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Abstract
Although online e-learning environments are increasingly used in university courses, manual assessment still dominates the
way students are graded. Interactive judges providing a pass/fail verdict based on test sets are valuable tools both for learning
and assessment, but still rely on human review of the code for output-independent issues such as readability and efficiency.
In this paper we present a tool to assist instructors in grading programming exercises in Computer Graphics (CG) courses.
In contrast to other grading solutions, assessment is based both on checking the output against test sets, and through a set of
instructor-defined rubrics based on syntax analysis of the source code. Our current prototype runs in Python and supports the
assessment of shaders written in GLSL language. We tested the tool in a CG course involving more than one hundred Computer
Science students per year. Our first experiments show the tool can be useful to support both self-assessment and grading, as
well as detecting grading mistakes through anomaly detection techniques based on features extracted from the syntax analysis.

1. Introduction

Computer Science (CS) and Computer Graphics (CG) courses
strongly benefit from the combination of lectures with practical
training on laboratory sessions [TRK17]. Grading students through
lab assignments is also a good strategy for assessment, both in
university courses [PFM15, ACFV18] and Massive Open Online
Courses (MOOCs) [FPJM15].

Online e-learning environments are increasingly used in uni-
versity courses. Automatic judges [KLC01, PGR12, FJA16] are
able to provide a pass/fail verdict based on test sets, and cloud-
based autograders have been shown to be scalable and reliable for
MOOCs [FPJM15]. These are valuable tools both for learning and
assessment, but they provide only a binary output on each indi-
vidual submission and thus provide very limited feedback to stu-
dents, who would benefit from extended comments when submit-
ting wrong or poor quality code.

Automatic tools simplify download, compile, run and test tasks,
but provide little or no support to the posterior human review of the
code. For these reasons, manual assessment still dominates the way
students are graded in university courses.

Some authors do address the problem of semantic understanding
of computer programs, but the subject of functional equivalence of
programs [HICS80, Gör16, Jam17] is still in its infancy and often
limited to elementary algorithms.

In this paper we present a tool to assist instructors in grading
shader programming exercises in CG courses. In contrast to other
grading solutions, assessment is based both on checking the out-
put against test sets, and through a set of instructor-defined rubrics

based on syntax analysis of the source code. Rubrics can check,
e.g. whether some particular function (e.g. normalize) is called or
not, and whether some particular operation (e.g. moving the vertex
to clip space) is done.

The test part of the system is based on [ACFV18], a program-
ming framework that supports self-assessment by comparing the
output image of student submissions with the instructor reference
solution. Grading assistance in [ACFV18] is limited to a compari-
son of output images, with no code analysis.

We provide instructors with a high-level API, based on syntax
analysis of the source code, to define rubrics that evaluate specific
code issues. We also provide limited semantic understanding of the
code, to keep track of the coordinate system (object space, world
space, eye space, clip space, NDC) of all geometric variables and
expressions in the code.

Our current prototype runs in Python and supports the assess-
ment of shaders written in GLSL.

We have tested our proof-of-concept prototype in an introductory
course on Computer Graphics. Students take this 6 ECTS course
during their fifth semester of the Computer Science degree at the
Facultat d’Informàtica de Barcelona, Universitat Politècnica de
Catalunya. The course receives more than one hundred students
per year. The lab sessions are oriented to assist students while com-
pleting a list of exercises that involve writing shaders or C++ code.
We tested our tool with some assignments of the last lab exam. We
observed that well-crafted rubrics provide significant information
about the submissions and thus greatly speed-up code review.

The framework is open source and it is available online.
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2. Previous work

Interactive e-learning environments are increasingly used in univer-
sity courses [PGR12, PHH∗15, FJA16]. Some of these tools accu-
mulate more than six years of experience with thousands of stu-
dents. For example, Jutge.org [PGR12] is an online educational
platform where students can try to solve programming problems
in different languages. Submissions are evaluated using exhaustive
test sets run under time, memory and security constraints.

For a recent review of online judges for introductory program-
ming education we refer the reader to [FJA16]. The verdicts of
most online programming judges are, essentially, binary (pass/fail).
Whilst this is appropriate for competitions, university students
should receive extended feedback when submitting wrong or poor
quality code. Mani et al. [MVPR14] show how data mining of past
incorrect submissions by all users can be used to extract a small
subset of test cases that may be relevant to future users, thus im-
proving feedback.

