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Abstract—In the last few years, cryptocurrency mining has 
become more and more important on the Internet activity and 
nowadays is even having a noticeable impact on the global 
economy. This has motivated the emergence of a new malicious 
activity called cryptojacking, which consists of compromising 
other machines connected to the Internet and leverage their 
resources to mine cryptocurrencies. In this context, it is of 
particular interest for network administrators to detect possible 
cryptocurrency miners using network resources without 
permission. Currently, it is possible to detect them using IP 
address lists from known mining pools, processing information 
from DNS traffic, or directly performing Deep Packet 
Inspection (DPI) over all the traffic. However, all these methods 
are still ineffective to detect miners using unknown mining 
servers or result too expensive to be deployed in real-world 
networks with large traffic volume. In this paper, we present a 
machine learning-based method able to detect cryptocurrency 
miners using NetFlow/IPFIX network measurements. Our 
method does not require to inspect the packets’ payload; as a 
result, it achieves cost-efficient miner detection with similar 
accuracy than DPI-based techniques. 

Keywords— Cryptojacking detection, cryptocurrency 
mining, machine learning, NetFlow measurements 

I. INTRODUCTION 
Following the price spike of cryptocurrencies during the 

end of 2017 and the beginning of 2018, many people saw the 
opportunity of making money by mining cryptocurrencies. 
Cybercriminals also noticed this opportunity and started to use 
compromised machines to mine cryptocurrencies at no cost. 
This cybersecurity threat, known as cryptojacking, may have 
very bad impact on the performance of affected machines and 
has become one of the most important threats in the 
cybersecurity field, even surpassing ransomware in some 
cases [1] [2] [3]. Cryptocurrency mining consumes a lot of 
computing resources, and consequently it can also decrease 
the life expectancy of the machines compromised. Moreover, 
it implies a noticeable energy consumption. All this motivates 
the necessity of detecting possible malicious miners 
connected to our network. 

In cryptocurrency mining, all the miners compete to find 
the solution of a very hard problem that is necessary to 
complete and record all the new currency transactions. These 
transactions are grouped in blocks, and only the first miner 
that finds the right solution for a block is rewarded with some 
amount of the currency involved in the transactions. This 
means that a miner with few resources typically would not be 
able to solve the problem earlier than the others and, thereby, 
it would never obtain a reward. For this reason, it is more 
frequent to create pools of miners that work in collaboration 
to join their efforts and have higher chance to be the first 

obtaining the solution. Thus, they can split then the rewards 
obtained. Based on this, it is possible to detect miners by using 
lists of IP addresses from known cryptocurrency mining pools 
or using information in DNS queries involving domain name 
resolutions of such pools. However, these detection methods 
are only able to detect miners connecting to known servers, 
but there are still some ways to bypass them. For instance, 
connecting to unknown servers, using VPN services or using 
DNS over TLS to encrypt the data in DNS records. 

Other method more reliable is to apply Deep Packet 
Inspection (DPI) to look for mining activity [4]. The most 
commonly used protocol by mining pools is Stratum, which is 
transmitted over TCP in plain text using JSON-RPC 
messages. This way DPI can be used to inspect the traffic 
content and identify well-known signatures that are present in 
these connections. The main problem of this method is that 
typically it is not feasible to perform DPI over all the traffic in 
real network deployments, since it is too expensive and 
networks may not have the necessary monitoring 
infrastructure to capture and process all the traffic. Moreover, 
this method can also be bypassed by miners using VPNs to 
connect to the server, or miners using unknown protocols. 

In order to address this problem, we propose a novel 
machine learning-based method that uses NetFlow/IPFIX 
flow measurements to perform flow-level detection of mining 
traffic. Contrary to DPI-based techniques, this method has 
very low resource consumption given that it only needs to 
process a reduced amount of data contained in NetFlow 
reports. Moreover, NetFlow/IPFIX is a well-known protocol 
that is widely deployed in real-word networks. This makes it 
more feasible to implement this solution without requiring any 
upgrade in existing infrastructures. 

