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Abstract 

This study explores the ways to introduce physical interpretability into the process of optimizing 
operating rules for multireservoir systems with multiple objectives. Prior studies applied the 
concept of direct policy search (DPS), in which the release policy is expressed as a set of 
parameterized functions (e.g., neural networks) that are optimized by simulating the performance 
of different parameter value combi- nations over a testing period. The problem with this approach 
is that the operators generally avoid adopting such artificial black-box functions for the direct 
real-time control of their systems, preferring simpler tools with a clear connection to the system’s 
physics. This study addresses this mismatch by replacing the black-box functions in DPS with 
physically based parameterized operating rules, for example by directly using target levels in 
dams as decision variables. This leads to results that are physically interpretable and may be more 
acceptable to operators. The methodology proposed in this work is applied to a network of five 
reservoirs and four power plants in the Nechí catchment in Colombia, with four interests involved: 
average energy generation, firm energy generation, flood hazard, and flow regime alteration. The 
release policy is expressed depending on only 12 parameters, which significantly reduces the 
computational complexity compared to existing approaches of multiobjective DPS. The resulting 
four-dimensional Pareto-approximate set offers a variety of operational strategies from which 
operators may choose one that corresponds best to their preferences. For demonstration purposes, 
one particular optimized policy is selected and its parameter values are analyzed to illustrate how 
the physically based operating rules can be directly interpreted by the operators.  

Author keywords: Multiobjective reservoir optimization; Multireservoir systems; Direct policy 
search; Parameterization simulation optimization; Policy myopia.  
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Introduction  

One of the main challenges in river basin 
management has always been finding a balance 
between competing water demands. Reservoirs play a 
key role in this task. Traditionally, reservoirs were 
designed and operated to satisfy mainly one of several 
interests (i.e., hydropower or flood control; Lund and 
Guzman 1999), but for several decades understanding 
has become widely spread that it is a multifactor 
multiobjective problem (Yeh 1985). Additionally, 
driving factors such as climate change, population 
growth, and increasing environmental standards pose 
additional pressures on river basins, resulting in 
stronger exploitation and an increasing number of 
interests involved (McDonald et al. 2011). As opposed 
to expensive and often undesirable infrastructural 
interventions (e.g., the construction of additional 
reservoirs), the increasing pressures can be addressed 
by using existing infrastructure more efficiently 
(Gleick and Palaniappan 2010; Whateley et al. 2014). 
Revising operating rules is an immediate measure that 
requires comparatively little resources.  

There are numerous techniques to optimize 
reservoir operations; see Labadie (2004) for the most 
common approaches. Around 30–40 years ago, 
multiobjective problems were approached by means of 
multicriteria decision analysis (MCDA); for a review 
of the most common MCDA methods, see Chankong 
and Haimes (1983). Multicriteria decision analysis 
methods assume a priority ranking between objectives 
based on “a priori” (i.e., prior to optimization) 
preferences of a decision maker (DM), defining 
weights that are applied to the individual objectives 
and then aggregating them; see Delipetrev et al. (2017) 
and Bai et al. (2017) for recent applications. The 
multiobjective problem is thus converted into a single-
objective problem that (through the application of any 
single-objective optimization technique) allows for 
identification of one optimal compromise solution. 
Multicriteria decision analysis methods are based on 
strong assumptions, among which is the necessity of a 
well-defined understanding of the DM’s preferences 
(Haimes and Hall 1977). Defining the preferences of 
the DM “a priori” may lead to the failure to explore 
the entire set of tradeoffs between interests, and 
therefore decreases the possibility to discover 
decision-relevant alternatives. This problem, also 
known as policy myopia (Giuliani et al. 2014b), biases 
the decisions and the resulting operating policies 
(Hogarth 1981).  

In order to avoid these biases, a great deal of 
research has been carried out to develop “a posteriori” 
techniques that explore the full Pareto-approximate set 
of solutions, taking into account multiple objectives, 
before including the DM’s preferences and making 
final choices. One approach is to employ the “a priori” 
methods described above, varying the weights that 
express the preferences of the DM, which results in a 

variety of solutions that jointly form the Pareto-
approximate set (Soncini-Sessa et al. 2007). Another 
widely used approach is to employ multiobjective 
evolutionary algorithms (MOEAs); for a review of the 
most common MOEAs, see Reed et al. (2013) and 
Maier et al. (2014). These algorithms belong to the 
class of randomized search algorithms, and the main 
idea is to follow a cycle of random sampling of 
decision variable vectors (representing the parameters 
of a policy), combining the best solutions and 
progressively eliminating the worst ones. The result is 
a Pareto-approximate set of decision variable vectors, 
none of which is dominated (i.e., there are no solutions 
that are better than any other with respect to all 
objective functions).  

Formerly the optimization of release policies 
toward multiple objectives was computationally very 
difficult, especially the idea of optimizing specific 
decisions, like individual releases at each time step of 
the control horizon, which usually involves a high 
number of decision variables; for a review of 
approaches following this idea, see Lin and Rutten 
(2016). An alternative approach that comes with a 
much lower computational cost is the optimization of 
general reservoir management rules that are valid over 
the entire control horizon and generate releases 
depending on external drivers (e.g., inflows). Rules of 
this kind are often prescribed by the authorities. This 
latter approach is capable of finding solutions that 
are—in terms of the quality of the resulting 
decisions—comparable to the former approach, and 
the number of decision variables can be made 
comparably low (Koutsoyiannis and Economou 
2003). This less demanding computational approach 
was adopted by a variety of methods (Labadie 2004); 
a widely used method is the direct policy search (DPS) 
(Williams 1992; Rosenstein and Barto 2001), which is 
also referred to as parameterization-simulation-
optimization in water resources literature 
(Koutsoyiannis and Economou 2003). The direct 
policy search expresses a release policy using a given 
family of parameterized functions (Deisenroth et al. 
2013). It was also extended to multiobjective problems 
(Biglarbeigi et al. 2014) and MOEAs were used to 
solve it. For instance, Giuliani et al. (2016) found 
radial basis functions (RBF) to be particularly useful 
for this task. They employed a MOEA for 
optimization of parameters in the RBF with respect to 
two objectives and, understandably, named it 
Evolutionary Multiobjective Direct Policy Search 
(EMODPS).  

The evolutionary multiobjective direct policy 
search approximates a Pareto set consisting of 
individual parameterizations of operational policies. 
Each policy can control the system; choosing “the best 
one” depends on the DM’s preferences regarding the 
objectives. However, these policies are represented by 
mathematical functions with parameters that do not 
have physical meaning and, in reality, reservoir 
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operators are often reluctant to use such black-box 
functions for direct real-time control of their systems 
(Teegavarapu and Simonovic 2001; Celeste and Billib 
2009; Giuliani et al. 2014b). They prefer making their 
decisions based on tools that have an apparent 
connection to the operating conditions and physics of 
the systems they operate (e.g., rule curves; Loucks and 
Van Beek 2017). Until today, not much effort was 
made to target DPS approaches more specifically to 
dam operators and their traditional way of operation. 
Giuliani et al. (2014b) developed a framework for 
operators to redesign operating rules for a many-
objective reservoir, including uncertainty in the hydro-
climatic variables and involving visual analytics, with 
the aim to get closer to the perspective of dam 
operators. The term “many-objective” describes multi- 
objective problems with more than three objectives, 
which are often faced by operators in the real world 
(Purshouse and Fleming 2003; Giuliani et al. 2014a). 
However, in the mentioned study, policies remain to 
be expressed by RBF approximators and are therefore 
not related to the rule-based control that operators are 
used to. Herman and Giuliani (2016) presented an 
approach to the design of easily interpretable policies 
as a tree structure of logical rules for a single reservoir, 
with the motivation to help operators adjust operating 
rules to possible future scenarios. Still, there is a clear 
need to do more in this direction.  

