudes. 

1 INTRODUCTION 
The Square Kilometer Array (SKA) represents the near future of radio astronomy [1]. Both 

the low- (50-350 MHz) and mid-frequency (500-1500 MHz) instruments (to be deployed in 
the first and second phase of the SKA construction) will be implemented as Aperture Arrays 
having hundreds of thousands digitally-beamformed antenna elements.  

The current baseline for the array element of the low–frequency instrument is a dual-
polarized log-periodic configuration [2,4] with 16 elements, a total height from the ground of 
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about 2.1 m and a base width of 1.6 m, which is better described in the following. Besides the 
electromagnetic tests campaigns in outdoor environment [5,6] and semi-anechoic chamber, 
the prototype requires several qualifications for environmental parameters, as the wind-
loading effect. The antenna should be able to survive a wind speed of about 100 km/h and to 
operate without significant deformations up to 60 km/h. 

Aerodynamically speaking an antenna can be considered as a bluff boy when an interaction 
with an air flow takes place. The flow separation usually occurs around a body immersed in a 
stream. The region of detached flow (wake) is highly unsteady and contains a great variety of 
flow structures more or less organized and characterized by typical temporal and space scales 
ranging over different order of magnitude. The unsteady separated flow plays a key role in the 
aerodynamic excitation of the immersed body which as a consequence is characterized by a 
time dependent pressure distribution around the body that in turn originates time dependent 
forces. Particularly interesting is the shedding phenomenon characterized by the release of 
organized vortices that induce unsteady forces in the body [7]. The unsteadiness of the 
separated flow is the origin of different forms of aeroelastic instabilities such as the galloping 
[8], the buffeting and the flutter of the structure. The turbulence intrinsically present in the 
atmospheric wind influences the loads acting on a structure. Many studies are present in the 
literature focused on the investigation of wind-structures interaction that involves different 
engineering fields. Wind-bluff bodies interactions including buildings, bridges, towers, 
cables, are of great interest for civil engineering applications. The interaction related to 
antennas and the atmospheric wind is also largely analysed as shown by many papers 
published on this subject such as [9,11]. 

The aims of this work are: a) to develop and validate a structural model of the system 
useful to forecast the effect of antenna design changes on the dynamic behaviour of the 
antenna, b) to identify and to analyse the effect of aeroelastic modes given by the fluid 
structure interaction and c) to correlates aeroelastic modes with the antenna components. 

To reach these aims, standard experimental modal analysis (EMA) is performed on the 
system, coupled with signature acquisition under wind excitation. Experimental modal 
analysis is nowadays the most used technique to acquire the dynamic behaviour of 
components and systems [12]. Numerical simulations on components and systems are 
common use in industrial fields and very often they are used for improving the design phase. 
EMA and other dynamics test are used to validate the numerical models and to check the 
actual operating conditions. Usually model updating [13] is necessary to obtain realistic 
model and boundary conditions are critical for the operational working condition [14]. The 
investigation carried out in the wind tunnel complete the validation of the whole 
methodology. 

2 ANTENNA PROTOTYPE: EXPERIMENTAL SET UP IN THE WIND TUNNEL 
AND NUMERICAL MODEL 

The antenna prototype under analysis, shown in Figure 1 (a), is an axially symmetric 
structure in Aluminum constrained to a metal grid, manufactured by Sirio Antenne [5]. A 
planar tree-like module is circularly repeated four times each 90 degree. The module is made 
several beam elements. The main body is a boxed beam 2.1 m long, cross section 25x15 mm 
rectangular beam and 2 mm thick walls. Nine branches are attached on the biggest face of the 
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equal to 80 m/s. A flat plate was mounted in the test section simulating the ground of the real 
case. Moreover, a metal grid having the same geometric characteristics of the actual 
configuration was fixed to the plate through fixing points positioned on three peripheral sides 
simulating the same constrains conditions of the real case. In Figure 2 the antenna mounted in 
the test section is shown. The tests were performed at four different uniform wind speeds, 
without the simulation of the typical velocity distribution of the atmospheric boundary layer. 

The accelerations are measured in the two points ( 1 0.65 mz   and 2 1.22 mz  ), where 
accelerometers PCB 356A15 are located. The measurements were performed collecting data 
at the sampling frequency equal to 10240 Hz. LMS Scadas mobile and Test.Lab software 
were used to acquire and to post-process the time domain data. 

     
Figure 2: The antenna mounted in the test section of the wind tunnel. 

The global behaviour of the antenna was monitored by means of two cameras mounted 
outside of the test section. The cameras were positioned so that the deformations in the 
vertical plane xz and in plane xy parallel to the wall were visible. Different tests were carried 
out with the goal of reducing the deformation of the antenna varying the constraints 
configuration of the antenna-grid fixing points. 