II. DATA OVERVIEW

A. Stratum 
The data we are interested in is the one coming from 

cryptocurrency mining protocols. Stratum is the protocol used 
by most of the mining pools to communicate between the 
miners and the pool servers. It has a limited set of messages 
that servers can send to miners, and another set of requests that 
miners can send to servers. 

This protocol is implemented on top of TCP, and there is 
no well-known port related to it. This makes it useless using 
the server’s port to apply port-based classification to detect 
Stratum traffic. 

Stratum works over JSON-RPC, and there are five 
messages commonly present in the communication between 
clients and servers [5]: 

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, 
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/
IWMN.2019.8804995

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/326217888?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


• Mining.subscribe: Used at the start of the connection 
to indicate to the server that the client is ready to start 
mining. 

• Mining.authorize: Sends identification information to 
the server. 

• Mining.submit: The client sends a found share to the 
server. 

• Mining.notify: Indicates to the client the data that is 
going to be used to mine. 

• Mining.set_difficulty: Short message used by the 
server to indicate the difficulty level used when 
mining. 

Figure 1 shows the TCP layer data transmitted between a 
miner (red) and a mining pool server (blue) during a mining 
session. Looking at the transmitted data we can see that it is 
transmitted in clear text. If we take a close look at the 
transmitted data, we can see that most of the data is transmitted 
in the server’s mining.notify method. Also, we can observe 
that the client sends very few data in comparison to the server. 

 

 
Fig. 1. TCP connection between a miner (red) and a pool server (Blue) 
using the Stratum protocol 

Note that although Stratum is the most used protocol to 
mine, there are other protocols like getblocktemplate or a 
variant used by the Miner gate application. However, they 
share similar methods with different names and generate 
almost identical traffic patterns. 

 

B. NetFlow/IPFIX 
NetFlow/IPFIX is a protocol that performs flow-level 

network measurements by aggregating all the traffic matching 
the same 5-tuple. This is the source and destination IPs, the 
TCP/UDP ports, and the protocol over IP. 

Note that the traffic reported by NetFlow is unidirectional. 
The client-server and the server-client packets of a same 
connection will form two different flow measurement records. 

Each flow record contains the following information: 
Source and destination IPs, source and destination ports, next 
hop, input and output SNMP interface, number of packets 
transmitted, number of bytes transmitted, start and end 
timestamps, TCP flags, transport protocol, type of service, 
source and destination autonomous system, and source and 
destination address masks [6]. 

However, we do not need all this data for our purpose. We 
only use information about the traffic flows (identifiers, traffic 
volume and time). The rest of the data related to routing and 
network administration can be ignored.  

Data like the number of packets and bytes are absolute 
values related to the total duration of the flows. Thus, in order 
to create better identification patterns, we compute the traffic 
volume values with respect to the flow times. This is 
Packets/second, bits/second. Also, we process the average size 
of packets (bits/packet). 

One fact that characterizes Stratum connections (Fig. 1) is 
that they are quite asymmetric. While the server transmits a 
lot of data to clients, the client sends a very small amount of 
data to the server. In order to exploit this asymmetry, we 
combine the NetFlow records corresponding to outbound and 
inbound flows. This allows us to get more valuable 
information about the bidirectional connections. As a result, 
two new fields were also added to the machine learning 
model: packets inbound/packets outbound and bytes 
inbound/bytes outbound. This helps to observe the difference 
of traffic volume transmitted in both directions. 

III. DATASET 

A. Stratum Data 
The first thing we noticed when starting to collect the flow 

measurements was that the Stratum traffic generated flows on 
a steady but slow way. Each flow took between 5 and 30 
minutes to finish. In order to collect enough data to train a 
machine learning model, we decided to generate mining 
traffic on our own, since we do not have access to network 
traffic with a significant amount of mining traffic.  

This way, we performed mining over different 
cryptocurrency servers and captured the traffic. Note that 
different cryptocurrencies may have some variations on their 
traffic patterns, and this may have an effect on the features 
used to classify the flows. For instance, the number of 
transactions may influence the number of packets sent by the 
server, the block size may affect the total amount of data 
transmitted, and the block time to reset all the mining jobs 
might result in different traffic volume sent from the server. 