The main motivation for the current study is the 
existing problem of insufficient physical 
representation in the parameterized functions in DPS. 
Therefore, the release policies have been expressed in 
terms of operating rules that resemble the actual 
decision-making process in the daily operation of 
reservoirs. The operating rules include parameters 
(decision variables) that are optimized with respect to 
the operating objectives. For instance, such a rule 
could be lowering the level in a dam during the wet 
season to avoid spills; in this case the decision variable 
is the target level in the dam. These “traditional” 
policies are closer to real practice and are directly 
interpretable, and this makes them potentially more 
acceptable in the mindset of traditional reservoir 
operators. There is, of course, a tradeoff: the adopted 
policies are based on traditional operating rules, so 
even if they are optimized, they may be worse than 
those using DPS approaches that employ more flexible 
mathematical functions. For single reservoirs, such 
physically based operating rules were optimized (also 
taking into account multiple objectives) by a number 
of studies (e.g., Galelli et al. 2014). However, the 
complexity of this task increases rapidly when 
networks consisting of several reservoirs are 
considered.  

The proposed version of DPS is applied to the 
hydropower reservoir network in the Nechí River in 
Colombia, consisting of five reservoirs. This system 
was found to be a good case study for the proposed 
approach, since all five dams of the network are 

operated by the one company, which facilitates the 
implementation of a common operational strategy. In 
the following chapters, operating rules are developed 
and optimized for this particular system. As such, they 
are not directly transferrable to other reservoirs 
networks, but the rules can serve as the basis to 
formulate similar operating rules for other systems, 
only requiring adjustments to the given physical 
characteristics.  

Case Study and Problem Description  

The Nechí River is located in northwest Colombia 
between the Cauca and the Magdalena Rivers (Fig. 
1a). The dry season is from December through March 
and the wet season is from from April to mid-
November, with strong rainfall events that last from 
several days to weeks. Annual precipitation is around 
3,500 mm; however, the uneven distribution of annual 
precipitation is reflected in high differences of overall 
system inflow over the year (Fig. 2). This represents a 
big challenge in terms of flood and drought 
management.  

Flooding occurs almost annually in the 
downstream part of the catchment and causes 
casualties and economic damage, especially in the 
cities of El Bagre and Zaragoza. Apart from that, the 
Nechí is lined with legal and illegal gold mines that 
heavily pollute downstream water bodies when they 
are flooded. On the other hand, the hydrologic 
variation is crucial to support a variety of ecological 
processes and ecosystem services in the lower Nechi 
River floodplains, including critical food supplies 
based on native fisheries. 

In the dry season, water levels in the reservoirs 
drop drastically, a problem that is often exacerbated by 
the occurrence of El Niño that further reduces system 
inflows (Fig. 2). This jeopardizes energy security in 
Colombia, whose energy mix relies on hydropower for 
around 70% of its production (Procolombia 2015). It 
is therefore critical to operate hydropower dams in a 
fashion that enables sufficiently high energy 
production to cover national demand also in the dry 
season.  

Under current operations, the network is operated 
to maximize the revenue from electricity generation. 
Additional interests such as reduction of flood hazard 
or hydrologic flow alteration were not accounted for 
in the original design of the structures and their 
operating rules. They are — if at all — included only 
as rigid constraints, such as dam security buffers or 
minimum environmental flows (MEFs); the latter are 
prescribed by the National Authority of 
Environmental Licenses (ANLA). Integrating all 
involved interests could lead to release policies that 
result in better overall performances of the system, and 
expressing these policies in the physically oriented 
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“language” of dam operators may be an approach to 
overcome policy myopia. 

In the upstream part of the catchment, a network of 
five reservoirs and four hydropower facilities with an 
overall installed power of 1,883 MW provides around 
15% of Colombia’s electricity (Procolombia 2015). 

 

 
Figure 1. Map of: (a) Nechí catchment; and (b) the hydropower 
dam cascade. 

 

 
Figure 2. Mean monthly system inflows (2002–2015). The 
classification of months is based on the Oscillation Niño Index 
signal (ONI; El Niño: ONI > 0.5; La Niña: ONI < −0.5).  

The network has two branches that meet just 
upstream of Porce III, the most downstream reservoir 
of the cascade (Fig. 1b). The northern branch starts 
with flow diversions from the upper Nechí. These 
diversions are — along with releases from Miraflores, 
which merely serves as a drought buffer — further 
diverted through an underground channel into 
Troneras. From Troneras, a chain of three power 
plants called Guatron is supplied with water, which 
releases just upstream of Porce III. The biggest 
reservoir of the system, Riogrande II, is the starting 
point of the southern branch. Most of its water is 
diverted to the La Tasajera power plant, making use of 
more than 900 m of hydraulic head. Through the river 
outlet of the dam, only MEFs and spills are released. 
All releases eventually flow into River Porce, which 
feeds the Porce II dam. After passing the turbines of 
Porce II, the water reaches the confluence with the 
northern branch before flowing into Porce III.  

Operational Model  

The analysis of the reservoir network resulted in a 
schematization of the system, which was the base for 
the operational model (Fig. 3). The daily inflow time 
series are represented by grey ellipses and represent 
runoff from the natural drainage areas of the dams 
(except INDiversions and INConcepcion that are diverted 
flows without controllable inflow structures). The 
daily inflow time series are freely available for 2002-
2015 from XM Compañía de Expertos en Mercados 
(2017), except INPorce3, which is available from 2011, 
the year when Porce III was put into operation. 
Therefore, INPorce3 has been extended to 2002-2015 
with a validated data-driven model of high accuracy 
(RMSE 18.4 m3/s, correlation coefficient 0.9869) that 
has been created using the Weka Workbench software 
(Frank et al., 2016) with the M5 Rules classifier. For 
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more information on the data-driven model and its 
accuracy, see Appendix S1. After this extension, the 
available data and thus the modeling horizon 
encompass 14 years. Flow lag times between 
structures have been neglected, as the longest is in the 
range of only six hours (La Tasajera – Porce II).  