Roving hammer test modal analysis is performed on the antenna structure in condition of 
wind off, to identify the first global structural modes of the system. LMS Scadas mobile and 
Test.Lab software were used to acquire data and to perform the EMA. Ten points are selected 
on the main beams of the structure, one each 0.3 m , and the two nodes on the second and third 
Teflon constraints, on which two triaxial accelerometers are located. The structure is excited 
in the ten points along the two directions perpendicular to the main beam, using an 
instrumented hammer PCB 086C03. The sample frequency is 4096 Hz, therefore the 
frequency response functions within 2048 Hz are measured with a frequency resolution of 
0.125 Hz. Force exponential windows is applied to the input force signal and exponential 
windows is applied on the measured responses. 

2.2 Numerical model 
A finite element (FE) model is developed in LUPOS environment to perform numerical 

modal analysis of the structure, in condition of wind off. LUPOS is a parametric FE codes, 
developed in Politecnico di Torino [15], which is able to handle very well tri-dimensional 
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Figure 8: Accelerations Auto-power for different air speed and different ranges of frequencies. 

For each wind speed several acceleration peaks emerge whose associated frequencies 
change according with the speed. Moreover for the three ranges of frequencies the values of 
the acceleration varies of about one order of magnitude. The highest frequency range involves 
the highest values of the acceleration, due to the higher wind speed and therefore energy 
given to the system. 

Such frequencies can be linked to the shedding of vortices from the different components 
of the antenna. It has to be remarked that the antenna under investigation is characterized by 
different elements with different transversal shapes, lengths, and relative positioning with 
respect to the wind. Moreover, a very complex interactions between wakes of the components 
of the antenna takes place, therefore it is not simple to ascribe a specific peak of energy 
present in the spectrum to a precise component of the antenna from pointwise measurements. 
From this point of view the identification of the possible responsible is carried out considering 
that for bluff bodies the Strouhal number, that identifies the non-dimensional frequency 
associated with the peak of amplitude, is around the value 0.2 for sufficiently high Reynolds 
number. The Strouhal number is defined as: 

V
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where sf  is the shedding frequency, D  is a characteristic dimension of the body and V  is 
the fluid speed. For a circular cylinder D  is the diameter of the cross section. 

In the present case because of the different shapes of the cross sections, an equivalent 
reference length has been considered similarly to what is done for the internal flows. We 
adopted here the concept of hydraulic diameter defined as: 

4AD
P


(2)

where A  and P  are respectively the area and wetted perimeter of the cross section. 
The ratio sf V are evaluated for each frequency range from the peak frequencies present in 

the diagrams of Figure 8. In Table 2 the values of sf V are reported. As it can be observed an 
almost constant value of sf V  is present varying the air speed in each frequency range. 

Table 2: Frequency – air speed ratios. 

Velocity V  [m/s] Ratio sf V  [m] 
Low Medium High 

13 3.11 11.92 43.07
23 3.04 11.30 42.78

27.7 3.01 11.48 45.12
33 2.98 10.18 40.96

Assuming that the Strouhal number associated with the shedding phenomenon, as 
anticipated, is approximately 0.2St  , it is possible to evaluate the equivalent diameters for 
the three ranges of frequencies. 

 1
1

0.2 6.58 cm
s

D
f V

 
(3)

 2
2

0.2 1.78 cm
s

D
f V

 
(4)

 3
3

0.2 4.7 mm
s

D
f V

 
(5)

The three diameters found can be correlated with the dimensions of the main parts of the 
antenna. The first characteristic dimension 1 6.58 cmD   is close to the global dimensions of 
the four beams pack in the antenna centre. The second characteristic dimension 2 1.78 cmD 
corresponds to the size of the four supporting bars, and finally the third one 3 4.7 mmD   can 
be associated to the diameter of the antenna branches. The Reynolds numbers corresponding 
to the values of these equivalent diameters are in the range 4200 Re  9700 for 1D ,
16000 Re 37000 for 2D , 59000 Re  136000 for 3D , sufficiently high to justify the 
assumption of 0.2tS  .

In Figure 9 two pictures of the antenna for increasing wind speed are reported. As can be 
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observed the deformed shapes assumed by the antenna are quite close to the first bending 
mode, due to the transversal load of the tip of the antenna given by the interaction between the 
triangular surfaces on the tip and the fluid. 

     
Figure 9: The defection of the antenna at increasing wind speed from left to right.  

Maximum speed test V  =97 km/h. 

5 CONCLUSIONS 
The dynamics behaviour of an antenna prototype for gravitational waves measurements 

has been tested in a wind tunnel, to assess its structural deformation under wind load. A 
numerical model of the structural system is developed, using beam elements and validated. 
Structural modes of the antenna are experimentally identified in condition of wind off. The 
antenna presents very high modal density, with several tens of modes within the first 25 Hz. 
All the modes are computed from the numerical model, while only the global antenna modes 
are identified from experimental modal analysis. The effects of the fluid structure interaction 
of the dynamics behaviour of the antenna are studied in a wind tunnel under different air 
speed condition. Three main frequency range of interaction between the structure and the air 
flow are evidenced. The effects of shedding phenomena are clearly visible in the identified 
ranges and the components causing these effects. 

Improvements of the antenna can be performed in its structural design to suppress 
undesirable aeroelastic effects in the low and mid frequency range if they interact with 
antenna functionality during antenna working conditions. 
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