
Detecting cryptocurrency miners with
NetFlow/IPFIX network measurements

Jordi Zayuelas i Muñoz
UPC-BarcelonaTech

Barcelona, Spain
jordi.zayuelas@est.fib.upc.edu

José Suárez-Varela
UPC-BarcelonaTech

Barcelona, Spain
jsuarezv@ac.upc.edu

Pere Barlet-Ros
UPC-BarcelonaTech

Barcelona, Spain
pbarlet@ac.upc.edu

Abstract—In the last few years, cryptocurrency mining has
become more and more important on the Internet activity and
nowadays is even having a noticeable impact on the global
economy. This has motivated the emergence of a new malicious
activity called cryptojacking, which consists of compromising
other machines connected to the Internet and leverage their
resources to mine cryptocurrencies. In this context, it is of
particular interest for network administrators to detect possible
cryptocurrency miners using network resources without
permission. Currently, it is possible to detect them using IP
address lists from known mining pools, processing information
from DNS traffic, or directly performing Deep Packet
Inspection (DPI) over all the traffic. However, all these methods
are still ineffective to detect miners using unknown mining
servers or result too expensive to be deployed in real-world
networks with large traffic volume. In this paper, we present a
machine learning-based method able to detect cryptocurrency
miners using NetFlow/IPFIX network measurements. Our
method does not require to inspect the packets’ payload; as a
result, it achieves cost-efficient miner detection with similar
accuracy than DPI-based techniques.

Keywords— Cryptojacking detection, cryptocurrency
mining, machine learning, NetFlow measurements

I. INTRODUCTION
Following the price spike of cryptocurrencies during the

end of 2017 and the beginning of 2018, many people saw the
opportunity of making money by mining cryptocurrencies.
Cybercriminals also noticed this opportunity and started to use
compromised machines to mine cryptocurrencies at no cost.
This cybersecurity threat, known as cryptojacking, may have
very bad impact on the performance of affected machines and
has become one of the most important threats in the
cybersecurity field, even surpassing ransomware in some
cases [1] [2] [3]. Cryptocurrency mining consumes a lot of
computing resources, and consequently it can also decrease
the life expectancy of the machines compromised. Moreover,
it implies a noticeable energy consumption. All this motivates
the necessity of detecting possible malicious miners
connected to our network.

In cryptocurrency mining, all the miners compete to find
the solution of a very hard problem that is necessary to
complete and record all the new currency transactions. These
transactions are grouped in blocks, and only the first miner
that finds the right solution for a block is rewarded with some
amount of the currency involved in the transactions. This
means that a miner with few resources typically would not be
able to solve the problem earlier than the others and, thereby,
it would never obtain a reward. For this reason, it is more
frequent to create pools of miners that work in collaboration
to join their efforts and have higher chance to be the first

obtaining the solution. Thus, they can split then the rewards
obtained. Based on this, it is possible to detect miners by using
lists of IP addresses from known cryptocurrency mining pools
or using information in DNS queries involving domain name
resolutions of such pools. However, these detection methods
are only able to detect miners connecting to known servers,
but there are still some ways to bypass them. For instance,
connecting to unknown servers, using VPN services or using
DNS over TLS to encrypt the data in DNS records.

Other method more reliable is to apply Deep Packet
Inspection (DPI) to look for mining activity [4]. The most
commonly used protocol by mining pools is Stratum, which is
transmitted over TCP in plain text using JSON-RPC
messages. This way DPI can be used to inspect the traffic
content and identify well-known signatures that are present in
these connections. The main problem of this method is that
typically it is not feasible to perform DPI over all the traffic in
real network deployments, since it is too expensive and
networks may not have the necessary monitoring
infrastructure to capture and process all the traffic. Moreover,
this method can also be bypassed by miners using VPNs to
connect to the server, or miners using unknown protocols.

In order to address this problem, we propose a novel
machine learning-based method that uses NetFlow/IPFIX
flow measurements to perform flow-level detection of mining
traffic. Contrary to DPI-based techniques, this method has
very low resource consumption given that it only needs to
process a reduced amount of data contained in NetFlow
reports. Moreover, NetFlow/IPFIX is a well-known protocol
that is widely deployed in real-word networks. This makes it
more feasible to implement this solution without requiring any
upgrade in existing infrastructures.

II. DATA OVERVIEW

A. Stratum
The data we are interested in is the one coming from

cryptocurrency mining protocols. Stratum is the protocol used
by most of the mining pools to communicate between the
miners and the pool servers. It has a limited set of messages
that servers can send to miners, and another set of requests that
miners can send to servers.

