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Abstract. This paper describes a state-space partitioned algorithm for real-time hybrid 
simulation. The state-space modeling is proposed to represent nonlinear numerical 
substructures. The effectiveness of the proposed method is demonstrated for a virtual bridge 
case study equipped with seismic isolation devices. 

 
 
1 INTRODUCTION 

Hybrid simulation (HS) merges structural testing and numerical modelling into a unique 
dynamic simulation paradigm, which has been extensively used to investigate the seismic 
response of civil structures [1]. In detail, a time stepping analysis algorithm solves for the 
coupled equation of motion of a prototype structure made of numerical and physical 
subdomains (NS and PS, respectively), which are assembled in a finite element (FE) fashion. 
On the PS side, servo-controlled actuators equipped with load cells impose displacement trials 
to the tested component and measure corresponding restoring forces. The NS is typically 
instantiated in a structural analysis software. In order to minimize actuator control errors, when 
the PS restoring force is rate independent, pseudodynamic- (PSD-) HS is performed, which 
means that the wall-clock duration of HS scales up with respect to the duration of the virtual 
excitation and velocities scale down of the same amount. If not, real-time- (RT-) HS is 
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performed. In both cases, PS testing is conducted by reproducing boundary and loading 
conditions as experienced within the prototype structure when subjected to a realistic excitation. 
Data from experiments is intended support model validation and calibration for tested structural 
components. 

Most of developments related to HS consist on adaptations of existing FE analysis codes to 
accommodate so-called experimental elements, which incorporate a digital interface to the 
testing equipment. However, complexity of FE software, which trades off between modularity 
and computational performance, struggles with the deterministic execution scheduling imposed 
by RT-HS (i.e., evaluation of the NS response with a constant sampling period of 1÷10 msec). 
In our opinion, the state-space approach, which is quite popular in the control community, offers 
a computationally cheaper alternative to FE for modelling nonlinear NS. This paper describes 
a state-space partitioned time integration algorithm for RT-HS. The dual-coupling strategy of 
the modified-PH method [2] allows for assembling state-space equations of PS and NS in a FE 
fashion. HSs of a virtual two-pier reinforced concrete bridge equipped with friction pendulum 
bearings are presented as proof-of-concept example. 

 
1 STATE-SPACE PARTITIONED ALGORITHM FOR HYBRID SIMULATION 

 
In order to facilitate the assembly of nonlinear NSs simulated with well-known differential 

models (e.g. Mostaghel [3] hysteretic springs), the HS framework presented in this section relies 
on a newly conceived parallel partitioned algorithm tailored to state-space systems. The 
Monolithic-Generalized-𝛼𝛼 (MG-𝛼𝛼) time stepping scheme proposed by Brüls and Arnold [4] is 
used as basic solver for the Partitioned-Generalized-𝛼𝛼 (PG-𝛼𝛼) method, which adopts the 
coupling scheme of the modified PH method conceived by Brun and co-workers [2]. Both 
algorithms solve the system of equations of motion re-casted in state-space form that, for a 
generic nonlinear mechanical system, reads, 

 
𝐌𝐌𝐘̇𝐘 + 𝐑𝐑(𝐘𝐘) = 𝐅𝐅(𝑡𝑡) (1) 

 
where, 
 

𝐘𝐘 = [
𝐮𝐮
𝐯𝐯
𝐬𝐬
] ,𝐌𝐌 = [

𝐈𝐈 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐦𝐦 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝐈𝐈

] ,𝐑𝐑 = [
−𝐯𝐯

𝐫𝐫(𝐮𝐮, 𝐯𝐯, 𝐬𝐬)
𝐠𝐠(𝐮𝐮, 𝐯𝐯, 𝐬𝐬)

] , 𝐅𝐅(𝑡𝑡) = [
𝟎𝟎
𝐟𝐟(𝑡𝑡)
𝟎𝟎
] (2) 

