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Abstract. A framework for multi-objective topology optimization is presented with the
purpose to simultaneously optimize both fluid flow and acoustic quantities. The proposed
method uses a coupled approach on fixed grids with immersed solid boundaries. For the
fluid flow part the incompressible Navier-Stokes equations are solved and the immersed
boundaries are modeled with a Brinkman penalization method. The acoustic field is
computed by an acoustic/viscous splitting technique and the solution of the resulting
linearized Euler equations. The reflecting boundaries are modeled by a mismatch in the
acoustic impedance between solid and fluid. To describe the geometry of the boundaries
a NURBS-based approach is introduced. Two test cases are investigated to validate the
immersed boundary method for the fluid flow problem and the acoustics, respectively.
Finally, the capability for topological changes of the proposed method is shown with a
multi-objective optimization test case, which is solved with the gradient-free evolutionary
algorithm NSGA-II.

1 INTRODUCTION

Topology optimization is a commonly used method in various fields of engineering
for improving the design of a product or individual components of it in an early stage
of development. Used in the past mainly for structural optimization, it has recently
gained increasing attention in other disciplines such as fluid flow or acoustic optimization.
However, not much research has been done in simultaneously optimizing the acoustic as
well as the fluid flow properties of a coupled problem in a multi-objective manner. This
paper therefore deals with the topology optimization of such problems and presents a
framework that can be used for this purpose.

Usually, non-body-fitted fixed grids are used for topology optimization to avoid the
difficulties that can arise when regenerating a body-fitted grid due to large deformations

401


https://core.ac.uk/display/326217913?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Jakob Munz and Michael Schéafer

or topological changes of the computational domain. For fluid flow problems, one possible
approach to realize this, which is also used in the present work, is the Brinkman penalization
method [1]. Here arbitrarily complex solid bodies can be introduced into the flow domain,
which are modeled as a porous medium with a permeability approaching zero. In order
to also consider acoustics in terms of a sound reflection of these bodies, an impedance
mismatch between fluid and solid is introduced. This approach is also used by the
Impedance Mismatch Method, which was originally proposed by Chung and Morris [2]
for steady mean flows and later applied for unsteady non-uniform flows by Cohen et al.
[3]. For the numerical description of the interface between solid and fluid an approach
proposed by Munz and Schéfer [4] is used, which utilizes non-uniform rational basis
splines (NURBS) and uses the coordinates of the control points as design variables. The
NURBS allow complex geometries to be described with a small number of design variables
compared to other approaches, making it possible to use gradient-free global optimization
techniques, such as genetic algorithms. For the numerical solution of the fluid flow as well
as the acoustic problem the block-structured in-house solver FASTEST [5] is used. The
incompressible Navier-Stokes equations are solved with a finite volume discretization. For
the acoustic field an acoustic/viscous splitting technique [6, 7, 8] is used and the acoustic
quantities are computed with the linearized Euler equations.

The objective of this work is to investigate the proposed framework with respect to
numerical accuracy of the immersed boundary method and its suitability for topology
optimization. Two test cases are examined to validate the presented method. For the first
problem, a steady flow around a cylinder in a channel is investigated without considering
the acoustics and the results are compared with results from the literature. In the second
test case, the acoustic scattering of a Gaussian pulse from a cylinder is simulated and the
results are compared with an analytical solution. Finally, the capability for topological
changes of the proposed method is shown with a multi-objective optimization test case.
Here the pressure drop of a channel flow and the acoustic permeability of the channel are
minimized simultaneously. The gradient-free Non-dominated Sorting Genetic Algorithm
IT (NSGA-II) [9] is used to optimize these two competing objective functions.

2 NUMERICAL FRAMEWORK

In the following, the framework for topology optimization of multi-objective problems is
presented. First the numerical description of the interface is discussed. Then the governing
equations are introduced and a short overview of the optimization is given. Finally, the
process of the complete framework is summarized.