This protocol is implemented on top of TCP, and there is
no well-known port related to it. This makes it useless using
the server’s port to apply port-based classification to detect
Stratum traffic.

Stratum works over JSON-RPC, and there are five
messages commonly present in the communication between
clients and servers [5]:

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/
IWMN.2019.8804995

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/326217888?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• Mining.subscribe: Used at the start of the connection
to indicate to the server that the client is ready to start
mining.

• Mining.authorize: Sends identification information to
the server.

• Mining.submit: The client sends a found share to the
server.

• Mining.notify: Indicates to the client the data that is
going to be used to mine.

• Mining.set_difficulty: Short message used by the
server to indicate the difficulty level used when
mining.

Figure 1 shows the TCP layer data transmitted between a
miner (red) and a mining pool server (blue) during a mining
session. Looking at the transmitted data we can see that it is
transmitted in clear text. If we take a close look at the
transmitted data, we can see that most of the data is transmitted
in the server’s mining.notify method. Also, we can observe
that the client sends very few data in comparison to the server.

Fig. 1. TCP connection between a miner (red) and a pool server (Blue)
using the Stratum protocol

Note that although Stratum is the most used protocol to
mine, there are other protocols like getblocktemplate or a
variant used by the Miner gate application. However, they
share similar methods with different names and generate
almost identical traffic patterns.

B. NetFlow/IPFIX
NetFlow/IPFIX is a protocol that performs flow-level

network measurements by aggregating all the traffic matching
the same 5-tuple. This is the source and destination IPs, the
TCP/UDP ports, and the protocol over IP.

Note that the traffic reported by NetFlow is unidirectional.
The client-server and the server-client packets of a same
connection will form two different flow measurement records.

Each flow record contains the following information:
Source and destination IPs, source and destination ports, next
hop, input and output SNMP interface, number of packets
transmitted, number of bytes transmitted, start and end
timestamps, TCP flags, transport protocol, type of service,
source and destination autonomous system, and source and
destination address masks [6].

However, we do not need all this data for our purpose. We
only use information about the traffic flows (identifiers, traffic
volume and time). The rest of the data related to routing and
network administration can be ignored.

Data like the number of packets and bytes are absolute
values related to the total duration of the flows. Thus, in order
to create better identification patterns, we compute the traffic
volume values with respect to the flow times. This is
Packets/second, bits/second. Also, we process the average size
of packets (bits/packet).

One fact that characterizes Stratum connections (Fig. 1) is
that they are quite asymmetric. While the server transmits a
lot of data to clients, the client sends a very small amount of
data to the server. In order to exploit this asymmetry, we
combine the NetFlow records corresponding to outbound and
inbound flows. This allows us to get more valuable
information about the bidirectional connections. As a result,
two new fields were also added to the machine learning
model: packets inbound/packets outbound and bytes
inbound/bytes outbound. This helps to observe the difference
of traffic volume transmitted in both directions.

III. DATASET

A. Stratum Data
The first thing we noticed when starting to collect the flow

measurements was that the Stratum traffic generated flows on
a steady but slow way. Each flow took between 5 and 30
minutes to finish. In order to collect enough data to train a
machine learning model, we decided to generate mining
traffic on our own, since we do not have access to network
traffic with a significant amount of mining traffic.

This way, we performed mining over different
cryptocurrency servers and captured the traffic. Note that
different cryptocurrencies may have some variations on their
traffic patterns, and this may have an effect on the features
used to classify the flows. For instance, the number of
transactions may influence the number of packets sent by the
server, the block size may affect the total amount of data
transmitted, and the block time to reset all the mining jobs
might result in different traffic volume sent from the server.

To achieve a representative overview of the mining traffic,
we mined five of the most popular cryptocurrencies: Bitcoin,
Bitcoin-Cash, DogeCoin, LiteCoin and Monero. Table 1
shows some relevant characteristics of these cryptocurrencies.

Coin Average
Block time

Average
Block size

Average
per-block

transactions

Hashing
algorithm

Bitcoin 10 min 787kb 2270 SHA-256
Bitcoin-
Cash 10 min 50kb 115 SHA-256

DogeCoin 1 min 11kb 20 Scrypt
LiteCoin 2.5 min 20kb 42 Scrypt
Monero 2 min 16kb 6 Cryptonight

Table 1: Characteristics of the cryptocurrencies in the dataset.

Also, one fact to take into account is that the value of these
characteristics is not static, they have slight variations
depending on how profitable is the currency at any given time,
how many people is making transactions and other arbitrary
facts. Although they remain in a relatively small boundary,
this still complicates the process of classifying the mining
traffic. All the traffic in the dataset has been captured during
the course of a month, switching between cryptocurrencies to
have more diverse data.