 
In detail, 𝐮𝐮, 𝐯𝐯 and 𝐬𝐬 are displacement, velocity and additional state vectors, respectively. The 

former two always appear as a pair in second-order mechanical systems, while the latter is used 
to model nonlinearities endowed with memory (e.g., hysteresis). In particular, 𝐫𝐫(𝐮𝐮,𝐯𝐯, 𝐬𝐬) is the 
nonlinear restoring force vector while the nonlinear function 𝐠𝐠(𝐮𝐮,𝐯𝐯, 𝐬𝐬) comprises the evolution 
of the additional state vector 𝐬𝐬. Moreover, 𝐦𝐦 is the mass matrix and 𝐟𝐟(𝑡𝑡) is the external time 
varying load while 𝐈𝐈 and 𝟎𝟎 are identity and zero matrices, respectively. When the system is 
linear, velocities and displacements only characterize the system state, which does not include 
additional variables. As a result, the restoring force reduces to, 
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𝐫𝐫(𝐮𝐮,𝐯𝐯) = 𝐤𝐤𝐤𝐤 + 𝐜𝐜𝐜𝐜 (3) 
 
with 𝐤𝐤 and 𝐜𝐜 stiffness and damping matrices, respectively. For simplicity time dependency 

is omitted and hereinafter, 𝐌𝐌,𝐊𝐊,𝐑𝐑 and 𝐅𝐅 are referred to as generalized mass, stiffness, restoring 
force and external loading. First, the MG-𝛼𝛼 is presented; successively, the PG-𝛼𝛼 is described 
for coupling one PS and one NS. 

 
1.1 The Monolithic G-𝛂𝛂 time integration algorithm 

 
The original MG- algorithm proposed by Jansen and co-workers [5] applied to integrate 

(1) from 𝑡𝑡𝑛𝑛 to 𝑡𝑡𝑛𝑛+1 with a time integration step Δ𝑡𝑡 =  𝑡𝑡𝑛𝑛+1 − 𝑡𝑡𝑛𝑛, reads, 
 

𝐌𝐌𝐘̇𝐘𝑛𝑛+𝛼𝛼𝑚𝑚 + 𝐑𝐑(𝐘𝐘𝑛𝑛+𝛼𝛼𝑓𝑓) = 𝐅𝐅𝑛𝑛+𝛼𝛼𝑓𝑓 (4) 
where, 

𝐘̇𝐘𝑛𝑛+𝛼𝛼𝑚𝑚 = (1 − 𝛼𝛼𝑚𝑚)𝐘̇𝐘𝑛𝑛 + 𝛼𝛼𝑚𝑚𝐘̇𝐘𝑛𝑛+1 
(5) 𝐘𝐘𝑛𝑛+𝛼𝛼𝑓𝑓 = (1 − 𝛼𝛼𝑓𝑓)𝐘𝐘𝑛𝑛 + 𝛼𝛼𝑓𝑓𝐘𝐘𝑛𝑛+1 

𝐘𝐘𝑛𝑛+1 = 𝐘𝐘𝑛𝑛 + 𝐘̇𝐘𝑛𝑛(1 − 𝛾𝛾)Δ𝑡𝑡 + 𝐘̇𝐘𝑛𝑛+1𝛾𝛾Δ𝑡𝑡 
 
Parameters 𝑓𝑓 ,𝛼𝛼𝑚𝑚 and 𝛾𝛾 define the setting of the algorithm. They are expressed as function 

of the infinity spectral radius 𝜚𝜚∞ parameter as, 
 

𝛼𝛼𝑚𝑚 = 3 − 𝜌𝜌∞
2(1 + 𝜌𝜌∞) ,𝛼𝛼𝑓𝑓 = 1

1 + 𝜌𝜌∞
, 𝛾𝛾 = 1

2 + 𝛼𝛼𝑚𝑚 − 𝛼𝛼𝑓𝑓 (6) 

 
The resulting algorithm is second order accurate. In detail, if 𝜚𝜚∞ is chosen to be zero, the 

method annihilates the components of the system response whose frequencies are high 
compared to the sampling frequency. If 𝜚𝜚∞ = 1, then, 𝛼𝛼𝑚𝑚 = 𝛼𝛼𝑓𝑓 = 𝛾𝛾 = 1 2⁄  and the MG-
𝛼𝛼 method is equivalent to the trapezoidal rule, which does not introduce algorithmic dissipation. 