Cooperation with the operating company Empresas 
Públicas de Medellín (EPM), the Colombian Institute 
of Hydrology (IDEAM), and the National Authority 
for Environmental Licenses (ANLA) enabled the 
authors to make a reasonably detailed representation 
of the physical processes and engineering systems 
involved. On the basis of the ReservoirSimulator 
(Angarita et al., 2013, 2018; Ritter, 2016), the system 
model includes volume-elevation-curves of the 
reservoirs, efficiency curves of turbines, evaporation 
losses, MEF regulations, inter alia. At every time step 
(i.e. day), the model computes the water balance for 
each of the five reservoirs, going from upstream to 
downstream to account for inflows originating from 
upstream dams:  

 

 
where st+1 (subject to st+1 ≥ 0) and st stand for the 

storage in the reservoir at the following (t + 1) and the 
current time step (t), respectively. For natural inflows 
INt (Fig. 3), a perfect foresight of one time step has 
been assumed, which seemed reasonable considering 
that the reservoir capacities are large compared to 
daily peak system inflows (i.e. for the most critical 
reservoir Porce II, observed inflows never exceeded 
33% of the downstream reservoir’s capacity). 
Evaporation loss Et is estimated on the basis of the 
current surface area of the reservoir and the month of 
the year. Potential MEF requirements between the 
dam and the turbine outlet (Porce II and Porce III) or 
into historical river outlets (Riogrande II and 
Miraflores) are represented by qMEF,t; inflows from 
upstream dams are qin,t; water released through the 
turbines is qturb,t, and via the spillway qspill,t. For every 
time step and reservoir, the water balance Eq. 1 is 
solved twice: firstly, before the release decision 
(“preliminary”); secondly, after the release decision 
(“final”): 

1. The preliminary water balance is used to obtain 
an estimation of the available water volume in 
the dam at the current time step before release 
decisions are made. The inflow from upstream 
dams qin,t is still uncertain and thus needs to be 
approximated. This is done by multiplying the 
filling percentages of upstream dams by the 
maximum discharge capacity of their turbines. 
qturb and qspill are equal to zero.  

2. The final water balance after the release 
decisions is necessary to determine the exact 
storage of the dam for the next time step. The 
inflow from upstream dams qturb is here 

determined by the operating rules in the 
decision-making component (see following 
section), and qspill = (st+1 – smax) ≥ 0, where smax 
is the capacity of the reservoir.  

Decision-Making Component  

Every time step (i.e. every day), the decision on the 
release qturb (Eq. 1) for each of the five dams has to be 
made. As described in the introduction, the goal of this 
study is to do this is in a way that resembles the actual 
decision-making process of dam operators, instead of 
optimizing black-box functions. This requires 
information about potential inputs and strategies that 
could be useful to control a network of reservoirs. 
Operating companies keep this information under tight 
wraps since it could make their energy generation 
predictable by competitors on the energy market, 
potentially resulting in financial losses. Therefore, this 
information had to be approximated with the help of 
experts in the field of water management in Colombia 
from IDEAM and the Escuela Colombiana de 
Ingeniería. The brainstorming process resulted in a list 
of potentially useful inputs to control the system 
(Table 1), and in useful insights on the influence of the 
Colombian energy market on daily decisions of dam 
operators.  

Numerous studies show that cooperation between 
operators of cascaded hydropower dams leads to an 
increase of overall benefits (e.g. Yu et al., 2019; Wu 
et al., 2016; Chen et al., 2013). In the Nechí catchment, 
all reservoirs are operated by one company (EPM), 
and this fact considerably facilitates cooperation. To 
reduce the number of decision variables, decision-
making at each time step has been divided into two 
parts, following the main idea of the widely used 
aggregation-decomposition approach (e.g. Liu et al., 
2011; Tan et al., 2017). First, the system states of all 
reservoirs are taken into account to make a first 
“global” decision for the reservoir network. Then, this 
decision is decomposed into individual “local” 
decisions for the individual reservoirs. Applied to the 
decision-making process in the hydropower cascade of 
the current study, this means the following: Firstly, the 
global energy generation target for the entire lumped 
cascade and the current time step is computed (DM 
component – Part 1). Secondly, this global target is 
allocated to the individual dams and power plants (DM 
component – Part 2).  

In this paper, energy generation targets are 
expressed as unitless values in the range [0; 1], 
representing the fraction of the installed power of the 
turbines. For instance, a global generation target (GTt) 
of 0.5 means that the goal of the current time step is to 
generate 50% of overall installed power (in our case 
0.5 x 1883 MW = 941.5 MW). Analogously, the local 
energy target of dam i (LTi,t) is expressed as the 
fraction of installed power of its turbines.  
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Fig. 4 shows the general setting of the DM 
component and its connection to the operational 
model. The main outputs of the model are releases and 
generated power of the dams at every time step t. The 
individual power outputs are summed at every time 
step to compute the overall generated energy of the 
system. Over the control horizon, this returns a time 
series of overall power generation. The discharge 
values of the most downstream dam Porce III over the 
control horizon represent the output hydrograph of the 
system. Only these two time series are later evaluated 
by the objective functions.  

The following sections explain the process 
presented in Fig. 4 in detail. The computation of the 
energy targets and the resulting releases at each time 
step is done depending on the system states and 6 
operating rules, with a total of 12 decision variables 
(Table 2) that are based on the previously identified 
inputs (Table 1).  

 
Table 1. Potentially useful inputs for system control, with 
indications if they are used for calculation of the global target (i.e., 
daily energy generation target for all dams combined), its 
allocation to the individual dams, or release from Miraflores to 
Troneras.

 

 

Decision-Making Component Part 1: 
Calculation of the Global Energy 
Generation Target (GTt)  

The global energy generation target [0; 1] at the 
current time step is calculated as a linear combination 
of the inputs in Table 1:  
 

 
 

The weights of the four factors representing the 
inputs have been defined as decision variables v1 to v4 
(all [0; 1], subject to ∑v = 1). All four factors are 
normalized to [0; 1]; this is required to have the 
possibility to combine very different types of 
information (such as energy price and filling 
percentages) to one value that represents the global 
generation target. The calculations of the four factors 
are explained in the following: 

 

1. Weighted overall filling percentage: The first 
factor fillingt in Eq. 2 describes the system 
state (aggregate storage), taking into account 
that water in upstream dams is more 
“valuable” than water in the downstream 
dams, as it passes more turbines on its way 
through the system. It combines the first two 
inputs of Table 1 in one equation, giving 
higher weight to water in upstream dams: 

 

 
where n is the number of reservoirs in the 
network; s",$ is the storage of reservoir i before 
release (calculated in the preliminary water 
balance, see Operational Model) and 𝑠&,'() is 
the maximum storage; InstPdwnstr,i  and 
InstPdwnstr,h  are the sums of installed powers in 
all power plants downstream of dam i and h, 
respectively (Table 3). For instance, in the 
case of the Nechí, the network has two 
branches. Only the installed powers 
downstream of reservoir i (i.e. not the ones in 
the other branch) play into InstPdwnstr,i. Note 
again that Miraflores does not have any 
turbines (InstPM = 0). By default, fillingt is 
within [0; 1] and thus does not require 
normalization. 
 