2.1 Numerical description of the interface

The basis of the presented framework is a NURBS-based approach to describe the
interface between solid and fluid, which was proposed by Munz and Schéfer [4]. Here
the control point coordinates of the NURBS are coupled to the design variables of the
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optimization algorithm, which allows the optimizer to change the geometry of the interface.
The NURBS are, in the two-dimensional case, transformed into polygons, which are then
used to calculate the volume fraction ¢ of the solid in each control volume. This leads to
the three possible cases
Qi () =0,
ri €4 Qs ife(x) =1, (1)
00 f0<p(x) <1,

where ()¢ is the fluid part of the computational domain, € is the solid part and 02 is
the interface between the two. Here, a smooth transition at the interface is necessary
to obtain a continuous objective function. The volume fraction is calculated using the
Sutherland-Hodgman algorithm [10]. In this algorithm the polygons derived from the
NURBS curves are clipped against each control volume. The area of the resulting clipped
polygon is then set in ratio to the total area of the control volume to determine the volume
fraction of the solid. By introducing multiple NURBS, which may overlap each other
or disappear, it is also possible to realize topological changes in the domain during the
optimization process. The disappearance is achieved by the fact that the algorithm for
calculating the volume fraction is designed to return a negative value if a polygon or parts
of a polygon “twist”. This means that these parts of the polygon change their counting
direction, for example from clockwise to counterclockwise. A negative volume fraction is
then assumed to be equal to a volume fraction of zero.

2.2 Governing equations

For the derivation of the aeroacoustic equations an acoustic/viscous splitting technique
is used, which was originally proposed by Hardin and Pope [6], then slightly modified
by Shen and Sgrensen [7] and later further developed by Kornhaas [8]. Here the fluid
flow quantities are decomposed into an incompressible part and an acoustic perturbation,
which reads

p=p"+p" w=uw+u p=p"+p", (2)
with the density p, the flow velocity u; and the pressure p. The superscript ( - )in
the incompressible part and the superscript ( -)* the acoustic perturbation.

¢ indicates

Fluid flow equations To compute the fluid flow, the incompressible Navier-Stokes
equations are solved. In order to take the immersed boundaries into account, the momentum
equation is extended by a penalization term. The equations then read

auirlc
i 3
) auinc ) a(uiincuijnc) a 8uinc auijnc apinc . )
inc 7 inc — i o inc - 1‘nc7 4
p 8t + P aZL‘j &rj |:lu < 6xj + (%Z ):| 8$Z + p f @Uz ( )
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with the time ¢, the dynamic viscosity u, the external body forces f; and the Brinkman
penalization parameter

a(p) =ar+ (s —ar) o, (5)
where af refers to the fluid region and «y to the solid region. The value for as is set to zero
for the present work, which, together with the volume fraction ¢, causes the penalization
term to disappear in the fluid area, leading to the original Navier-Stokes equations. To
realize the no-slip boundary condition at the interface of the solid, a high value for a4 has
to be chosen, which causes the flow velocity in the solid to approach zero. According to
[11], where a value of o > 10* is suggested as sufficiently large, the value inside the solid
parts is set to ag = 10 for the present work.

Acoustic equations For the computation of the acoustics the linearized Euler equations

o pac . Oude ;. pac
1nc K] IIHC — 0 6

we U Ui 9pe
inc i inc, inc i -0 7
(915 + p u] 8xj + 81’1 ’ ( )

apac 5 auac ) apac apinc

inc i inc — 8
ot P an, T g, ot ®)

are solved with the speed of sound ¢. To obtain the reflection of the acoustic waves at the
immersed boundaries, the density p™° is increased. This causes a mismatch in the acoustic

impedance .
Z — plncc (9)
between fluid and solid. According to the reflection coefficient
Dref Z2 - Zl
C = =" 10
Pn L2+ 2 (10)

this leads to a reflection of the sound wave. Here p;, is the incident and p,.f is the reflected
acoustic pressure. The impedance of the fluid is Z; and the impedance of the solid is Z,.
For Z, = Z; the reflection coefficient equals zero and therefore no reflection occurs. For
Zo > 7 the value of C, becomes positive, so there is reflection without a phase change,
which is the desired behaviour. On the other hand, for Zy < Z; the value of C, becomes
negative and thus the acoustic wave experiences a phase reversal. Therefore, the density
is defined as

P () = i+ (P = o) (11)
where pi"® refers to the density in the fluid and pi"® to density in the solid. In the present
work the solid density is increased by a factor of 1000 compared to the fluid density.
This leads to a theoretical amplitude error of the reflected wave of 0.2 % according to
equation (10). It should be noted that the increased density is only used to compute the
acoustics.