 
1.2 The Partitioned G-𝛂𝛂 time integration algorithm 

 
The PG-𝛼𝛼 method is a parallel partitioned time integration algorithm that couples two 

monolithic time integration processes based on the MG-𝛼𝛼 algorithm following a dual assembly 
approach. In detail, two parallel time integration processes are coupled at the coarse time step, 
where the compatibility of NS and PS is forced by a dual assembly procedure. The 
corresponding coupled system of equations of motion reads, 

 

{
𝐌𝐌𝑁𝑁𝐘̇𝐘𝑛𝑛+1𝑁𝑁 + 𝐑𝐑𝑁𝑁(𝐘𝐘𝑛𝑛+1𝑁𝑁 ) = 𝐋𝐋𝑁𝑁𝚲𝚲𝑛𝑛+1 + 𝐅𝐅𝑛𝑛+1𝑁𝑁

𝐌𝐌𝑃𝑃𝐘̇𝐘
𝑛𝑛+ 𝑗𝑗

𝑠𝑠𝑠𝑠

𝑃𝑃 + 𝐑𝐑𝑃𝑃 (𝐘𝐘
𝑛𝑛+ 𝑗𝑗

𝑠𝑠𝑠𝑠

𝑃𝑃 ) = 𝐋𝐋𝑃𝑃𝚲𝚲𝑛𝑛+ 𝑗𝑗
𝑠𝑠𝑠𝑠

+ 𝐅𝐅
𝑛𝑛+ 𝑗𝑗

𝑠𝑠𝑠𝑠

𝑃𝑃  (7) 

𝐆𝐆𝑁𝑁𝐘̇𝐘𝑛𝑛+1𝑁𝑁 + 𝐆𝐆𝑃𝑃𝐘̇𝐘𝑛𝑛+1𝑃𝑃 = 𝟎𝟎 
 

322



G. Abbiati, I. Lanese, A. Pavese, O.S. Bursi 

 4 

where, 𝐌𝐌,𝐑𝐑  and 𝐅𝐅 are defined in Eq. (2) while signed Boolean collocation matrices 𝐋𝐋 and 
𝐆𝐆 localize interface forces and define compatibility equations, respectively. In line with Eq. (7), 
time steps 𝛥𝛥𝑡𝑡𝑁𝑁 and 𝛥𝛥𝑡𝑡𝑃𝑃 refer to simulation time, which is a virtual time axis defined by the time 
integration process. As an example, the seismic ground motion is expressed as function of the 
simulation time. In particular, 𝛥𝛥𝑡𝑡𝑁𝑁 is the coarse time step adopted for the NS while 𝛥𝛥𝑡𝑡𝑃𝑃 is the 
fine time step used to calculate the PS response. In order to guarantee a sufficient accuracy, 
𝛥𝛥𝑡𝑡𝑁𝑁 = 1 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is typically considered. The testing time scale 𝜆𝜆 defines the ratio between wall-
clock and simulation time speeds. In particular, when 𝜆𝜆 = 1 the test is conducted in real-time. 
Conversely, when 𝜆𝜆 > 1, the simulation time is extended in comparison with the wall-clock 
time and the test is conducted in a pseudodynamic regime. When the response of the PS does 
not depend on the rate of loading, 𝜆𝜆 usually ranges between 50 and 200. This approach reduces 
control tracking errors. Moreover, an extended simulation time scale 𝜆𝜆 reduces the destabilizing 
effect of actuator delay, which is typically of the order of 10 ÷ 20 𝑚𝑚𝑚𝑚. On the other hand, 
𝛥𝛥𝑡𝑡𝑆𝑆 = 𝜆𝜆𝜆𝜆𝑡𝑡𝑁𝑁 and 𝛥𝛥𝑡𝑡𝐶𝐶 = 𝜆𝜆𝜆𝜆𝑡𝑡𝑃𝑃 refer to the wall-clock time, which is the real time flow measured 
in the laboratory. In particular, 𝛥𝛥𝑡𝑡𝑆𝑆 defines the maximum solving time that can be allocated to 
compute the NS response while 𝛥𝛥𝑡𝑡𝐶𝐶  is the actuator controller time step, which typically ranges 
between 1 and 2 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 to guarantee smooth displacement trajectories. In principle, at each 
simulation step displacement and velocity solutions of Eq. (7) split into free and link 
components. The former are calculated discarding coupling conditions, which are used to 
compute the latter by means of a linearized Steklov-Poincaré operator. The coupled solution is 
the sum of both free and link contributions. Both free and link solutions are solved based on the 
MG-𝛼𝛼 algorithm, which provides tunable algorithmic damping to the coupled scheme. 