2. Energy market price: Higher energy prices 
give incentives to generate more electricity. 
When water availability is low (i.e. in a dry 
season) energy price is high. The factor pricet 
in Eq. 2 accounts for this with a 
cyclostationary pattern of mean monthly 
anomaly fraction of the annual price, based on 
daily averages of Colombian energy prices 
(2002-2015): 
 

 
where a are the start and end years of the data 
period, 𝑝𝑟𝑖𝑐𝑒'/012,3,( is the average price 
during month j of year a and 𝑝𝑟𝑖𝑐𝑒45(6,( is the 
average price of year a. Since all four factors 
in Eq. 2 have to be in the range [0; 1], the 
resulting 12 values of pricemonth (one for each 
month of the year) have also been normalized 
to [0; 1]. At every time step, the value of pricet 
(Eq. 2) is set corresponding to the current 
month of the year. 
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Figure 3. Schematization of the reservoir network and its inflow data time series. Note that the power houses of Porce II and Porce III are 
not inside the dam structure, but several kilometers downstream. This is important for MEF requirements between the dam structures and 
the turbine outlets.  

 

 
 

Figure 4. Schematization of the system model and the decision-making component. The presented workflow is repeated at every time step 
(t) over the control horizon. The main results are the time series of overall power generation and discharge downstream of the cascade. 
These two results are later evaluated by the objective functions. WB stands for water balance. The decision variable ydrywet , is used in 
“Upstream drought buffer release decision” and “Part 2 of the DM component.”  

 
Table 2. Summary of the 6 operating rules and the 12 decision variables involved. 
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Table 3. Calculation of InstPdwnstr, the combined installed power of 
all turbines downstream of each dam i.  

 
 

3. Persistence in monthly inflows: When 
assessing inflows, the following 
considerations have been taken into account. 
As there was no seasonal rainfall forecast 
available for the given area and modelling 
horizon (2002-2015), a cyclostationary 
pattern of overall system inflows has been 
derived from the inflow time series by 
creating a function of mean monthly system 
inflows over the course of the year 
(𝐈𝐍999𝐭𝐨𝐭𝐚𝐥,𝐦𝐨𝐧𝐭𝐡; see Fig. 2). Based on 
comparisons between reservoir capacities and 
mean inflows, it has been considered 
reasonable to assume that the inflows of the 
current month and of up to three months ahead 
could be potentially relevant for operation. To 
determine the relative weights of the current 
and three future months, the approach of the 
Rank Exponent Weight Method has been 
employed (e.g. Roszkowska, 2013), and 
adjusted to our problem: 

 
where m is the number of considered months 
(in our case m = 4) and u [1; m] is the integer 
month number (current month: u = 1, next 
month: u = 2, …). This formula computes 
weights wu for the four months, assigning the 
highest weight for the current month, and 
progressively declining weights for the 
following months. The weight decline has 
been made subject to optimization by means 
of the decision variable p. The selected range 
of p is [0; 15], allowing for equal weights (p = 
0 à w1-4 = 0.25) and nearly full weight on the 
current month (p = 15 à w1 = 0.99). For each 
month j of the year, the weights are applied to 
the current and the three following mean 
monthly inflows, and the weighted values are 
summed: 

 
Finally, these 12 weighted sums are again 
normalized to obtain for each month j the 

value of inflowsmonth,j [0; 1]. At every time 
step, the value of inflowst (Eq. 2) is set 
corresponding to the current month of the 
year. 

An alternative to the presented way of 
providing the months’ weights (Eq. 5) would 
be to assign a separate decision variable for 
each of the months. However, this would have 
increased the number of decision variables 
and thus the computational complexity, and 
therefore this option has been discarded. 

4. El Niño/La Niña influence: The fourth factor 
in Eq. 2 takes into account the effects of El 
Niño and La Niña phenomena. These are 
commonly described by the El Niño Southern 
Oscillation (ENSO). The primary indicator to 
monitor ENSO is the Oscillation Niño Index 
signal (ONI), which is provided in three-
month-moving-average values of temperature 
anomalies in the Pacific Ocean (NOAA, 
2015). In the modeling horizon (2002-2015) 
ONI oscillated within [-1.4; 2.3] (i.e. El Niño: 
ONI > 0.5; La Niña: ONI < -0.5). In 
Colombia, El Niño reduces rainfall, while La 
Niña brings more precipitation than usual (see 
Fig. 2 for the effect on system inflows), 
provoking lower and higher generation targets 
in hydropower dams, respectively (Poveda et 
al., 2001). Therefore, ONI has been inverted 
and then also normalized, so the factor ensot 
is in the range [0; 1]. Simply put, this means 
that a value of ensot = 0 corresponds to ONI = 
2.3, and ensot = 1 to ONI = -1.4. For potential 
future ONI values exceeding the observed, 
ensot is constrained to [0; 1]. 

 
There is yet another factor to be taken into account 

in relation to the global generation target (Eq. 2): the 
influence of the energy market, which strongly 
depends on the (highly confidential) business strategy 
of the operating company. In Colombia, generating 
companies have two options to sell their energy: using 
long-term contracts, or on the free market. In practice, 
the business strategies usually combine these two 
options (Cuadros and Ortega, 2012). Offers to the free 
market can be rejected, even only for individual hours 
of the day. In contrast, when energy security is at 
stake, the market can give additional incentives to 
generate (Cramton and Stoft, 2007; de Castro, 2016). 
This makes it difficult to predict market influence on 
daily generation targets.  

To make the optimized policies more robust 
regarding these external influences, a random factor 
has been introduced to transform GTt into the 
generation target under market influence GTMt. As the 
market can have an increasing and a decreasing 
influence on the generation target, GTMt has been 
chosen to be a random variable normally distributed 
around GTt. A standard deviation of GTt/20 has been 
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assumed, based on a rough estimation from the 
consulted Colombian hydropower experts (see 
Decision-making Component – General description): 
around 5% of the time, offers are rejected by the 
market. This representation of the market influence is 
a very rough estimation and could be certainly 
improved if data availability allowed for supporting 
the choice of the probability distribution function and 
its parametrization. In this study, the required data was 
unfortunately not available and thus had to be 
approximated by consultations with experts. A system 
operator may dispose of more information and data 
and adjust this component accordingly. 

 

 
 
For the current time step, this market-influenced 

target GTMt is now a fixed value [0; 1]. To obtain its 
value in [MW], it is multiplied by the overall installed 
power of the lumped cascade (in this study 1883 MW). 

 

DM Component Part 2: Allocation of 
GTMt to the individual power plants 

After calculating GTMt, a set of operating rules has 
to be applied to allocate it to the individual four dams 
with power plants (Miraflores does not have any 
turbines; its role will be discussed later). First, three 
operating rules that are based on constraints allocate a 
first portion of GTMt. Then the remaining portion is 
allocated based on filling percentages and relative 
positions of the individual reservoirs. The four 
operating rules that take charge of the allocation are 
described in the following:  

 
1. Full reservoir rule (applies to all reservoirs): It 

is always better to release as much water as 
possible through the turbines, instead of the 
spillway or other conduits (which happens if a 
reservoir gets full). To reduce these spillages, 
a constraint is applied to all reservoirs: If the 
preliminary water balance (before release; see 
Operational Model) in reservoir i resulted in 
storage greater or equal to its capacity (st+1 ≥ 
smax), the local generation target LTi,t is set to 
the maximum (LTi,t = 1).  