Navrat and Tvarozek [NT14] discuss how student submissions
from e-learning environments can be used for summative assess-
ment at the end of the course. By training a regression model, they
were able to predict grades with a reasonable level of accuracy,
suggesting that e-learning environments might replace existing as-
sessment methods.

Individual scores, submission counts and completion times also
provide valuable data so that instructors can classify exercises
according to their difficulty level and design appropriate ex-
ams [RKL∗16].

Massive Open Online Courses (MOOCs) have renewed the in-
terest for autograders, i.e. tools for automatic evaluation of student
programming assignments. Fox et al. [FPJM15] present a fully-
automatic, test-based autograder for software engineering MOOCs.
The authors show that cloud-based autograding is scalable and re-
liable for MOOCs, although it requires substantial setup efforts.
Alternative light-weight autograders do exist, but they basically au-
tomatize download, compilation, running and testing, leaving code
review to educators.

All the tools discussed above focus on the operational correct-
ness of the code, but do not attempt to grade its construction in
terms of readability, simplicity, and efficiency.

On the other hand, some authors do address the problem of au-
tomatizing the semantic understanding of computer programs. A
major problem is the lack of knowledge about what constitutes
functional equivalence of code segments. Determining the func-
tional equivalence of a reference solution and the student solu-
tion would provide valuable data for both student guidance and
assessment. Unfortunately, deciding the functional equivalence of
two programs in general is NP-complete [HICS80]. Some attempts
for grading programming assignments include matching Program
Dependence Graphs (PDGs) [Gör16] and Concept Dependence
Graphs (CDGs) [Jam17], but these are either limited to plagiarism
detection, or require a solid knowledge base to be able to under-
stand code segments even for elementary algorithms.

We do not attempt semantic understanding of the code, with the
notable exception of keeping track of the coordinate system of all

variables and expressions in the code. Instead, we provide instruc-
tors with a high-level API, based on syntax analysis of the source
code, to define rubrics that evaluate specific code issues.

In the specific case of Computer Graphics, APIs either pose high
entry barriers to students (e.g. OpenGL), or provide too high-level
features (e.g. Unity3D). In the case of shader development, the
setup and test using bare graphics APIs is too complex and thus
inaccessible to students in the context of entry-level courses. For
this reason, modern CG courses provide students with program-
ming frameworks [TRK17,ACFV18] to allow the students to com-
plete appropriate assignments during the lab sessions.

Multiple applications could be helpful in teaching shader pro-
gramming. These show immediately the result of any code pro-
vided by students on a given scene [FXC, Ren, Bai]. Another set
of applications make use of WebGL to offer online services where
their users can experiment with fragment shaders directly [GLS,
QJ]. Some have been designed with CG education in mind. Toisoul
et al [TRK17] propose an IDE that allows to load models, change
their material properties and test shaders. Thiesen et al [TRBB08]
presented a real-time shader viewer they used in a CG course. None
of these shader tools include grading features, nor facilitate the
comparison of the shaders programmed by the students with those
provided as reference.

Some tools try to teach the entire operation of the OpenGL
pipeline. A common option is to offer a platform with the neces-
sary tools to facilitate the development of simple OpenGL appli-
cations [PPGT14, Mil14]. Increasing the capabilities of this type
of framework [BSP17] makes them approach the functionalities of
a graphics engine with its added complexity. One way to reduce
the impact of these abstraction mechanisms is to introduce them
gradually, allowing users to increasingly access OpenGL function-
ality [RME14, ACFV18].

Andujar et al. [ACFV18] present a CG programming framework
that supports student self-assessment. The authors provide a sim-
ple command-based language for describing a test set (scene to
be loaded, camera setup, rendering parameters, uniform values ...)
such that a correct implementation should produce the same image
(up to rounding errors or hardware specific rendering options) as
the instructor reference implementation. Unfortunately, grading as-
sistance is limited to a comparison of output images, with no code
analysis. Our system uses the test framework in [ACFV18] but sup-
plements it with a rubric-based system based on code analysis.