 
2 THE VIRTUAL TWO-PIER BRIDGE 

 
2.1 Description of the case study 

 
In order to verify the proposed computational framework, we conceived a two-pier bridge 

case study that we used to benchmark three alternative seismic isolation schemes. The virtual 
bridge prototype depicted in Figure 1 is characterized by a three-span reinforced concrete deck 
with two independent roadways, sustained by two twin cantilever rectangular hollow cross-
section RC piers. Cross sections of deck and pier are depicted in Figure 2. As depicted in Figure 
1, a pair of seismic isolation devices was interposed between deck and piers and deck and 
abutments. 

Three alternative seismic isolation devices were tested, namely, double and triple concave 
sliding bearing (D- and T-CSB, respectively) and lead rubber bearing (LBR). All devices were 
dimensioned to keep the maximum transversal shear force applied to each pier below 370 𝑘𝑘𝑘𝑘 
and the corresponded transversal displacement below 3 𝑚𝑚𝑚𝑚. 
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Figure 1: Virtual bridge prototype. 

  
a b 

Figure 2: Cross-sections of: a) deck; b) pier. 
 
Due to the limited length of the paper, only the T-CSB device is described. Figure 3 depicts 

a schematic of a generic T-CSB device, for which a detailed mechanical model can be found in 
[6]. 

 

 
Figure 3: Schematic of a T-CSB device after [6]. 

 
The REXEL software [7] was used to select a single ground motion record 

corresponding to a seismic scenario characterized by moment magnitude 𝑀𝑀 =  5 ÷ 7, 
epicentral distance 𝐷𝐷 =  0 ÷ 30 km and soil type B, which was scaled to different values of 
peak ground acceleration (PGA). In detail a PGA value of 0.12 g was assigned to the 
serviceability limit state (SLS) while a PGA value of 0.30 g was selected for the ultimate limit 
state (ULS) based on a comprehensive analysis of the bridge response based on a nonlinear FE 
model. The horizontal seismic excitation was orthogonal to the main axis of the bridge deck.  
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2.2 Substructuring scheme 
 
Figure 4 depicts the partitioning of the virtual bridge prototype into PSs and NSs, which are 

colored in red and blue, respectively. In detail, nonlinear springs represent piers and seismic 
isolation device pairs, while the continuous line is the deck. The latter was obtained via static 
condensation of a linear FE model based on Bernoulli beam elements, by retaining transversal 
displacements of Nodes #1, #6, #11 and #16, that is, connection points to piers and abutments. 

 

 
Figure 4: Plan views of the substructured virtual bridge prototype. 