Figure 2 represents these variations in three different plots,
which show the average block time, the block size and the
number of transactions. Over the course of the two months
each of the cryptocurrencies has shown many variations
regarding these 3 statistics.

(a) Average Block Time (minutes)

(b) Average Block Size (Kbytes)

(c) Number of transactions

Fig. 2. Evolution of the block time, block size and number of transactions
over the course of two months.

In total, we spent between 24 and 72 hours to mine each
cryptocurrency and finally we could capture 677 mining
flows.

B. Traffic Capture from a Campus University Network
To train ML models, we used a traffic capture from a large

campus university network. In order to leverage this data to
train a supervised machine learning model, we previously
identified the flows coming from mining traffic. To this end,
we applied DPI over all the traffic and found some flows
generated by miners. This was achieved by using two different
signatures that allowed us to match methods of the Stratum
protocol on the packet’s payload. The former signature
identifies the server-side methods and the latter one finds
client-side methods. Discriminating the Stratum traffic in both
directions is relevant for us, since we will build our ML
solution around the assumption that flows are asymmetric, so
we must know who is the server and who is the client to be
able to process the bidirectional flows in the dataset. We show
below the two regular expressions we used to implement both
signatures:

1) \"method\" ?: ?\"(mining\.notify|mining\.set_difficulty)\""

2) \"method\" ?: ?\"(mining\.authorize|mining\.get_transacti
ons|mining\.subscribe|mining\.submit|getblocktemplate|sub
mitblock)\"

Our dataset contained 1,795,408 TCP flow pairs in total,
where 14 were identified as mining traffic associated to three
different mining pool servers. We discarded flows with only 1
packet (and duration 0) belonging from failed connections.

Finally, we trained the machine learning model using a
combination of this dataset with the 677 mining traffic
samples of Stratum we previously extracted (Sec. III A).

IV. DATA ANALYSIS

A. Mining Traffic
One relevant characteristic of the mining traffic we

captured is that all flows are long (in duration) but they have
a very small number of packets sent, and almost all the data
goes in the direction from the server to the client. Particularly,
the server typically sends 20 times more data than the client
on average. Indeed, the data sent from the client is very
reduced, and the average packet size is very close to the size
of a TCP segment without any payload.

In order to gain more insight into the traffic in our dataset,
we process some flow-level traffic statistics that may be quite
relevant to differentiate Stratum mining traffic from the rest.
These statistics are the per-flow mean bits/second,
packets/second and bits/packets. Particularly, we process
separately unidirectional flows and combine them in
bidirectional flows with inbound and outbound traffic
statistics (i.e., server-to-client and client-to-server traffic
respectively). In Figure 3, we show scatter plots with these
statistics. They show clear differences between flows created
by mining applications (in red). Even they are not clear
enough to make a trivial classifier, we believe that a machine
learning algorithm would be able to create a good classifier
able to detect the flows belonging to mining applications with
high accuracy.

Fig. 3. Comparison between flows created by mining applications (red) and
other applications (blue). (a) shows the bits/second, (b) shows the
packets/second and (c) shows the bits/packet. The y-axis represents traffic in
the client-server direction and the x-axis traffic in the server-client direction.

 Note that the purpose of these figures is only to illustrate
some possible differences between the mining traffic
generated by Stratum and other applications. However, these
statistics do not necessarily represent the most significant
features for the machine learning model to discriminate
Stratum traffic flows.

B. Traffic from Different Cryptocurrencies
In the data represented in Figure 3, we could also observe

some different clusters in the traffic from mining applications.
Thus, we further analyzed these points to find some relevant
information from these different clusters. Figure 4, represents
the previous statistics considering only the points from mining
flows and separated by applications mining different
cryptocurrencies.

Fig. 4. Comparison between flows created by applications mining differen t
cryptocurrencies. (a) shows the bits/second, (b) shows the packets/second
and (c) shows the bits/packet. The y-axis represents traffic in the client-server
direction and the x-axis traffic in the server-client direction.

As we can observe in these figures, there are also clear
differences between the traffic patterns of flows related to
different cryptocurrencies. This motivated us to create also
another model to classify mining flows belonging to different
cryptocurrencies.

a) Bits/second

b) Packets/second

c) Bits/packet

a) Bits/second

b) Packets/second

c) Bits/packet

V. EVALUATION
In order to evaluate our ML-based method, we test

different Machine Learning (ML) models using input features
from NetFlow measurement reports in WEKA [7].
Particularly, these models are trained with the following input
features: (i) inbound and outbound packets/second, (ii)
inbound and outbound bits/second, (iii) inbound and outbound
bits/packet, (iv) bits_inbound/bits_outbound ratio and (v)
packets_inbound/packets_outbound ratio. The ML models
tested are the following: Support Vector Machines (SVM),
CART, C4.5 decision tree and Naïve Bayes.