3. System overview

Our current prototype focuses on shader programming. We use
OpenGL 3.3 (core profile), which supports Vertex Shaders (VS),
Geometry Shaders (GS) and Fragment Shaders (FS). The choice of
OpenGL version is only motivated by limitations of the graphics
cards in our current laboratories; the extension to more recent ver-
sions to support new shader types (e.g. tessellation control shaders
and tessellation evaluation shaders) is straightforward.

Figure 1 shows an overview of our system, which consists of two
main parts: testing and analysis.

The testing subsystem requires the source code of the refer-
ence solution, the source code of the student submission, and an

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

22



C. Andujar & C. R. Vijulie & A. Vinacua / A parser-based tool for grading CG assignments

Figure 1: Overview of our system.

instructor-provided test file that specifies different test sets. Test
sets are defined in terms of 3D models and values for the uniform
variables that define the execution environment, including matrices
for space transformations, material parameters and light parameters
(Section 4). The output of the test set is a collection of comparison
images/movies showing the output from student shaders, the output
from instructor shaders, and their difference.

The analysis proceeds in three steps.

The pre-analysis requires no problem-specific rubrics. Instead,
it parses all student submissions and extract many syntax-aware
features such as number of function calls to each predefined GLSL
function (e.g. dot, cross, normalize). The pre-analysis might also
use a general rubric file looking for common mistakes in shaders
such as unused outputs or redundant code (e.g. v.xyz when v
is already a vec3). The output of the pre-analysis is a short report
with detected outlier features (e.g. "No calls to dot() function [4 out
of 88]", "No uses of normalMatrix [5 out of 88]", "Too many user-
defined functions [1 out of 88]") along with the source code with
these features color-highlighted. The idea is to provide instructors
with an a-priori overview of anomalous/suspicious features, so that
they can quickly figure out potential code problems. For example,
no dot() calls in a lighting shader indicate that either the student
code is wrong (this can be confirmed by the test results) or that
the student implemented dot() manually, which might be slightly
penalized. Besides the report, the features are also dumped into a
spreadsheet where each row corresponds to a student, and columns
indicate analysis results.

The mid-analysis is similar but requires a problem-specific
rubric that checks code features based on a custom API. The
API provides high-level access to features retrieved through syntax
analysis of the code and limited code understanding e.g. coordinate
system of any expression. For example, the instructor might want
to check that the VS uses the normal in eye space,

"eye" in vs.space("normal")

or that there is at least one call to the normalize() function,

vs.numCalls("normalize")>=1.

Inspiration for writing problem-specific rubrics can be gained
from the pre-analysis output plus domain-specific knowledge about
the solution. For instance, Blinn-Phong shading implementations
require exactly one call to the dot() function.

A post-analysis could be run after all grades are available.
It could use the extracted features from pre-analyses and mid-
analyses to detect potential anomalies in grades.

In summary, the expected workflow for instructors is as follows
(Figure 1):

1. Write reference solution (.vert, .geom, .frag).
2. Write test file (.test).
3. Let the system do both the testing and pre-analysis of all sub-

missions.
4. Read the reports (outlier features, highlighted source code) of a

few students to write a specific rubric file (.rubr).
5. Let the system do the mid-analysis.
6. Grade the assignments based on (a) test results, (b) extracted

rubrics from previous analyses, (c) review of the highlighted
code, if needed.

7. Let the system do the post-analysis and check detected anoma-
lies, if any.

4. Test system

Our test system is based on [ACFV18]. The system provides typical
per-vertex attributes (vertex, normal, color, texCoord) and a collec-
tion of uniform variables for camera matrices, and lighting/material
parameters. A test file contains a list of commands to automate
model loading, texture loading, and for setting up specific camera,
material, lighting and other uniform values (see Listing 1). Figure 2
illustrates the testing process. The system automatically loads the
test file and executes its commands to capture screenshots of the
output under different test conditions specified in the test file. These
images are then compared to reference images from the instructors,
and a composite image is shown to facilitate comparison and high-
light differences, if any. Minor per-pixel differences might be at-
tributed to factors not invalidating correctness, such as hardware or
driver configuration differences, rounding errors... and are ignored.
In practice, visual comparison of the student’s output against the
reference images has proved to be a powerful tool to quickly detect
errors.