 
As can be appreciated from Figure 4, one pair of T-CSB devices was tested in the laboratory 

while all other substructures were simulated numerically. In order to reproduce the hysteretic 
response of the T-CSB on the NS, a state-space model inspired to Mostaghel's work [3] was 
developed. In this regard, Figure 5 shows both the spring-slider idealization and the entailing 
hysteretic loop. 

 

 
 

a b 
Figure 5: T-CSB state-space model: a) spring-slider idealization; b) hysteretic loops. 

 
The state-space model of the restoring force 𝑟𝑟 is described as, 
 

𝑟̇𝑟 = 𝑟̇𝑟0 + 𝑟̇𝑟1 + 𝑟̇𝑟2 

(8) 
𝑟̇𝑟0 = (𝑘𝑘0(𝑁̅𝑁(𝑣𝑣)𝑀̅𝑀(𝑠𝑠0 − 𝛿𝛿0) + 𝑀𝑀(𝑣𝑣)𝑁𝑁(𝑠𝑠0 + 𝛿𝛿0))) 𝑣𝑣 

𝑟̇𝑟1 = (𝑘𝑘1(𝑁̅𝑁(𝑣𝑣)𝑀̅𝑀(𝑠𝑠1 − 𝛿𝛿1) + 𝑀𝑀(𝑣𝑣)𝑁𝑁(𝑠𝑠1 + 𝛿𝛿1)))𝑣𝑣 
𝑟̇𝑟2 = 𝑘𝑘2𝑣𝑣 
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where slip displacements of equivalent sliders read, 
 

𝑠𝑠1 = 𝑟𝑟1 𝑘𝑘1⁄  (9) 𝑠𝑠2 = 𝑟𝑟2 𝑘𝑘2⁄  
 
and functions 𝑁𝑁,𝑀𝑀, 𝑁̅𝑁 and 𝑀̅𝑀 read, 
 

𝑁𝑁(𝑤𝑤) = 0.5(1 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤)) (1 + (1 − 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤))) 
𝑀𝑀(𝑤𝑤) = 1 − 𝑁𝑁(𝑤𝑤) 
𝑁̅𝑁(𝑤𝑤) = 𝑀𝑀(−𝑤𝑤) 
𝑀̅𝑀(𝑤𝑤) + 𝑁𝑁(−𝑤𝑤) 

(10) 

 
Values of model parameters identified for the maximum velocity peak of  0.1 m/s read, 
 
𝑘𝑘0 = 6.67𝑒𝑒7𝑁𝑁 𝑚𝑚⁄ , 𝛿𝛿0 = 1.5𝑒𝑒 − 3𝑚𝑚, 𝑘𝑘1 = 1.15𝑒𝑒6𝑁𝑁 𝑚𝑚⁄ , 𝛿𝛿1 = 0.07𝑚𝑚,  𝑘𝑘2 = 5𝑒𝑒5 𝑁𝑁 𝑚𝑚⁄  

 
The developed model was validated against experimental data. In this respect, Figure 6 

compares emulated and measured hysteretic loops and dissipated energy histories. As can be 
appreciated, the developed model accurately reproduces the response of the tested T-CSB 
device. 

 

  
a b 

Figure 6: Validation of the D-CSB model against experimental measurements at 𝑣𝑣 = 0.1 m/s:  a) 
hysteretic loop; b) dissipated energy. 

 
3 HYBRID SIMULATION OF THE VIRTUAL BRIDGE 

 
3.1 Architecture of the implementation 

 
In order to simulate the virtual bridge prototype, the HS framework of Figure 7, which relies 