 
2. Flow alteration reduction rule (applies to 

Porce III only): Porce III is the most 
downstream dam and thus the only one able to 
effectively mitigate hydrologic flow alteration 
downstream of the cascade. Flow alteration is 
an indicator that is commonly used to describe 
the environmental impact downstream of 

dams, e.g. by Vogel et al. (2007). When dams 
are not generating energy (which happens in 
practice very frequently, mainly due to energy 
market dynamics), they usually release only 
very little water. For instance, when the 
turbines of Porce III are switched off, only 2 
m3/s are released to satisfy MEF regulations. 
This value does not compare to natural 
discharges (see Fig. 2) and this has diverse 
impacts on the downstream ecosystem. To 
mitigate this alteration in the low flows, a 
minimum turbine discharge constraint 
QP3min,month,j [m³/s] for Porce III is proposed. 
Unfortunately, there is no information 
available on critical flow thresholds, below 
which significant environmental impacts 
occur. Therefore, this information was 
approximated based on the natural 
hydrograph, which allowed for proposing a 
minimum target flow for each month j of the 
year:  
 

 
where MEQmonth,j [m³/s] is the minimum 
discharge ever observed in the natural 
hydrograph in month j of the year. It is 
multiplied by the decision variable mP3 [0; 2] 
to give a relative weight to the rule. For 
instance, mP3 = 0 would disable the rule, while 
mP3 = 2 would mean that the minimum release 
constraint for Porce III is twice the minimum 
discharge ever observed in the current month 
of the natural hydrograph. At each time step, 
the value of QP3min,t is chosen from QP3min,month,j 
according to the current month of the year. By 
applying the turbine equation, QP3min,t [m3/s] is 
converted into the corresponding minimum 
target generation LTP3,min,t [0; 1] of Porce III: 
 

 
where 𝐼𝑛𝑠𝑡𝑃EF the installed power [MW] and 
Ht the current hydraulic head of Porce III; 𝜉 is 
the pipe loss, 𝛾 is the specific weight of water 
and 𝜂1 is the turbine efficiency for the current 
discharge and hydraulic head. 
 

3. Flood buffer rules (apply to Porce II and Porce 
III only): In test runs of the model, it became 
clear that the capacity of Porce III alone is not 
sufficient for an effective flood hazard 
reduction, especially when wet season 
coincides with the occurrence of La Niña (Fig. 
2). As described in the Case Study and 
Problem Description, rainfall events in wet 
season may last for several weeks, and 
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keeping an empty buffer capacity only in 
Porce III does often not result in a significant 
lowering of the hydrograph peak. Therefore, 
also Porce II has been included in flood hazard 
reduction strategy. A conditional rule is 
proposed that lowers the water levels in these 
two downstream dams during the wet season, 
in order to create buffer capacities. The 
following equations describe the rule for 
Porce III, but it applies analogously to Porce 
II (exchange subscript P3 by P2): 
 

 
 
where INtotal,t [m3/s] is the total system inflow 
and 𝑠EF,1 is the storage of Porce III at time step 
t (before release; see Operational Model). The 
maximum storage is 𝑠EF,'(). To decide when 
flood buffer rules are triggered, the decision 
variable ydrywet [0; 250 m3/s] has been 
introduced as a discharge threshold. The 
average of system inflows of the seven days 
prior to the current time step and the current 
time step has been defined as the criterion to 
distinguish between the dry and the wet 
season. If this average is higher than the 
threshold ydrywet (Eq. 10), flood buffer rules are 
triggered. The decision variable bP3 [0; 1] has 
been assigned (analogously bP2 [0; 1] for 
Porce II) and represents the target filling 
percentage of Porce III during the wet season. 
If the ratio of the storage (before release) at 
the current time step 𝑠EF,1 to the maximum 
capacity 𝑠EF,'() is higher than this target 
filling percentage bP3 (Eq. 11), the local target 
generation LTP3,t  is set to the maximum (Eq. 
12). The maximum local target results in 
maximum turbine release and thus aims at 
lowering the water level for a larger buffer 
capacity in the dam. 

 
4. Allocation of the remaining target (applies to 

all reservoirs with power plants): After 
applying the three rules described above, a 
portion of GTMt may be allocated, reducing it 
to GTMremaining,t. This remaining portion is 
now further allocated to the power plants. This 
is done by an iterative procedure that allocates 
to all power plants with remaining turbine 
capacity (LTt < 1) and water availability (st > 
0). The iterative procedure stops when 
GTMremaining,t is reached (i.e. global target fully 

allocated), or when water availability does not 
allow for further allocation. Two inputs of 
Table 1 have been considered: the filling 
percentages, and the relative position of each 
dam in the network. The idea of including the 
position is to generally assign higher targets to 
downstream dams to lower their water levels 
(compared to upstream dams) for flood 
protection. Rk, the fraction of GTMremaining,t 
that is allocated to dam k, is computed as: 

 
 

 
 

where the first term represents the filling 
percentage [0; 1] of dam k in relation to the 
sum of filling percentages of all N dams with 
power plants (in our case N = 4, as Miraflores 
does not have turbines). As opposed to the 
weighted filling percentage fillingt in Eq. 3, 
these are mere filling percentages and do not 
take the cascade configuration into account. 
The second term of Eq. 13 includes 
information on whether dam k is upstream or 
downstream in relation to the other dams. For 
the values of the installed power downstream 
of dams 𝐼𝑛𝑠𝑡𝑃JK0L16, refer again to Table 3. 
The decision variable aalloc [0; 1] defines the 
weight distribution of the two inputs in the 
allocation procedure. In case a power plant is 
allocated with an amount of energy that 
exceeds its capacity (LTt > 1), the excess is 
allocated to the remaining power plants by 
means of a further iteration of Eq. 13. 
 

The four local generation targets LTi,t [0; 1] are 
converted into absolute power targets [MW] by 
multiplying them by the installed capacity of their 
power plant. Each of the four dams contains several 
turbines (in the given system, up to six). In order to 
hold back as much water as possible while reaching 
LTi,t, the operational model applies turbine efficiency 
curves to identify for each dam the optimal number of 
activated turbines at the current time step. The results 
for each dam are (a) the turbine discharge qturb,t in the 
final water balance (Eq. 1), and (b) the value of 
generated power Pt at the current time step. 

As explained earlier, Miraflores serves as drought 
buffer for the system, which already implies a 
difference in operation between seasons. The decision 
variable ydrywet, which was earlier introduced for 
triggering flood buffer rules, is used again here to 
trigger the dry season operation of Miraflores: 
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where QDVChannel,max = 23.6m3/s is the maximum 
discharge capacity of the diversion channel to the 
reservoir Troneras. The diversion channel is first filled 
with the inflow time series INDiversions,t and INConcepcion,t 
(see Fig. 3). The remaining discharge capacity is 
available for release from Miraflores. The conditional 
rule does the following: During the dry season (Eq. 
14), release from Miraflores to Troneras is equal to the 
remaining discharge capacity of the diversion channel 
(Eq. 16), if the filling percentage in the downstream 
reservoir Troneras drops below the decision variable 
fT [0; 1] (Eq. 15). In other words, fT is the target filling 
percentage of Troneras during the dry season. In the 
wet season, release from Miraflores is controlled by 
two linear functions (presented as planes in Fig. 5). 
The two functions depend on the decision variable rM 

[0; 23.6 m3/s]. The release is always subject to the 
remaining discharge capacity in the diversion channel. 