Since we have a reduced amount of mining traffic in our
dataset, we avoid splitting the dataset into training and
evaluation by applying a 10-fold cross-validation to train and
test the models. This allows us to better leverage the data for
the training and still perform an appropriate evaluation.

We compare the performance of the different ML models
with the following well-known statistics for classification
problems:

Accuracy = (TP+ TN)/(TP+TN+FP+FN)

Precision = TP/(TP+FP)

Recall = TP/(TP+FN)

Where TP is True Positive, TN is True Negative, FP is False
Positive and FN is False Negative.

Table 2 shows the results achieved by the different ML models
to detect mining traffic. Note that they are binomial classifiers
with the following classes: (i) Stratum and (ii) non-Stratum.

Algorithm Accuracy Precision Recall
SVM 0.99658 0.00000000 0.00000000
CART 0.99996 0.98236331 0.90716612
C4.5 0.99998 0.98009950 0.96254072
Naïve Bayes 0.90863 0.00370975 0.99511400

Table 2: Evaluation results of Stratum traffic detection with different ML
models

From these results we can observe that the accuracy results
are quite good in general. This is partly due to most of the
flows are not related to mining applications. Thus, classifying
all the flows as non-Stratum results in high overall accuracy.
This is for instance the case of the SVM model, whose recall
measurement is zero. On the other hand, all the models based
on decision trees (C4.5 and CART) achieved the best results.
The best classifier was the C4.5 decision tree, so we decided
to keep it as our model.

The resulting C4.5 decision tree not only is very accurate,
but also has a very low computational cost. The maximum
depth of the tree is 13 leaf nodes. Moreover, in most of the
cases it employs only 5 split operations to classify correctly
the traffic.

The same methodology is applied to create a ML model
able to differentiate the cryptocurrencies mined in our dataset.
Particularly, we aim to classify the 5 different
cryptocurrencies depicted in Table 1. For this evaluation, we
use the accuracy and the average F-Score measurements. This
latter metric allows us to combine the results of precision and
recall in a single metric:

F-Score = 2·(Precision·Recall)/(Precision+Recall)

Table 3 shows the results of this evaluation. As we can
observe, all machine learning models achieve quite good
accuracy results. In this case the best classifier is the one based
on Naïve Bayes, which achieved an accuracy of 0.963.

Algorithm Accuracy Average
F Score

SVM 0.912 0.909
CART 0.963 0.963
C4.5 0.967 0.967
Naïve Bayes 0.973 0.973

Table 3: Evaluation results of cryptocurrency classification with differen t
ML models

In Table 4, we show a confusion matrix with the evaluation
results achieved by the Naïve Bayes model for each
cryptocurrency. As we can observe, the absolute number of
flows misclassified is very low.

a b c d e f
77 0 0 0 0 0 a = Bitcoin-Cash
4 297 0 2 0 0 b = Bitcoin
0 1 83 1 0 0 c = DogeCoin
0 2 0 74 1 0 d = LiteCoin
0 0 4 0 54 0 e = Monero
0 0 0 0 0 91 f = Ethereum

Table 4: Confusion matrix with the results of the Naïve Bayes model.

The resulting ML models have demonstrated ability to
differentiate between flows generated by Stratum mining
traffic and flows created by other applications with high
accuracy. This shows the possibility of using ML-based
solutions to detect mining applications using only data
extracted from Netflow reports. Note that, the precision of our
ML models could be further improved by adding mechanisms
tracking TCP connections over time. This way, since miners
are typically connected all the time, it is possible to maintain
records with the flows that were already classified as miners
and report alerts only in the cases that the connection times
exceed a threshold. This would dramatically reduce the
number of false positives generated by the model.

VI. RELATED WORK
Detecting traffic related to cryptocurrency mining in

networks is of paramount importance. Specially, with the
recent increase of malicious activities such as cryptojacking.
As a result, this has attracted a lot of attention from the
research community, which has recently devoted some efforts
to create mechanisms to detect cryptocurrency mining traffic
in networks.

We could find in the literature different approaches to
identify traffic related to mining activities. One example is the
code analysis of web applications to find some instructions
that are often present in mining algorithms [8] [9]. Others
propose to analyze the memory consumption in web
applications and compare it to the memory used by well-
known mining applications [10].