5. Analysis system

The analysis is based on the syntactical analysis of the GLSL code.
Each rubric is essentially Python code computing a description text
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resize 800x600 loadObject glass.obj
lightDiffuse 1 1 1 camera preset1
lightSpecular 1 1 1 grab 1
matDiffuse 1 .5 .3 loadObject man.obj
matAmbient 1 .5 .3 camera preset2
matSpecular 1 1 1 grab 2

Listing 1: Example of a test file for a lighting shader. The grab
command saves an image with the current settings.

Figure 2: Overview of the shader testing process (left) and sample
output from it (right).

plus a Boolean or numeric value. Rubrics use a custom-designed,
high-level API to quickly access results from the parser. Two ex-
ample rubrics are shown in Listing 2.

The first rubric simply counts the number of calls to the cross()
function in the VS. The second one checks for calls to the normal-
ize() function with a vec4 parameter.

% Rubric 1
R("Calls to cross", vs.numCalls("cross"))

% Rubric 2
R("Normalizing vec4", "vec4" in
vs.paramType("normalize"))

Listing 2: First rubric examples.

5.1. Rubric API

Here we provide a quick overview of our high-level API. See im-
plementation details in Section 6.

Rubrics need to call a custom function R() that requires a de-
scription text and a value (Listing 2). Description texts will be used
in the output reports and as column headers in the output CSV files.

5.1.1. Scope

Rubric code can query parser data of the VS, GS and FS through
the parser objects vs, gs and fs. For example:

vs.numCalls("mix") # looks for mix() in VS
fs.numCalls("dot") # looks for dot() in FS

For convenience, queries can refer to multiple shaders through
parser objects vsgs, vsfs, gsfs, and vsgsfs:

vsfs.numCalls("mix") # looks for mix() in VS & FS

The query scope can be further reduced through functions that
return parser objects limited to a specific part of the shader (see
below).

5.1.2. Return types

Most API functions include an optional parameter to specify the
desired return type. For these functions, the default return value is
a string (actually a list of strings, one for each occurrence). For
example, given this VS:

vec3 L = normalize(Q - P);

the following functions return either strings or a parser object:

vs.param("normalize")
# returns ["Q - P"] as list of strings

vs.param("normalize", True)
# returns ["Q - P"] as list of parser objects

String return values allow for very compact rubric code. We can
e.g. check if the normal attribute appears as parameter of a normal-
ize() call by simply writing:

"normal" in vs.param("normalize")

Conversely, parser objects allow for further syntactical queries:

# number of dot() calls within for loops:
for p in vs.sentences("for", True):

print(p.numCalls("dot"))

5.1.3. Querying parameters in function calls

We provide functions to check specific parameters of function calls,
including predefined functions, user-defined functions, construc-
tors and operators.

In the following examples, we omit the parser object (e.g. "vs.")
for compactness:

param("mix", 3)
# returns 3rd parameter for all calls to "mix"
# parameter position can be omitted (default 1).

param("vec4", -1)
# returns last parameter of "vec4" constructors

param("*", 2)
# returns second parameter of product operators

paramType("mix", 3)
# returns the type of 3rd parameter (e.g. "float")

This rubric checks if modelMatrix appears on the right of a prod-
uct operation:

R("Wrong order in matrix product",
"modelMatrix" in vs.param("*",2))

We can easily check if the normalize() function is called with a
vec4 parameter:

R("Normalizing vec4",
"vec4" in paramType("normalize"))

5.1.4. Querying variables, functions and sentences

Similarly, our API provides functions that look for all appearances
of specific variables, functions, operators and sentences. Again, re-
turn types can be strings or parser objects, as desired.
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declarations("speed")
# list of declarations of variable "speed"

assignments("L")
# list of assignments to variable "L"

# list of all uses (read, write, param) of "color"
uses("color")

# Also valid for constructors and operators
calls("normalize")
calls("vec4")
calls("*")

# appearances of the "for" sentence.
sentences("for")

For simplicity, every function foo() returning a list has a
matching function numFoo() returning the length of the list. For
example, len(vs.calls("mix")) can be equivalently written
vs.numCalls("mix").