404



Jakob Munz and Michael Schéafer

2.3 Optimization

The last part of the framework is the optimizer. There are a variety of optimization
methods to perform a multi-objective optimization, which can be roughly divided into
gradient-free and gradient-based methods. A gradient-based optimization can be ad-
vantageous in terms of computational speed, especially with a large number of design
variables, if an adjoint method is used. However, one major problem with these methods
is that they tend to get stuck in local minima, which can occur especially during topology
optimizations, since the value of the objective function can change abruptly due to a
change in the topology of the computational domain. To overcome this problem, the
present work uses the comparatively small number of design variables resulting from the
NURBS-based approach to make it feasible to use the gradient-free evolutionary algorithm
NSGA-II.

2.4 Procedure of the framework

The complete process of a multi-objective topology optimization with the presented
framework is shown schematically in Figure 1 and can be summarized as follows:

P ..
1. Generation of NURBS depending on design variables ——  Optimizer <—

2. Derivation of polygons P and transfer to the fluid flow
as well as to the acoustic solver

3. Calculation of volume fractions using the Sutherland- > Flow solver — gt
Hodgman algorithm within the solver

4. Solving flow equations and transfer of fluid objective func- l uine, pinc
tion J¥ to the optimizer as well as transfer of resulting
fluid flow quantities to the acoustic solver .
. . . . —  Acoustic solver — J*
5. Solving acoustic equations and transfer of acoustic objec-
tive function J?® to the optimizer
6. Checking convergence criteria and repeating the process Figure 1: Procedure of a multi-
if criteria are not reached objective topology optimization

3 VALIDATION

To validate the proposed method, two different test cases are investigated. First a
steady channel flow around a cylinder at Re = 20 is simulated. The cylinder is modeled
with the Brinkman penalization method and the results are compared to results from
literature. For the second test case, the acoustic scattering of a Gaussian pulse from a
cylinder is simulated. To model the reflecting solid boundaries, a mismatch in the acoustic
impedance between fluid and solid is introduced. The acoustic pressure is measured over
time at three monitoring points and the results are compared with an analytical solution.

405



Jakob Munz and Michael Schéfer

3.1 Steady channel flow around a cylinder

The first test case is intended to investigate the suitability of the Brinkman penalization
method for modeling solid boundaries. For this purpose, a two-dimensional steady flow
around a circular cylinder in a channel is considered. The benchmark problem is taken
from [12], where it is referred to as test case 2D-1 and where several results for different
solution approaches can be found. The geometry of this test case is shown in Figure 2.
The kinematic viscosity is set to v = 0.001 m?s~! and the fluid density to p = 1.0kgm 3.

inlet

u:’U:O y
NT Q@Ol outlet

0.41

S

o
[N}
sV

2.2

Figure 2: Geometry and boundary conditions of the channel flow test case

At the inlet, a parabolic flow velocity profile

u(0,y) = dumy (hh_zy) V=0 (12)

is applied with the channel height 4 = 0.41 m and the maximum flow velocity u,, = 0.3ms™?,
which leads to a Reynolds number of Re = ud/v = 20. Here the mean velocity is defined
as U = 2u,,/3. The Brinkman penalization parameter is set to o = 10°. The results of the
simulations are compared with two of the criteria that can be found in [12]. These are the
length of the recirculation zone L,, as well as the pressure difference between the front
and the back of the cylinder AP. The computations are carried out on three successively
refined grids with a maximum of 800 x 400 control volumes. The values of the volume
fraction in the vicinity of the cylinder are shown exemplary for the coarsest grid in Figure
3 and the results of the simulations are shown in Table 1. For both criteria, the results are

oo Grid L, AP

o3 200 x 100 0.0847 0.1185

08 400 x 200 0.0844 0.1167

o4 800 x 400 0.0849 0.1175

ol 2D-1 [12] [0.0842,0.0852] [0.1172,0.1176]
Figure 3: Volume fraction Table 1: Benchmark results
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in the range of the results of [12]. Therefore, it is assumed that the Brinkman penalization
method is suitable to model solid boundary conditions.