 

 
Figure 5. Control functions of release from the most upstream 
dam, Miraflores, through the diversion channel toward Troneras 
in the wet season. 
 

Objective functions 

Four objectives functions (OFs) have been 
considered; they evaluate the output time series (2002-
2015) of the operational model with the described 
operating rules: (a) the time series of overall generated 
power of the lumped cascade Ptotal (evaluated by OF1 
and OF2), and (b) the hydrograph downstream of the 
cascade Qtotal (i.e. downstream of Porce III; evaluated 

by OF3 and OF4). Please note again that the energy 
generation targets GT, GTM and LTi are not directly 
evaluated. Their only role is to connect the inputs 
(Table 1) to the power generation and release time 
series. 

 
OF1. Average generated energy: The average 

power generated by the entire system is to be 
maximized and is evaluated by the following 
objective function: 

 
where T is the number of time steps and Ptotal,t 
is the generated power of the system at time 
step t. 
 

OF2. Firm energy: To safeguard energy security in 
the country, the government in Colombia 
imposes a minimum power generation 
requirement on energy providers in water 
scarcity conditions. In the dry season, 
hydropower stations often struggle to generate 
the so-called firm energy that they are legally 
obliged to provide. By definition, firm energy 
is the monthly average power that can 
statistically be exceeded in 95% of the months 
(Fig. 6). Therefore, firm energy is to be 
maximized and is evaluated as the 5th 
percentile of all monthly averages of power 
generation 𝐏𝐭𝐨𝐭𝐚𝐥,𝐦𝐨𝐧𝐭𝐡99999999999999 [MW] with M being 
the number of simulated months: 

 

 
Figure 6. Definition of firm energy as the 5th percentile in the 
duration curve of monthly averages of energy generation.  

 
OF3. Flood hazard: Flood hazard is evaluated by 

identifying yearly discharge peaks from the 
hydrograph downstream of the cascade Qtotal. 
The yearly maxima are sorted in descending 
order and integer ranks ry [1; Y] are assigned 
(Y is the number of simulated years). For 
instance, ry = 1 expresses that the 
corresponding discharge is exceeded in one of 
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Y years. Then, the return period (RT) for each 
peak discharge is calculated by computing RT 
= Y / r. The result is a curve of RT versus 
corresponding peak discharge (Fig. 7). 
Analogous to the computation of Expected 
Annual Damage (EAD), which is a common 
practice in flood risk management (e.g. 
Arnell, 1989), the (expected annual) flood 
hazard is the area under the annual peak flows 
curve. This area is additionally constrained 
based on the following idea: for releases up to 
the maximum turbine capacity of Porce III 
(Qtotal ≤ QP3,max), flood hazard was assumed to 
be zero. In other words, yearly peaks only play 
into the evaluation of flood hazard, when 
spills occurred in the corresponding year. The 
objective function minimizes the resulting 
(constrained) area under the annual peak 
flows curve and above the maximum turbine 
capacity, which has the unit [year ∙ m3/s]: 

 

 
 

 
 

Figure 7. Calculation of (expected annual) flood hazard 
analogous to the concept of expected annual damage (EAD).  

 
OF4. Flow regime alteration: For the evaluation of 

this objective, the ELOHA dashboard of The 
Nature Conservancy has been employed, a 
tool for evaluating flow regime alteration. 
Following the approach of Vogel et al. (2007), 
flow alteration has been quantified by 
comparing flow-duration-curves (FDC) of 
impaired hydrograph and a natural reference 
hydrograph. The natural reference has been 
approximated by summing the natural inflow 
time series of the system. This implies all 
inflow time series except INDiversions, 
INConcepcion, and INTenche (see Fig. 3).  

To identify flow alterations, 12 mean 
monthly FDCs are computed for the modelled 
hydrograph downstream of the cascade Qtotal. 
Plotting for each month of the year the 
impaired FDC against the mean monthly FDC 

of the natural reference hydrograph allows for 
the identification of deviations from the 
natural condition. The areas between the 
FDCs are called Ecodeficits (i.e. impaired 
FDC below natural FDC) and Ecosurpluses 
(vice versa). Summing all these areas for all 
12 months of the year returns an overall 
alteration value in [m3/s], which is to be 
minimized: 

 

 
 

Experimental setup 
 
The general optimization framework is presented 

in Fig. 8. The optimization has been carried out by 
means of the freely available multi-objective 
optimization tool GODLIKE (Global Optimum 
Determination by Linking and Interchanging of 
Kindred Evaluators; Oldenhuis, 2010). GODLIKE 
uses the Non-dominated Sorting Genetic Algorithm II 
(NSGA-II; Deb et al., 2002) as the base. In each 
iteration, it randomly splits the population and 
allocates the subsets to the individual optimizers 
Genetic Algorithm (GA), Differential Evolution (DE), 
and Particle Swarm Optimization (PSO). Randomly 
interchanging population members between the 
algorithms increases the robustness of the 
optimization and the probability that the approximated 
Pareto set is close to the real efficiency frontier of the 
problem (Oldenhuis, 2010). It also reduces the need to 
fine-tune the parameters of the individual optimizers 
and makes GODLIKE applicable to a wide range of 
optimization problems. The idea of switching between 
individual optimizers was also adopted by other 
randomized search algorithms (e.g. “AMALGAM” by 
Vrugt & Robinson, 2007; “Borg” by Hadka & Reed, 
2013). All these algorithms belong to a family of 
randomized search algorithms.  

At every iteration of the randomized search, a 
generation of policies (i.e. each policy is a vector of 12 
decision variable values) is generated and fed into the 
model. The model calculates the outcomes (i.e. time 
series Ptotal and Qtotal) of each of the policies by 
applying it to the model and running it over the 
modeling horizon. After that, the objective function 
values are calculated for each policy. Iterations 
continue until the stopping condition is met, i.e. when 
all policies in a generation are non-dominated and 
jointly form the Pareto approximate front.  

The population size has been chosen to be quite 
high (i.e. 2500) for two reasons: firstly, to ensure a 
high resolution of the four-dimensional Pareto 
approximate front; secondly, to adequately explore the 
12-dimensional decision variable space and mitigate 
the risk of premature convergence to local optima. The 
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latter is especially important since GODLIKE does not 
include an automatic restart strategy during the 
optimization process. Extending GODLIKE with such 
a restart strategy could potentially improve the quality 
of the Pareto approximate set, however, this task was 
beyond the scope of this work. It is worth mentioning 
though that the mutation operator in GA and the 
potentially very large changes in velocities in PSO 
vectors occasionally result in large changes of 
individual population members, which helps to 
explore (previously unexplored) parts of the decision 
variable space. 