5.1.5. AST queries

The following functions rely explicitly on the Abstract Syntax Tree
(AST) built by the parser:

child("while","condition")
# returns the condition of all "while" sentences

isDescendantOf("discard", "if", "body")
# checks if discard sentences appear within the
# body of a conditional block.

This rubric checks if some while condition includes a "==" op-
erator:

R("Equality in while",
"==" in ' '.join(vs.child("while","condition")))

We could check if a discard sentence is within a conditional
block:

R("discard outside",
any(fs.isDescendantOf("discard", "if", "body")))

5.1.6. Shader-specific functions

The following functions are specific to shaders:

inNames()
# input variables declared in the shader

outNames()
# output variables declared in the shader

inTypes()
# type of input variables declared in the shader

outTypes()
# type of output variables declared in the shader

The following rubrics check if some "in" variable is not used, or
some "out" variable is not assigned:

R("in var not used",
all([fs.numUses(v)>0 for v in vs.inNames()]))

R("out var not assigned",
all([vs.numAssignments(v)>0 for v in vs.outNames()]))

5.1.7. Semantic analysis

The following functions are based on code understanding. Our
system recognizes the following coordinate systems: "object",
"world", "eye", "clip" and "NDC".

space("gl_Position")
# returns the space of the variable
# in all its appearances.

This rubric checks that at some moment the VS writes
gl_Position in clip space:

R("gl_Position in wrong space",
"clip" not in vs.space("gl_Position"))

Space tracking is limited to expressions that can be evaluated
at parser time. Fortunately, most transformations are accomplished
through predefined uniform matrices, which greatly simplifies this
task. In our current implementation, space tracking is limited to the
main() function.

5.2. Pre-analysis

The pre-analysis step goes through all student submissions of a
given assignment to compute a set of general (i.e. not problem-
specific) syntactical features (e.g. number of calls to EmitVertex in
a GS). For each feature, we compute a histogram representing its
distribution. If the distribution is not degenerate, we include its plot
in a report. For categorical features, we replace the histogram by a
bar chart.

Our current prototype computes features based on integers (e.g.
number of calls to all predefined functions, number of common
GLSL sentences, number of uses/assignments to predefined at-
tributes, uses of uniform variables.,..) and Booleans (e.g. there are
unused input vars). Here is an extract of a general feature definition
file:

R("Calls to dot()", vs.numCalls("dot"))
R("Calls to *", vs.numCalls("*"))
...
R("Occur of for", vs.numSentences("for"))
R("Occur of while", vs.numSentences("while"))
...
R("Uses of vertex", vs.numUses("vertex"))
R("Uses of viewMatrix", vs.numUses("viewMatrix"))
...
R("Num out vars", len(vs.outNames()))
R("Num in vars", len(fs.inNames()))
...
R("Normalizing vec4",
"vec4" in paramType("normalize"))
...
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5.3. Mid-analysis

The mid-analysis step is similar to the pre-analysis above, but it
uses problem-specific rubrics. For example, a phong assignment is
expected to include exactly two calls to dot(), whereas Blinn-Phong
requires only one. A GS performing a 1:4 subdivision is expected
to include 2-4 calls to EndPrimitive().

Besides the associated distribution/bar chart report and CSV file,
we also generate a PDF/HTML version of the source code where
pieces corresponding to rubrics are highlighted. These files, to-
gether with test results will be the basis for faster code review and
grading.

5.4. Post-analysis

We foresee that an analysis of all submissions once graded, would
be of great value. For example, we could train a model to predict
scores from test outputs and rubrics. The output could be the list of
submissions sorted by decreasing deviations between actual grade
and predicted one. Instructors could then recheck submissions with
large deviations.

6. Implementation details

In order to analyze a submission, we need to generate an Abstract
Syntax Tree (AST) from the source code and process it. We use
ANTLR [PQ95], an open-source parser generator that takes a gram-
mar definition and generates a lexer and a parser that can build
ASTs. These trees are later processed using either the listener or the
visitor mechanisms. Our prototype uses ANTLR4’s Python target
and an open-source GLSL grammar (https://github.com/
labud/antlr4_convert) to generate both listener and visitor
interfaces that we combine into a single Python library.