3.2 Scattering of acoustic waves from a cylinder

The second benchmark test case is an acoustic two-dimensional initial value problem
without background flow. It is particularly well suited to investigate the scattering of
acoustic waves at curved solid boundaries as they can usually occur during topology
optimization. The test case corresponds to problem 2 of category 2 in [13], where an
analytical solution to this problem can also be found. All variabes are non-dimensionalized
using the diameter d of the cylinder as length scale, ¢ as velocity scale, d/c as time scale,
pi¢ as density scale and pi"°c? as pressure scale. The basic configuration of the test case
is shown in Figure 4. Here, the circular cylinder is located in the center of a square

cylinder Gaussian pulse

Figure 4: Schematic diagram of the acoustic scattering test case

computational domain with z,y € [—10, 10]. Next to this cylinder a Gaussian pressure
wave is initiated. This pressure wave then propagates over time, is reflected from the
cylinder and finally leaves the computational domain. The acoustic pressure is measured
over time at the three monitoring points A (r =5, § =90°), B (r =5, § = 135°) and C
(r=>5,60=180°). Since there is only an interest to investigate whether the introduced
impedance mismatch is suitable to model solid boundaries, the half-width of the Gaussian
pulse is increased compared to the original test case in order to reduce the influence of
numerical diffusion. The density of the solid is set to p¢ = 1000 and the center of the
Gaussian pulse is located at z; = 4 and y;, = 0 with the half-width w = 0.5. The initial
conditions for this test case are t = 0, u*® = v* = 0 and

pac = exp [_ n2 ((l‘ _ xS)Q + (y — ys)2>] ) (13)

w?

The problem is solved on three successively refined Cartesian grids with 512 x 512,
1024 x 1024 and 2048 x 2048 control volumes. To avoid spurious oscillations the Osher
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flux limiter [14] with 5 =1 is used according to [8]. The time step size is At = 0.0125
for the coarsest, At = 0.00625 for the medium and At = 0.003125 for the finest grid,
yielding a constant acoustic CFL number of 0.32. Figure 5 shows the contour plots of
the acoustic pressure for the time steps t = 2,4,6 on the finest grid. As can be seen,

ac
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Figure 5: Scattering of the initial Gaussian pulse from the cylinder at different time steps

the acoustic wave propagates smoothly in the computational domain and is scattered
at the cylinder. Figure 6 compares the results of the simulations with an analytical
solution for the three monitoring points in the time interval from t = 5 to t = 11. For

T T T T
011 0 = 90° — 512 x 512 | |
0.08 |- = —— 2048 x 2048 | |
0.06 ---- analytical
. 0.04]
o
0.02 -
—0.02| |
—0.04 +
| | | | | | | | | |

) 5.9 6 6.5 7 7.5 8 8.5 9 95 10 105 11

Figure 6: Acoustic pressure over time for the scattering of the Gaussian pulse at the three
monitoring points

the undisturbed acoustic wave, which first reaches point A (f = 90°) and then point B
(0 = 135°), the amplitude approaches the analytical solution as the grid size increases.
At point C (6 = 180°), however, the wave diffracted by the cylinder shows a time-shift
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of about At = 0.01 compared to the analytical solution. In the further course, the wave
scattered from the cylinder reaches the monitoring points where it shows an amplitude
error which is almost independent of the grid size. Nevertheless, the main characteristics
of the wave propagation are correctly represented and the simulation is generally in good
agreement with the analytical solution. In addition, topology optimization is essentially
about creating a first draft rather than a detailed design, so the accuracy achieved is
sufficient to use the proposed approach for topology optimization.

4 APPLICATION TO MULTI-OBJECTIVE OPTIMIZATION

In the following, a multi-objective topology optimization of a two-dimensional channel
is investigated. Two competing objective functions are considered, which are the pressure
drop between inlet and outlet as well as the acoustic permeability of the channel, both
of which should be minimized. The geometry of the test case is shown in Figure 7. In

A
initial wave N
) - 7\ P
— 27 72 u=v=0 °
| |
inlet Y
N2 outlet
Y >
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o
4

Figure 7: Geometry of the two-dimensional optimization test case

order to quantify the acoustic permeability, an acoustic wave is initiated at the position
zs = 1.0m with the initial conditions

2
p* = 1.5exp [— In 2 (M)
w

ac (:L‘ B xS)Q
= 0.001exp | —In2 [ 2L
w

and a half-width of w = 0.05m. The speed of sound is set to ¢ = 1000ms~!. Two closed
NURBS curves, whose shapes are varied by the optimization, are introduced into the
channel. Both of these curves are defined by six control points, whereby the first two points
are repeated according to the degree of the curves. The positions of the control points
are defined relative to the centers of the curves, which are (2.0,0.3) and (2.0,0.7). An
unclamped, uniform node vector U = {0, ..., 8} is used and all weights are set to one. Each
of the control point coordinates is determined by a separate design variable, resulting in a
total of 16 design variables. The upper and lower bounds of the design variables are defined