To achieve a representative overview of the mining traffic, 
we mined five of the most popular cryptocurrencies: Bitcoin, 
Bitcoin-Cash, DogeCoin, LiteCoin and Monero. Table 1 
shows some relevant characteristics of these cryptocurrencies.  

Coin Average 
Block time 

Average 
Block size 

Average 
per-block 

transactions 

Hashing 
algorithm 

Bitcoin 10 min 787kb 2270 SHA-256 
Bitcoin-
Cash 10 min 50kb 115 SHA-256 

DogeCoin 1 min 11kb 20 Scrypt 
LiteCoin 2.5 min 20kb 42 Scrypt 
Monero 2 min 16kb 6 Cryptonight 

Table 1: Characteristics of the cryptocurrencies in the dataset. 



Also, one fact to take into account is that the value of these 
characteristics is not static, they have slight variations 
depending on how profitable is the currency at any given time, 
how many people is making transactions and other arbitrary 
facts. Although they remain in a relatively small boundary, 
this still complicates the process of classifying the mining 
traffic. All the traffic in the dataset has been captured during 
the course of a month, switching between cryptocurrencies to 
have more diverse data. 

Figure 2 represents these variations in three different plots, 
which show the average block time, the block size and the 
number of transactions. Over the course of the two months 
each of the cryptocurrencies has shown many variations 
regarding these 3 statistics. 

 
(a) Average Block Time (minutes) 

 

 
(b) Average Block Size (Kbytes) 

 

 
(c) Number of transactions 

Fig. 2. Evolution of the block time, block size and number of transactions 
over the course of two months. 

In total, we spent between 24 and 72 hours to mine each 
cryptocurrency and finally we could capture 677 mining 
flows.  

B. Traffic Capture from a Campus University Network 
To train ML models, we used a traffic capture from a large 

campus university network. In order to leverage this data to 
train a supervised machine learning model, we previously 
identified the flows coming from mining traffic. To this end, 
we applied DPI over all the traffic and found some flows 
generated by miners. This was achieved by using two different 
signatures that allowed us to match methods of the Stratum 
protocol on the packet’s payload. The former signature 
identifies the server-side methods and the latter one finds 
client-side methods. Discriminating the Stratum traffic in both 
directions is relevant for us, since we will build our ML 
solution around the assumption that flows are asymmetric, so 
we must know who is the server and who is the client to be 
able to process the bidirectional flows in the dataset. We show 
below the two regular expressions we used to implement both 
signatures: 

1) \"method\" ?: ?\"(mining\.notify|mining\.set_difficulty)\"" 
 
 
2) \"method\" ?: ?\"(mining\.authorize|mining\.get_transacti 
ons|mining\.subscribe|mining\.submit|getblocktemplate|sub
mitblock)\" 

 

Our dataset contained 1,795,408 TCP flow pairs in total, 
where 14 were identified as mining traffic associated to three 
different mining pool servers. We discarded flows with only 1 
packet (and duration 0) belonging from failed connections. 

Finally, we trained the machine learning model using a 
combination of this dataset with the 677 mining traffic 
samples of Stratum we previously extracted (Sec. III A). 

 

IV. DATA ANALYSIS 

A. Mining Traffic 
One relevant characteristic of the mining traffic we 

captured is that all flows are long (in duration) but they have 
a very small number of packets sent, and almost all the data 
goes in the direction from the server to the client. Particularly, 
the server typically sends 20 times more data than the client 
on average. Indeed, the data sent from the client is very 
reduced, and the average packet size is very close to the size 
of a TCP segment without any payload. 

In order to gain more insight into the traffic in our dataset, 
we process some flow-level traffic statistics that may be quite 
relevant to differentiate Stratum mining traffic from the rest. 
These statistics are the per-flow mean bits/second, 
packets/second and bits/packets. Particularly, we process 
separately unidirectional flows and combine them in 
bidirectional flows with inbound and outbound traffic 
statistics (i.e., server-to-client and client-to-server traffic 
respectively). In Figure 3, we show scatter plots with these 
statistics. They show clear differences between flows created 
by mining applications (in red). Even they are not clear 
enough to make a trivial classifier, we believe that a machine 
learning algorithm would be able to create a good classifier 
able to detect the flows belonging to mining applications with 
high accuracy. 