To demonstrate the usefulness of the proposed 
method, the optimized policies must be validated on 
an “unseen” testing period. Therefore, the available 
data has been split into a training (2002-2011) and a 
test set (2012-2015); each of the two encompasses 
both very wet and very dry periods (see Appendix S2). 
The optimization on the training period has been 
carried out on a PC with 64 GB RAM and eight cores 
running at 3.30GHz. GODLIKE reported convergence 
after 175 hours, returning the Pareto approximate set 
of 2500 non-dominated policies. GODLIKE went 
through 123 iterations, running the operational model 
more than 300,000 times.  

After the optimization, the resulting 2500 decision 
variables value vectors have been used as inputs for 
calculating the policies’ performances over the testing 
period. As expected, the performances of the policies 
on the test set deteriorated if compared to the training 
set (e.g. the best performances decreased by 9% and 
19% for firm and average energy, respectively). 
Naturally, some policies performed better than others 
on the “unseen” testing period (i.e. some are 
dominated by others), so that the resulting set was not 
Pareto-optimal anymore. An additional step of non-
dominated-sorting identified a Pareto approximate set 
of 180 tested non-dominated policies. 

 

Results and discussion 

The 180 policies of the tested four-dimensional 
Pareto approximate front show a great variety of 
operational strategies (Fig. 9). From these 180 
policies, a decision maker can select a desirable trade-
off, depending on his/her preferences and possible 
additional constraints. The observed system 
performance over the testing period (2012-2015) is 
indicated by the star in Fig. 9; exact performance 
values are listed in Table 4. Missing spill data in 2012 
was simulated by fitting the model to the spill behavior 
of Porce III in 2013-2015.  

When comparing the found optimal policies to the 
observed policy, the following has to be taken into 
account: the operators, in reality, do not optimize 
average and firm energy, but the revenue from energy 
generation. These objectives correlate but are not the 

same. This fact could not be taken into account 
directly when the OFs were formulated (mainly due to 
a lack of information regarding the business strategy 
of the operating company) and can be seen as a 
limitation of this study that will be further discussed in 
the conclusions. Therefore, a fair comparison between 
the observed and the optimized policies is 
unfortunately not fully possible, and the subsequent 
discussion is based only on the four objective 
functions defined in this study. However, the observed 
performance is still a useful reference for putting the 
quality of the optimized policies into perspective.  

In Fig. 9, the arrows next to the labels of the four 
objectives illustrate their preference direction, which 
helps to identify the tradeoffs. The small range in the 
average energy performance (1062 MW – 1091 MW) 
indicates that this objective is only weakly in conflict 
with the other three. This can be attributed to a specific 
feature of this system: the powerhouses (except the 
smallest power plant Troneras) are not included in the 
dam structures, but situated further downstream and 
fed by the dams via diversion pipes, which creates 
high hydraulic heads. Therefore, the water level 
changes in the dams have only a limited influence on 
the overall hydraulic heads and the resulting amount 
of generated energy. Considering this, the increment 
in average energy compared to the observed 
performance (see Fig. 9 and Table 4) can mainly be 
attributed to the reduction of overall spillage, which is 
partly a result of the assumption of a perfect inflow 
forecast of one day. Fig. 9 and Table 4 also show that 
all 180 optimized policies perform better than the 
observed operation regarding flow regime alteration. 
This finding is not very surprising since the observed 
operation presumably takes flow alteration merely into 
account as constant MEFs.  

Regarding the firm energy and flood hazard 
objectives, many optimized policies dominate the 
observed operation, too. The increment in firm energy 
shows the potential of adjusting operating rules to be 
better prepared for scarcity conditions, which are the 
periods when profit margins on the energy market are 
the highest. The reduction of the flood hazard 
demonstrates that it can be mitigated by explicitly 
including it into the operating objectives. 

 
 

Table 4. Observed system performance and performance of the 
selected policy S over the testing period (2012–2015).  
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Figure 8. Workflow of the multiobjective evolutionary algorithm and its connections to the model and decision-making component of the 
system.  

 
Figure 9. Pareto-approximate set of operational strategies in the four-dimensional objective space. Flow regime alteration is shown in 
marker color, average energy generation in marker size. Arrows indicate the preference directions of the objectives. The observed 
performance over 2012–2015 is shown as the star. Policies in the dashed box dominate the observed performance, since they perform 
better with respect to all four objective functions. 
 

Table 5. Summary of all 12 decision variables and their optimized values of policy S. 
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With respect to the four objectives defined in this 
study, the observed operation is dominated by a total 
of 45 optimized policies. Policy S (indicated in Fig. 9) 
has been selected for further analysis to demonstrate 
how operators can directly interpret the optimized 
physically-based operating rules. The values of the 
decision variables for policy S are presented in Table 
5. As a first step of the analysis, we focus on the 
weight distribution of the four components in the 
formula for the global energy target GT (Eq. 2).  

As expected, the weight v1 = 0.637 of the system-
state-component fillingt is the highest of the four 
weights. The energy market price plays only a 
negligible role (v2 = 0.033), which is hardly surprising. 
As mentioned earlier, in the optimization problem 
posed in this study the generated energy (in power 
units) was maximized, rather than the corresponding 
revenue, which is the main objective of the dam 
operators. In fact, the price component was only 
included in the study to set the stage for operators to 
adjust the objective functions to optimize revenue as 
opposed to generated power. This can be done by the 
operator, depending on the given energy market and 
the related confidential information at hand.  

The remaining weights in the formula for the global 
energy target GT are almost equal for the persistence 
in monthly inflows (v3 = 0.168) and the El Niño/La 
Niña influence (v4 = 0.161), which anticipate expected 
inflows in the future. The identified weight decline in 
the persistence in monthly inflows p = 0.438 (Eq. 5) 
results in weights [0.32, 0.28, 0.23, 0.17] for the 
current month and the three future months, 
respectively, giving future inflows relatively high 
importance. This moderate weight decline could also 
mean that the chosen approach of using historical 
inflow time series for estimating future inflows over 
the course of the year does not provide sufficient 
forecast skill, especially when taking into account that 
the historical inflow time series is also affected by El 
Niño/La Niña influence (see Fig. 2). However, the 
overall weight of the forecast component is not 
negligible (v3 = 0.168), which reflects that it does 
contain useful information for decision-making, at 
least for policy S. 

The allocation of the global generation target under 
market influence GTM to the four individual dams 
with turbines is controlled by five decision variables 
(see Table 5). The threshold ydrywet triggers dry and wet 
season rules. Its value of ydrywet = 135 m3/s represents 
a trade-off between firm energy and flood hazard, 
retaining water and creating buffer capacities in 
advance of drought and flood periods, respectively. To 
give an idea of the meaning of this value: mean inflow 
is 173 m3/s and 135 m3/s corresponds to the 30th 
percentile of the flow-duration-curve. This means that 
flood buffer rules are triggered most of the time. The 
decision variable ydrywet also has a second function in 
the control of the upstream drought buffer reservoir 
Miraflores (see DM Component Part 2). Its relatively 

low value limits the activation of the dry season 
condition to the driest periods and thus enables to 
target periods of water scarcity very precisely by the 
additional releases towards Troneras.  