on the PG-𝛼𝛼 algorithm described in Section 1, was implemented at the Experimental Laboratory 
of EUCENTRE, Pavia, Italy. A Windows-based HOST-PC runs the MATLAB-SIMULINK 
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computational environment [8], which implements both the PG-𝛼𝛼 algorithm and the NS of the 
substructured system. The C-code automatically generated by SIMULINK is compiled and 
uploaded to the XPC-TARGET that executes the software in real-time. The XPC-TARGET is 
provided with DAQ boards that communicate with the Bearing Testing System (BTS) 
controller, which controls a servo-hydraulic loading system specifically conceived for testing 
bearings. At each simulation step of the PG-𝛼𝛼 algorithm, the XPC-TARGET sends 
displacement commands to the physical D-CSB, and the related restoring force is fed back to 
the PG-𝛼𝛼 algorithm that solves the system of coupled equations of motion. In order to enable 
fast-time testing i.e., 𝜆𝜆 = 2 ÷ 20, the delay compensation algorithm proposed by Wu and co-
workers [9], was adopted.  

  

 
Figure 7: Block diagram of the HS framework. 

 
The BTS of the Experimental Laboratory of EUCENTRE has been specifically designed to 

impose realistic boundary conditions to full-scale seismic isolation devices [10]. In this regard, 
Figure 8 shows the BTS setup and provides a close-up view of the restoring force measuring 
system. In detail, the specimen is positioned on a self-equilibrating vertical reaction structure; 
the bottom plate of the specimen is connected to a 6-DoF shake table, driven by vertical and 
horizontal actuators and connected to an additional horizontal reaction structure, which can be 
operated in mixed force-displacement control. The maximum vertical and horizontal load 
capacities of the BTS are 50 𝑀𝑀𝑀𝑀 and 2.8 𝑀𝑀𝑁𝑁, respectively. The allowed horizontal 
displacement range is ± 495 𝑚𝑚𝑚𝑚 with a velocity peak of 2200 𝑚𝑚𝑚𝑚/𝑠𝑠. During standard 
characterization tests, the load cells of the horizontal actuators measure the raw restoring force 
of the specimen, which is post-processed offline to remove machine inertia and friction. In order 
to skip this task during HS, a force measuring system is developed. It is based on a steel plate 
sliding on a Teflon layer and surrounded by 8 ring pre-stressed load cells, which measure the 
specimen restoring force in two orthogonal plane directions. 
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Figure 8: Bearing Testing System (BTS). 

 
Since energy dissipation in seismic isolation devices mainly relies on friction or damage 

mechanisms, they are easily biased when devices are scaled. Accordingly, full-scale devices 
are considered in this testing campaign. It is worthy to note that the interaction between 
displacement controlled actuators and stiff specimens easily triggers dynamic instability. This 
situation is very likely to occur on elements subjected to axial deformation, where small 
displacement perturbations generate large feedback forces. In order to overcome this problem, 
the common practice consists on excluding vertical degrees-of-freedom from the HS loop and 
impose nominal loads in force control. Accordingly, the nominal vertical load owing to the self-
weight of the bridge deck is kept constant and applied to the tested seismic isolation device in 
force control. In addition, a single bearing per pair is physically tested and the measured 
restoring force feedback to the HS algorithm is doubled. This latter simplification was 
preliminary verified with numerical simulations, which prove that deck overturning moment is 
negligible and does not affect the transversal response of the bridge. 

 
3.2 Results of experiments 

 
The HS campaign started on February 2015 and ended in April 2017. Experiments were 

conducted by scaling the reference ground motion record up to a PGA value of 0.85 g. Figure 
9 compares the hysteretic loops of the restoring forces of tested isolation devices, which show 
similar forces and displacement ranges. This trend confirms that the investigated isolation 
schemes highlight similar performances. 

 

  
a b 

Figure 9: Hysteretic loops of different isolator devices at: a) PGA = 0.35g; b) PGA=0.50g. 
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4 CONCLUSIONS 
 
This paper presented a state-space partitioned time integration algorithm for real-time hybrid 

simulation. State-space modeling simplifies the implementation of nonlinearities on the 
numerical substructures, which can be incorporated with a lower computational cost compared 
to the finite-element modeling paradigm. The effectiveness of the proposed method is 
demonstrated for a virtual two-pier bridge case study equipped with friction pendulum bearings. 
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