 
Fig. 3. Comparison between flows created by mining applications (red) and 
other applications (blue). (a) shows the bits/second, (b) shows the 
packets/second and (c) shows the bits/packet. The y-axis represents traffic in 
the client-server direction and the x-axis traffic in the server-client direction. 

 Note that the purpose of these figures is only to illustrate 
some possible differences between the mining traffic 
generated by Stratum and other applications. However, these 
statistics do not necessarily represent the most significant 
features for the machine learning model to discriminate 
Stratum traffic flows. 

B. Traffic from Different Cryptocurrencies 
In the data represented in Figure 3, we could also observe 

some different clusters in the traffic from mining applications. 
Thus, we further analyzed these points to find some relevant 
information from these different clusters. Figure 4, represents 
the previous statistics considering only the points from mining 
flows and separated by applications mining different 
cryptocurrencies. 

 

 
Fig. 4. Comparison between flows created by applications mining differen t  
cryptocurrencies. (a) shows the bits/second, (b) shows the packets/second 
and (c) shows the bits/packet. The y-axis represents traffic in the client-server 
direction and the x-axis traffic in the server-client direction. 

As we can observe in these figures, there are also clear 
differences between the traffic patterns of flows related to 
different cryptocurrencies. This motivated us to create also 
another model to classify mining flows belonging to different 
cryptocurrencies. 

 

a)  Bits/second 

 

 

b) Packets/second 

 

 

c) Bits/packet 
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b)  Packets/second 

 

 

 

c) Bits/packet 

 
 

 



V. EVALUATION 
In order to evaluate our ML-based method, we test 

different Machine Learning (ML) models using input features 
from NetFlow measurement reports in WEKA [7]. 
Particularly, these models are trained with the following input 
features: (i) inbound and outbound packets/second, (ii) 
inbound and outbound bits/second, (iii) inbound and outbound 
bits/packet, (iv) bits_inbound/bits_outbound ratio and (v) 
packets_inbound/packets_outbound ratio. The ML models 
tested are the following: Support Vector Machines (SVM), 
CART, C4.5 decision tree and Naïve Bayes. 

Since we have a reduced amount of mining traffic in our 
dataset, we avoid splitting the dataset into training and 
evaluation by applying a 10-fold cross-validation to train and 
test the models. This allows us to better leverage the data for 
the training and still perform an appropriate evaluation. 

We compare the performance of the different ML models 
with the following well-known statistics for classification 
problems: 

Accuracy = (TP+ TN)/(TP+TN+FP+FN) 

Precision = TP/(TP+FP) 

Recall = TP/(TP+FN) 

Where TP is True Positive, TN is True Negative, FP is False 
Positive and FN is False Negative. 

Table 2 shows the results achieved by the different ML models 
to detect mining traffic. Note that they are binomial classifiers 
with the following classes: (i) Stratum and (ii) non-Stratum. 

Algorithm Accuracy Precision Recall 
SVM 0.99658 0.00000000 0.00000000 
CART 0.99996 0.98236331 0.90716612 
C4.5 0.99998 0.98009950 0.96254072 
Naïve Bayes 0.90863 0.00370975 0.99511400 

Table 2: Evaluation results of Stratum traffic detection with different ML 
models 

From these results we can observe that the accuracy results 
are quite good in general. This is partly due to most of the 
flows are not related to mining applications. Thus, classifying 
all the flows as non-Stratum results in high overall accuracy. 
This is for instance the case of the SVM model, whose recall 
measurement is zero. On the other hand, all the models based 
on decision trees (C4.5 and CART) achieved the best results. 
The best classifier was the C4.5 decision tree, so we decided 
to keep it as our model. 

The resulting C4.5 decision tree not only is very accurate, 
but also has a very low computational cost. The maximum 
depth of the tree is 13 leaf nodes. Moreover, in most of the 
cases it employs only 5 split operations to classify correctly 
the traffic. 