The flow alteration reduction rule is useful for 
reaching the outcome of Policy S, which is 
demonstrated by its weight of mP3 = 0.637. This value 
means that the minimum discharge requirement 
downstream of Porce III is in every month of the year 
fixed to 64% of the minimum ever observed discharge 
in the natural hydrograph in the corresponding month. 
Without a doubt, a higher value of mP3 would further 
lower the flow alteration of policy S, however, this 
would be at the expense of the other objectives.  

The target buffer capacities bP2 and bP3 in wet 
season bring a surprise. Porce III is controlled to lower 
its storage to 86% of its capacity (i.e. 17.8 million m3 

buffer) when flood buffer rules are triggered, 
indicating that it is not very important for flood 
protection, although it is the most downstream 
reservoir of the system. Porce II targets at lowering its 
storage to only 60% (i.e. 38.4 million m3 buffer), 
suggesting that flood hazard originating from the 
southern branch is tackled best before the confluence 
with the northern branch. Again, it should be 
mentioned that even lower target levels in wet season 
would further reduce flood hazard, however, this 
improvement would not justify losses regarding the 
other objectives.  

The allocation of the remaining target generation 
GTMremaining to the individual dams is controlled by 
aalloc. Its value of aalloc = 0.375 is surprisingly low since 
it suggests that the allocation of GTMremaining to the 
individual dams should be dominated by the relative 
position of the dams in the network, rather than by the 
individual filling percentages (see Eq. 13). This 
demonstrates that it can be a very useful measure to 
assign downstream dams with generally higher targets 
to lower their levels for flood protection. 

Miraflores’ role is providing the system with water 
in scarcity conditions. As described in DM 
Component Part 2, its release is controlled by the 
decision variables rM, ydrywet and fT. The comparably 
low value of rM = 1.73 m3/s (see Fig. 5) confirms that 
in the wet season, almost all water is retained in the 
dam and only released when Miraflores runs into 
danger of being completely filled. In the dry season, 
the target filling fT in the receiving dam Troneras, 
dominates the release decision. Its comparably high 
value of 92% (fT = 0.915) indicates that in the dry 
season, the diversion channel between the two 
reservoirs is almost continuously at its maximum 
capacity. This confirms the initial impression that the 
dry season is targeted very precisely, as the low value 
of ydrywet classifies only the driest periods as dry 
season. Providing the required amount of water to 
maintain the filling of 92% in Troneras would not be 
possible over longer periods of the year, as Miraflores 
would be completely emptied at some point. 
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Conclusions 

This paper presents a multi-objective optimization 
approach of DPS that addresses the gap between 
existing multi-objective reservoir optimization 
methods and the physically-oriented perspective of 
dam operators, with the aim to overcome policy 
myopia. The specific feature of this study is that this 
is done by employing parameterized physically-based 
operating rules, instead of the parameterized black-
box functions (data-driven models, e.g. RBF), which 
were used in the earlier studies related to DPS.  

The concept has been applied to a network of five 
hydropower dams in the Nechí catchment in 
Colombia, involving four objectives: average and firm 
energy generation, and the reduction of flood hazard 
and hydrologic flow alteration. A detailed operational 
model of the system has been built; the daily release 
decisions are taken by applying six parameterized 
physically-based operating rules. These rules have 
been developed depending on the physical 
characteristics of the given case study and are thus not 
directly transferrable to other systems, but the general 
approach of developing and optimizing such rules is. 
Furthermore, some of the rules (e.g. all of the target 
allocation rules and some components of the global 
generation target rule; see Table 2) can serve as a base 
for developing similar rules for other reservoir 
networks and require only adjustments to the given 
physical characteristics and data.  

The six physically-based operating rules depend on 
only 12 decision variables. Controlling a network of 
five storages using such a low number of decision 
variables significantly reduces computational 
complexity compared to prior DPS approaches. For 
instance, Biglarbeigi et al. (2014) used 117 parameters 
to optimize the release policy of a network of three 
reservoirs. Giuliani et al. (2018) used 176, and Quinn 
at al. (2018) 134 parameters for a system consisting of 
four reservoirs. Unfortunately, computational 
limitations impede the possibility to explore 
quantitatively how much the proposed method of 
introducing physical interpretability sacrifices in 
performance, compared to conventional DPS. 
However, given the adequate computational resources 
are available, such a comparison would be important 
to carry out. The limited computational resources also 
impeded a more complex experimental setup of the 
optimization. For instance, instead of using only non-
dominance of all population members as the stopping 
criterion, the convergence towards the Pareto-
approximate front could be monitored by employing a 
measure of search progress, such as hypervolume. 
Besides, multiple seeds could be run to ensure a 
consistent algorithm performance.  

Four objective functions have been considered. 
The system model and its decision-making component 
have been coupled with a multi-objective evolutionary 
algorithm. The simulation-based optimization 

approximated a Pareto front of general operating 
policies. The performance of the optimizes policies 
has been compared to the observed performance of the 
system over a testing period of four years. With 
respect to the four objectives defined in this study, 
many of the optimized policies dominate the observed 
performance over the testing period; especially the 
improvements regarding flood hazard and flow regime 
alteration are considerable. It is important to point out 
that the observed performance is a result of the 
operator’s objective to maximize revenue from energy 
generation, while in the current study mere power 
units are optimized (these objectives correlate but are 
not the same). Therefore, a fair comparison of 
optimized and observed energy performances was not 
fully possible. Operators, who have more information 
on the energy market, could address this by adjusting 
the objective functions to evaluate revenue instead of 
power units. In the scope of this work, it was 
unfortunately not possible to carry out this complex 
task, mainly due to insufficient information about the 
operator’s strategy on the energy market. It is planned 
to address this limitation in future work.  

Although the testing period contained both very 
wet and very dry periods, it would be important to test 
the optimized policies under an even higher 
hydroclimatic variability, for instance by using 
synthetic inflow time series. This was unfortunately 
out of the scope of this paper, as the system is fed by 
seven separate inflow times series. However, this 
might be addressed in the further development of the 
approach, and the optimized policies will be in any 
case also further tested on more recent inflow data. 

The analysis of one of the optimized policies 
demonstrates how the results could be directly used 
and interpreted by system operators. It shows that the 
presented framework offers operators an approach to 
overcome policy myopia from their perspective and 
adjust their operating rules to perform better, facing 
the evolving demands and interests. Future work will 
aim at further improving the reflection of the decision-
making practice in the formulation of the operating 
rules and the objective functions. To this point, the 
full-fledged real-life evaluation of the presented 
method by the system operators was unfortunately not 
possible. However, negotiations for a collaboration 
with the operating company EPM are on-going and 
will hopefully lead to further improvement of the 
framework and to its adaption in the working practice.  

Data Availability 
The input time series used in this study are freely 

available online (XM Compañía de Expertos en 
Mercados, 2017). For technical data on the reservoirs 
and turbines, please contact the operating company 
Empresas Públicas de Medellín (EPM). The 
MATLAB computer codes and data generated in this 
study are freely available on GitHub (Ritter, 2017). 
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