Listeners are objects that use a built-in parse-tree walker that
triggers events at each grammar rule it encounters. Given a gram-
mar, ANTLR generates a parse-tree Listener interface with a func-
tion for the entry and exit points of each rule in the grammar. This
makes it easy to implement some basic features (e.g. counting the
number of calls to a certain function) since we can extract informa-
tion from interesting nodes without the need to visit any children.

Since listeners are triggered by an automatic tree walker they
cannot include a return statement. More complex rubrics require an
explicit control of the AST traversal. To this end, ANTLR provides
the visitor object and generates an interface with the default imple-
mentations of each method. Visitors, unlike listeners, do not need
a parse tree walker, since they let us visit children nodes explicitly.
This makes it possible to implement complex features that need in-
formation on the context of the whole program, not only one rule.

One particular example of such complex features is inferring the
coordinate system of an expression. This feature, of course, has
major limitations, but can also yield useful results in the average
case. We cannot determine the precise output of a program with-
out executing it, but we can calculate the set of possible paths it can
take for each statement. The obvious problem of unfolding code are
loop statements, and the fact that it can be impossible to predict the
number of iterations they will go through, but given the precondi-
tion that the program does eventually stop, and the knowledge that

many shader programs do not require loop statements, we can keep
track of each variable declaration, assignment and its coordinate
system along each one of the possible paths that the program can
take. In the general case, a variable’s coordinate system should not
depend on external factors, which makes it easy to detect errors just
by observing the presence of different possible coordinate systems
for a variable in a given statement.

7. Results

We did a preliminary test with some recent assignments from a lab
exam (86 participants).

7.1. Quads (GS)

One of the assignments asked students to write a GS that, for each
input triangle, outputs four triangles, one for each quadrant of the
viewport. This is a first step for a GS that shows top, left, front,
perspective views of the scene. Students were advised to use NDC
for translating the copies, as (x,y) coordinates of NDC copies just
differ by ±0.5.

The pre-analysis step already revealed some interesting features.
Figure 3 shows the bar charts of a couple of general features. No-
tice how some outliers are clearly visible. Conversion from clip to
NDC requires a perspective division (i.e. dividing by the homoge-
neous coordinate w). This division can be performed only once.
In this case, outliers in the number of .w accessors corresponded
to incorrect submissions or to submissions performing the division
multiple times, e.g. once for each quadrant (which should be penal-
ized).

Figure 3: Stacked bar charts for two rubrics of the Quads as-
signment. Submissions with correct output are shown in blue, and
incorrect ones in red.

The bar chart on the number of EmitVertex() also shows clear
outliers. The natural solution requires either one or four EmitVer-
tex() calls, depending on the number of loops used. Outliers corre-
sponded to wrong code or poorly-factorized code.

For the mid-analysis, we created rubrics based on our own
knowledge of the problem, starting from pre-analysis results. For
example, for the Quads assignment we included, among others, the
following rubrics:

R("Suspicious .w accesses",
gs.numCalls(".w") not in [0,1,4])

R("Too many EmitVertex calls",
gs.numCalls("EmitVertex") > 4)
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7.2. Dithered cartoon shading (FS)

For this assignment students had to write a cartoon-like shader that
involved the use of a noise texture and color dithering. Figure 4
shows the bar charts of two sample rubrics. The first one shows
whether students used gl_FragCoord or not. The solution re-
quired the fragment coordinates to access the noise texture, so sub-
missions not using it did not pass the test (shown in red). This rubric
will provide useful feedback to students whose submissions did not
pass the tests.

The second bar chart shows the number of loops in the FS. The
assignment required to find the closest quantized color to a noise-
perturbed color. Most students realized that this could be computed
by just rounding, whereas others used an inefficient loop to search
for the closest quantized color. This does not affect the operational
correctness, so it cannot be detected looking at the test set results.
This kind of rubric greatly simplifies detecting and providing feed-
back to those submissions that need to be penalized for inappropri-
ate code, no matter the output correctness.

