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ABSTRACT
Recently, a Graph Neural Network (GNN) model called RouteNet
was proposed as an efficient method to estimate end-to-end network
performance metrics such as delay or jitter, given the topology,
routing, and traffic of the network. Despite its success in making
accurate estimations and generalizing to unseen topologies, the
model makes some simplifying assumptions about the network,
and does not consider all the particularities of how real networks
operate. In this work we extend the architecture of RouteNet to
support different features on forwarding devices, specifically we
focus on devices with variable queue sizes, and we experimentally
evaluate the accuracy of the extended RouteNet architecture.

CCS CONCEPTS
• Networks → Network performance evaluation; • Comput-
ing methodologies → Machine learning.
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1 INTRODUCTION
Network modeling is crucial for building solutions that efficiently
optimize and manage computer networks, especially in the con-
text of the knowledge-defined networking paradigm [5]. Tradi-
tional methods like Queueing Theory often fail to provide accurate
models for complex real-world scenarios [8]. On the other hand,
packet-level simulators are able to produce accurate performance
predictions but at a high computational cost.

In the Deep Learning field, Graph Neural Networks (GNNs) have
been recently proposed as effective models for graph-structured
data. In the context of networking, RouteNet [6] is a pioneering
GNN architecture tailored for computer network modeling, which
is able to model the relations between an input topology, a (source-
destination) routing scheme and an end-to-end traffic matrix, and
estimate the resulting per-source/destination performance (e.g.,
delay, jitter). In short, RouteNet achieves an accuracy comparable
to packet-level network simulators with a very low computational
cost.

However, RouteNet makes some simplifying assumptions about
how actual networks operate and, at the time of this writing, it
cannot model all the particularities of real-world networks (e.g.
different forwarding behaviors, queues sizes). In this work, we
extend the architecture of RouteNet to model different features on
forwarding devices. Particularly, we evaluate the capacity of our
model to make predictions in scenarios where forwarding devices
have different queue sizes. This work represents the foundation for
modeling any node-related features in RouteNet, with the ultimate
goal of developing more realistic GNN-based network models.

2 INTRODUCING THE NODE ENTITY
RouteNet is a GNN-basedmodel that produces estimations of source-
destination network performance metrics. The main advantage
of GNN models versus other neural network architectures (fully-
connected, convolutional, recurrent) is that they can understand
and exploit the relational patterns between the elements of a graph [2],
and the fundamental way to represent network-related data is in
the form of graphs. This explains that RouteNet is able to general-
ize to network topologies, routing and input traffic unseen during
training.

The fundamental idea behind RouteNet relies on the reciprocal
relationships between the state of paths and links in networks.
Intuitively, a path is influenced by the links it traverses, and a link,
in turn, is influenced by all the paths that cross that link. Thus,
RouteNet is fed with some initial path and link states (encoded
as fixed-size vectors) and executes an iterative message-passing
algorithm among these states according to the input topology and
routing scheme. At every iteration the states of links and paths are
updated with the new information combined according to graph
structure. After a certain number of iterations, the paths’ states are
used to estimate end-to-end network performance metrics [6].

However, with this architecture, RouteNet is not able to model
the particular characteristics of different forwarding devices (e.g.,
scheduling, queue sizes), which can have an important impact on
the network performance. A natural way to introduce the concept
of network node (i.e., forwarding device) is to incorporate a node
entity into RouteNet’s architecture. Similarly to the states associated
to every path and link, we can introduce a state associated to each
network node. In Fig. 1, we provide a visual representation of the
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message passing in the extended RouteNet architecture. In this new
message passing architecture, the state of every node (encoded in
a fixed-size vector) is updated based on information from all the
paths that traverse that node, first performing an element-wise
summation of all the path states associated to the node and then
using the result as an input to a recurrent neural network1. Also,
instead of updating the path states with only link information, we
leverage both the state of links and nodes. In the original RouteNet
design, the path states are updated by a Recurrent Neural Network
taking as input a sequence of link states related to every path. In
contrast, in the new architecture we insert the node states in such
sequences and interleave them with the link states related to every
path (i.e., node1-link1-node2-link2...)2.

As in the original RouteNet, when the message passing ends
we use the final path states to estimate end-to-end network per-
formance metrics. This is done by applying a readout function,
implemented as a feed-forward neural network, to each path state.
Thus, the learning problem in the extended RouteNet consists in
learning the optimal parameters of four functions: 𝑅𝑁𝑁𝑁 , 𝑅𝑁𝑁𝑃 ,
𝑅𝑁𝑁𝐿 (shown in Fig. 1), and the readout function.

3 EVALUATIONWITH DIFFERENT QUEUE
SIZES

For our experiments, we generated datasets with an in-house packet-
level simulator in OMNeT++. We made simulations in two network
topologies: the 14-node NSFNET topology [3] and the 24-node
GEANT2 topology [1]. Our datasets include diverse combinations
of forwarding devices with variable queue sizes, routing schemes
and end-to-end traffic matrices.

We use as a reference RouteNet’s implementation in [7], which
includes support for modeling different link capacities. In order
to test the effectiveness of the modified architecture, we consider
a scenario in which the queue sizes of forwarding devices can be
either of standard size or only with support for 1 packet. We intro-
duce the queue size information into the GNN model by encoding
it in the states of every node. Similarly, the end-to-end traffic was
already encoded in the path states and the link capacities into the
states of links.

We train the model to estimate delays with 400,000 samples of
GEANT2, and we evaluate it on 100,000 unseen samples of the same
topology. Additionally, we also perform the evaluation on 100,000
samples of the NSFNET topology, to test the model’s generalization
capabilities to different topologies. In Fig. 2, we show the CDF of
the relative error produced by: (𝑖) extended RouteNet on GEANT2,
(𝑖𝑖) original RouteNet [7] on GEANT2, (𝑖𝑖𝑖) extended RouteNet on
NSFNET, and (𝑖𝑣) original RouteNet on NSFNET.

The results show that the extended architecture is able to obtain
much more accurate predictions with respect to the original version
of RouteNet given that it incorporates information of queue sizes
on nodes. Also, we can observe that it generalizes successfully on
scenarios of NSFNET, despite it did not see any sample from this
topology during training.
1A recurrent neural network is used to ease convergence during the message passing
process [4].
2The source code of the model proposed is publicly available at:
https://github.com/knowledgedefinednetworking/Papers/wiki/Towards-more-
realistic-network-models-based-on-GNN

Figure 1: Diagram of Extended RouteNet message passing

Figure 2: Cumulative Distribution Function (CDF) of the rel-
ative error in delay predictions

4 CONCLUSIONS
We propose an extension of RouteNet that is able to model different
types of forwarding devices. Our experiments show high predic-
tion accuracy even in unseen topologies. Also, this work aims to
reveal the feasibility of extending GNN-based models to fit differ-
ent network scenarios involving specific particularities present in
real-world deployments.
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