The same methodology is applied to create a ML model 
able to differentiate the cryptocurrencies mined in our dataset. 
Particularly, we aim to classify the 5 different 
cryptocurrencies depicted in Table 1. For this evaluation, we 
use the accuracy and the average F-Score measurements. This 
latter metric allows us to combine the results of precision and 
recall in a single metric:  

F-Score = 2·(Precision·Recall)/(Precision+Recall) 

Table 3 shows the results of this evaluation. As we can 
observe, all machine learning models achieve quite good 
accuracy results. In this case the best classifier is the one based 
on Naïve Bayes, which achieved an accuracy of 0.963. 

 

Algorithm Accuracy Average  
F Score 

SVM 0.912 0.909 
CART 0.963 0.963 
C4.5 0.967 0.967 
Naïve Bayes 0.973 0.973 

 
Table 3: Evaluation results of cryptocurrency classification with differen t  
ML models 
 
In Table 4, we show a confusion matrix with the evaluation 
results achieved by the Naïve Bayes model for each 
cryptocurrency. As we can observe, the absolute number of 
flows misclassified is very low.  
 

a b c d e f  
77 0 0 0 0 0 a = Bitcoin-Cash 
4 297 0 2 0 0 b = Bitcoin 
0 1 83 1 0 0 c = DogeCoin 
0 2 0 74 1 0 d = LiteCoin 
0 0 4 0 54 0 e = Monero 
0 0 0 0 0 91 f = Ethereum 

Table 4: Confusion matrix with the results of the Naïve Bayes model. 

The resulting ML models have demonstrated ability to 
differentiate between flows generated by Stratum mining 
traffic and flows created by other applications with high 
accuracy. This shows the possibility of using ML-based 
solutions to detect mining applications using only data 
extracted from Netflow reports. Note that, the precision of our 
ML models could be further improved by adding mechanisms 
tracking TCP connections over time. This way, since miners 
are typically connected all the time, it is possible to maintain 
records with the flows that were already classified as miners 
and report alerts only in the cases that the connection times 
exceed a threshold. This would dramatically reduce the 
number of false positives generated by the model. 

 

VI. RELATED WORK 
Detecting traffic related to cryptocurrency mining in 

networks is of paramount importance. Specially, with the 
recent increase of malicious activities such as cryptojacking. 
As a result, this has attracted a lot of attention from the 
research community, which has recently devoted some efforts 
to create mechanisms to detect cryptocurrency mining traffic 
in networks. 

We could find in the literature different approaches to 
identify traffic related to mining activities. One example is the 
code analysis of web applications to find some instructions 
that are often present in mining algorithms [8] [9]. Others 
propose to analyze the memory consumption in web 
applications and compare it to the memory used by well-
known mining applications [10]. 



Alternatively, other studies propose to analyze the network 
traffic and look for traffic patterns commonly present in the 
traffic related to mining applications [11]. 

In the context of Machine Learning, we could also find 
some techniques aiming to detect mining applications at 
endpoints [12] [13]. 

In contrast to all previous proposals, our approach is to use 
ML-models and use only information from flow-level 
measurements reports of NetFlow/IPFIX in order to achieve 
accurate detection of mining traffic at limited cost. 

 

VII. CONCLUSIONS AND FUTURE WORK 
In this paper, we implemented and evaluated different 

Machine Learning (ML) models to detect cryptocurrency 
miners in the traffic using only information from 
NetFlow/IPFIX flow-level measurement reports. Our 
evaluation results show that our ML-based method was able 
to accurately detect the traffic generated by mining 
applications. The main advantage of our method is that it only 
needs to process a reduced amount of data from NetFlow 
reports to classify the traffic. As a result, it shows to be more 
efficient than other accurate methods based on resource-
hungry Deep Packet Inspection techniques.  

Also, we showed the possibility to create ML-based 
models to identify the specific cryptocurrencies that were 
mined. Particularly, we achieved accurate ML models able to 
discern among 5 different cryptocurrencies. 

As future work, we plan to improve the model using a 
more extensive dataset containing more flows from mining 
applications. Also, we plan to extend our cryptocurrency 
classifier to support a wider range of cryptocurrencies. 
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