The potential impact of a given feature on the pass/fail propor-
tion can be evaluated through a Pearson’s χ

2 test, which computes
how likely it is that any observed difference on these proportions
arises by chance. In other words, we test whether population pro-
portions are the same, where populations are defined by submis-
sions sharing the same value for the feature. A significant p-value
suggests that the feature plays a role in output correctness and thus
it is potentially useful as feedback about operational correctness.
One example is the number of calls to normalize() in a shader
that requires normalizing vectors. On the other hand, features with
equal pass/fail proportions might still provide useful feedback for
output-independent issues such as efficiency (e.g. overly complex
code). For the features in Figure 4, p-values for the χ

2 test were
0.07 and 0.09, resp. See accompanying video for more examples.

Figure 4: Stacked bar charts for two rubrics of the Cartoon Shad-
ing assignment. Submissions with correct output are shown in blue,
and incorrect ones in red.

7.3. More complex rubrics

Our API allows writing complex rubrics with a few lines of Python
code. For example, the following code checks that, if the VS out-
puts the normal to the FS, if it is normalized before using it:

# get the out vars the VS copies the normal to
L=[vs.assignments(v,True) for v in vs.outvars()]
names = [a.param("=",1) for a in L if "normal"
in a.param("=",2)]

# check they are all normalized in FS
mask=[(v in fs.param("normalize")) for v in names]
R("Normalizes normal in FS", all(mask))

8. Conclusions and future work

In our experience with over 10 years grading shaders, we have seen
that functionally correct code by no means implies high-quality
code. Indeed, correct code is often poorly written, including highly-
redundant code, over-complicated solutions, inefficient code, and
non-sense fragments.

From a pedagogical point of view, despite automatic judges are
valuable tools for learning, the typical pass/fail output per assign-
ment provides minimal feedback to students. On the one hand, stu-
dents with wrong submissions will get, at most, a few test cases that
lead to incorrect output [MVPR14]. Fortunately, the "fail" outcome
is likely to encourage students to try to fix the submission (e.g. by
comparing their code against a solution, so they still have a chance
to learn what was wrong.

On the other hand, students with functionally correct code will
just get a pass outcome, no matter the code quality. Even worse, a
"pass" result might discourage students from comparing their code
against a reference solution, so their shader programming mistakes
are likely to persist in future submissions.

From an assessment point of view, grading through summative
evaluation disregards poor-quality code in functionally-correct sub-
missions, and give no credit to almost-right submissions.

Manual code review addresses these concerns, but at the expense
of grading time, and thus it does not scale well with the number of
students.

Our approach is not intended to replace manual review, but to
assist evaluators (through statistics on syntactical features, rubrics,
and automatically-generated code comments) in quickly detecting
both functionally-incorrect code (through a test-based system com-
paring output images) and poor-quality code (through syntactical
analysis).

Major benefits of our approach include:

• It automatizes download, compile, run, test.
• It automatizes detection of common, general errors (e.g. redun-

dant normalization).
• It automatizes detection of problem-specific errors.
• Facilitates code review by highlighting key code fragments.
• Provides precise image-based and text-based feedback for stu-

dents.

For instructors familiarized with the API, typical rubrics take one
line of Python code and can be written quickly. We further amor-
tize this rubric authoring time since (a) students get automatically-
generated comments in their submissions, saving time in exam re-
views, (b) many rubrics can be re-used for similar assignments, and
(c) since many exam assignments become practice problems for
new students, some rubrics are later used for self-assessment.

Our approach works best with assignments with low or mid-
complexity (not to be confused with difficulty). The usefulness of
syntactical features decreases as the assignments involve solving
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many different tasks. For example, the number of calls to dot() is
very informative when analyzing a simple lighting shader, but less
informative if the same shader also performs other tasks such as
normal mapping. In such cases, a solution is to ask students to write
separate functions for different tasks, so that syntactical features
can be computed also for each function independently.

On the other hand, the proposed workflow is cost-effective for
mid-size groups (e.g. 20-800 students). For smaller groups, rubric
writing time is not amortized; for larger groups and MOOCs man-
ual code review becomes unfeasible and auto-graders should be
used.

As future work, we plan to explore Multi-Dimensional out-
lier detection to further detect and highlight anomalous/suspicious
code segments. Although we have focused in shader program-
ming, we plan to extend the system to parse C++ code calling
OpenGL/Vulkan functions.

Repository Source code for our shader analysis tool is available in
the following Git repository: https://gitrepos.virvig.
eu/docencia/glcheck.
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