Alternatively, other studies propose to analyze the network
traffic and look for traffic patterns commonly present in the
traffic related to mining applications [11].

In the context of Machine Learning, we could also find
some techniques aiming to detect mining applications at
endpoints [12] [13].

In contrast to all previous proposals, our approach is to use
ML-models and use only information from flow-level
measurements reports of NetFlow/IPFIX in order to achieve
accurate detection of mining traffic at limited cost.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we implemented and evaluated different

Machine Learning (ML) models to detect cryptocurrency
miners in the traffic using only information from
NetFlow/IPFIX flow-level measurement reports. Our
evaluation results show that our ML-based method was able
to accurately detect the traffic generated by mining
applications. The main advantage of our method is that it only
needs to process a reduced amount of data from NetFlow
reports to classify the traffic. As a result, it shows to be more
efficient than other accurate methods based on resource-
hungry Deep Packet Inspection techniques.

Also, we showed the possibility to create ML-based
models to identify the specific cryptocurrencies that were
mined. Particularly, we achieved accurate ML models able to
discern among 5 different cryptocurrencies.

As future work, we plan to improve the model using a
more extensive dataset containing more flows from mining
applications. Also, we plan to extend our cryptocurrency
classifier to support a wider range of cryptocurrencies.

ACKNOWLEDGMENT
This work has been supported by the Spanish MINECO under
contract TEC2017-90034-C2-1-R (ALLIANCE).

REFERENCES
[1] Check Point Blog, “January 2019’s Most Wanted Malware: A New

Threat Speaks Up,” January 2019. [Online]. Available:
https://blog.checkpoint.com/2019/02/13/january-2019s-most-
wanted-malware-a-new-threat-speakup-linux-crypto-cryptomining/.
[Accessed 15 March 2019].

[2] M. Bayern, “Cybersecurity rundown: The 5 most critical threats to
businesses in 2018,” TechRepublic, 17 July 2018. [Online].
Available: https://www.techrepublic.com/article/cybersecurity-
rundown-the-5-most-critical-threats-to-businesses-in-2018/.
[Accessed 15 March 2019].

[3] A. Dascalescu, “Here Are the Biggest Cybersecurity Threats to
Watch out for in 2018,” Heimdal Security, 18 July 2018. [Online].
Available: https://heimdalsecurity.com/blog/biggest-cybersecurity-
threats-2018/. [Accessed 15 March 2019].

[4] J. D’Herdt, “Detecting Crypto Currency Mining in Corporate
Environments,” SANS Institute InfoSec Reading Room white-paper,
2017.

[5] “Stratum Mining Protocol,” Slush Pool, 2012. [Online]. Available:
https://slushpool.com/help/stratum-protocol/#!/manual/stratum-
protocol. [Accessed 17 March 2019].

[6] “NetFlow Export Datagram Format,” CISCO, 14 September 2017.
[Online]. Available:
https://www.cisco.com/c/en/us/td/docs/net_mgmt/netflow_collectio
n_engine/3-6/user/guide/format.html. [Accessed 18 March 2019].

[7] University of Waikato, “ Weka 3 - Data Mining with Open Source
Machine Learning Software in Java,” University of Waikato,
[Online]. Available:
https://www.cs.waikato.ac.nz/ml/weka/index.html. [Accessed 10 03
2019].

[8] R. K. Konoth et al., “Minesweeper: An in-depth look into drive-by
cryptocurrency mining and its defense,” in Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security,
2018, pp. 1714–1730.

[9] M. Saad, A. Khormali, and A. Mohaisen, “End-to-end analysis of in-
browser cryptojacking,” arXiv preprint arXiv:1809.02152, 2018.

[10] J. Liu, Z. Zhao, X. Cui, Z. Wang, and Q. Liu, “A Novel Approach for
Detecting Browser-Based Silent Miner,” in IEEE Third International
Conference on Data Science in Cyberspace (DSC), 2018, pp. 490–
497.

[11] A. Swedan, A. N. Khuffash, O. Othman, and A. Awad, “Detection
and prevention of malicious cryptocurrency mining on internet-
connected devices,” in Proceedings of the 2nd International
Conference on Future Networks and Distributed Systems, 2018, p.
23.

[12] A. Kharraz et al., “Outguard: Detecting In-Browser Covert
Cryptocurrency Mining in the Wild,” 2019.

[13] D. Carlin, P. O’kane, S. Sezer, and J. Burgess, “Detecting
Cryptomining Using Dynamic Analysis,” in 16th Annual Conference
on Privacy, Security and Trust (PST), 2018, pp. 1–6.