Nm 2 (14)

ms™!, 0*=0ms ", (15)
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in such a way that there will always be a gap at the top and bottom of the channel, but
the curves can overlap in the middle. The acoustic pressure is measured at the monitoring
point P = (3.5,0.5) and the maximum value within a time interval of At = 0.004s is
determined and used as objective function. For the inlet boundary condition, a parabolic
flow velocity profile according to equation (12) is used with a channel height h = 1 m and
a mean flow velocity 4 = 20ms~!. The kinematic viscosity is set to v = 1.0m?s™! and
the fluid density to p*° = 1.0 kg m~3, which leads to a Reynolds number of Re = 20, based
on the channel height. In order to obtain the sound reflection by the impedance mismatch,
the solid density is set to p*® = 1000 kg m~3. Since two competing objective functions are
to be optimized, the gradient-free NSGA-II is used. The two objective functions should
then come into conflict, since it is expected that minimizing the pressure drop leads to a
channel without obstacles, while the optimum for minimum acoustic permeability should
correspond to the opposite, i.e. a channel with the largest possible reflective obstacles.
The results of the topology optimization are shown in Figure 8 and as expected a set
of Pareto optimal solutions can be seen. On the right side of Figure 8, the optimized

0.8
0.6

0.4

[TT1 1] T

0.2

normalized acoustic pressure

0 02 04 06 08 1 d

normalized pressure drop

Figure 8: Pareto set of the multi-objective optimization and the geometry of four selected
points (a-d) with the resulting flow velocity fields

geometries for the extreme points as well as for two other characteristic points from the
Pareto front are shown as examples. In case of a minimal pressure drop (point a), the
impermeable areas disappear as predicted because the polygons have twisted, as explained
in section 2.1. On the way to a minimum of the acoustic permeability (point b and c),
the two NURBS curves increasingly close the channel. At the optimum of the acoustic
permeability (point d), the upper curve reaches the maximum height and the lower curve
its minimum height. In the middle, however, the expected overlap does not occur, leaving
a small gap between the two curves. At this point, the two curves approach each other
until they both intersect the same control volume but do not cover it completely, resulting
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in an intermediate value for the Brinkman penalization parameter and the impedance
mismatch, respectively. This value is just large enough to reflect most of the incident
acoustic wave, but not large enough to completely prevent the fluid low between the two
curves. This can also be seen in Figure 8 in the plot for point d, where the light blue area
between the two curves indicates a slow but non-zero flow. The acoustic permeability has
thus reached an optimum which additionally allows to reduce the pressure drop slightly
compared to two overlapping curves. This state is actually not desired, since it is based
on the unphysical assumption that there may be areas which are partially permeable.
However, these intermediate values in the control volumes serve only to ensure smooth
objective functions and should not to be exploited by the optimizer to improve an objective
function. Further research is therefore needed at this point to prevent this behaviour.

5 CONCLUSIONS

A framework for multi-objective topology optimization of fluid flows and acoustics
has been presented, which uses a coupled aeroacoustic solver for all computations. It
is based on the solution of the incompressible Navier-Stokes equations for the fluid flow
problem and an acoustic/viscous splitting technique together with the linearized Euler
equations for the acoustic problem. For the fluid low computations it uses the Brinkman
penalization method to account for solid areas in the flow domain, while for the acoustics
an impedance mismatch between solid and fluid is introduced. In both cases the geometry
of the solid boundaries is mathematically described by NURBS curves. The control point
coordinates of these NURBS are used as design variables, which has the advantage that
complex geometries can be described with a relatively small number of parameters. Thus,
the number of design variables can be reduced to such an extent that it is possible to use
gradient-free optimization methods, like the Non-dominated Sorting Genetic Algorithm
(NSGA-II).

The proposed method has been validated with two test cases taken from literature
and has shown a good agreement. Finally, a multi-objective optimization problem has
been investigated, which has basically shown the expected results, but also revealed a
problem. The optimizer exploits the possible intermediate values in the control volumes to
improve the objective functions. Although this is a logical result for the optimization, it
was not expected and further research is needed to prevent such loopholes for the optimizer.
The next step will be to use this coupled framework for the topology optimization of
aeroacoustic problems, where the acoustic sources are generated by the fluid flow.
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