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Abstract—Task Parallelism is a parallel programming model
that provides code annotation constructs to outline tasks and
describe how their pointer parameters are accessed so that they
might be executed in parallel, and asynchronously, by a runtime
capable of inferring and honoring their data dependence rela-
tionships. It is supported by several parallelization frameworks,
as OpenMP and StarSs.

Overhead related to automatic dependence inference and to
the scheduling of ready-to-run tasks is a major performance
limiting factor of Task Parallel systems. To amortize this
overhead, programmers usually trade the higher parallelism
that could be leveraged from finer-grained work partitions for
the higher runtime-efficiency of coarser-grained work partitions.
Such problems are even more severe for systems with many
cores, as the task spawning frequency required for preserving
cores from starvation grows linearly with their number.

To mitigate these problems, researchers have designed hard-
ware accelerators to improve runtime performance. Neverthe-
less, the high CPU-accelerator communication overheads of
these solutions hampered their gains.

We thus propose a RISC-V based architecture that minimizes
communication overhead between the HW Task Scheduler and
the CPU by allowing Task Scheduling software to directly
interact with the former through custom instructions. Empirical
evaluation of the architecture is made possible by an FPGA
prototype featuring an eight-core Linux-capable Rocket Chip
implementing such instructions.

To evaluate the prototype performance, we both (1) adapted
Nanos, a mature Task Scheduling runtime, to benefit from the
new task-scheduling-accelerating instructions; and (2) developed
Phentos, a new HW-accelerated light weight Task Scheduling
runtime. Our experiments show that task parallel programs
using Nanos-RV — the Nanos version ported to our system
— are on average 2.13 times faster than those being serviced by
baseline Nanos, while programs running on Phentos are 13.19
times faster, considering geometric means. Using eight cores,
Nanos-RV is able to deliver speedups with respect to serial
execution of up to 5.62 times, while Phentos produces speedups
of up to 5.72 times.

Index Terms—Task Scheduling, Rocket Chip, RoCC Interface,
Picos, RISC-V, Chisel.

I. INTRODUCTION

For many of todays parallel programming tools, ease of use
often comes at the cost of performance. Consequently, writing
correct and efficient parallel software in a productive way is a
daunting task. While multi-core, heterogeneous systems have
recently become commonplace — most smartphones now fall
in this category —, software development tools for tapping
their potential have not improved at the same rate.

Task Parallelism is a parallel programming model that
allows a Task Scheduling Runtime to automatically sched-
ule tasks to available processors while respecting the data
dependencies between them. Runtime libraries implementing
this model automatically infer data dependencies between
tasks at execution time. The information necessary for do-
ing so is provided by simple programmer annotations that
indicate whether memory addresses pointed to by tasks are
read from, written to, or both. Some have argued [12] that
Task Parallelism can be understood as a technique for semi-
automatically transforming sequential imperative programs
into dataflow representations, for which elementary operations
are performed concurrently and asynchronously, as soon as
their input data become available. In fact, as others pointed
out [12], task parallelism does for tasks the same that
Tomasulo’s Algorithm does for instructions — it infers data
relationships between them and lets them be run by an array
of processing units, according to their data dependencies.

Support for Task Scheduling with automatic inference of
data dependencies was initially provided by OmpSS, OpenMP
4.0 and DepSpawn through their corresponding software
runtime implementations [3, 10, 13, 14]. Nonetheless, it was
soon acknowledged that even though software-based Task
Scheduling was good enough for extracting coarse grained
parallelism, it could not cope with: (1) workloads involving
very fine tasks; or (2) architectures with a large number
of cores. In the first case, the long latency of the software
runtime is comparable to the task execution time, thus impact-
ing performance. In the second case, insufficient scheduling
throughput of the software runtime leads to part of the cores
becoming starved for work. In both cases, the overhead due to
the runtime latency plays a central role in degrading system
performance.

As a result, several research groups have sought to improve
the maximum throughput of Task Scheduling systems by re-
sorting to hardware acceleration, leading to largely successful
designs [8, 18, 20, 24]. For example, the Picos [20] Task
Scheduling accelerator was proven capable of significantly
improving the performance of task parallel programs.

Yet, even though FPGA-accelerated Task Scheduling sub-
stantially expands the applicability of Task Parallelism with
respect to software-only runtimes, CPU-FPGA communi-
cation overheads, low FPGA clock rates, and reliance on
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software drivers for accessing these accelerators lead to
serious performance penalties that prevent such systems from
handling the most demanding workloads.

This paper proposes an architecture that tightly integrates a
Task Scheduling HW accelerator with a general purpose CPU
to minimize communication latency, reduce runtime overhead,
and consequently increase the performance of applications
parallelized with Task Scheduling.

A. Contributions
We prototyped a system where Task Scheduling func-

tionality is not provided by an accelerator external to the
CPU, but by logic sitting in the processor itself and made
visible to applications through custom instructions. By ruling
out FPGA-CPU communication latencies, this architecture
drastically reduces Task Scheduling overhead, meaning that
tasks might be scheduled to cores at much higher rates.
Designing this new architecture involved using the Chisel
language [2] to integrate Picos, a mature Task Scheduling
accelerator, to Rocket Chip, an open-source, silicon-proven,
multi-core implementation of RISC-V [1].

To measure Task Parallel application performance of this
platform, we adapted Nanos — a software-only Task Schedul-
ing runtime, targeting the OmpSs programming model —
to our system. We also developed a new lightweight, high-
performance Task Scheduling runtime called Phentos from
scratch, building upon the lessons learned while adapting
Nanos.

The semantics of the custom instructions are also general
enough that different HW Schedulers could be integrated.

As discussed in Section VI, the increased maximum task
scheduling throughput of our system gives it two closely
related advantages over previous solutions. If (1) mean task
granularity is kept constant, Task Scheduling programs might
be efficiently scheduled to a larger number of cores, and (2) if
the number of cores is kept constant, workloads using smaller
tasks than ever before might be efficiently executed. In fact,
for workloads involving very fine-grained tasks, our system
delivers application speedups of up to 146.01x (13.19x on
average) with respect to a scenario where no Task Scheduling
acceleration is used, with performance degradation (no larger
than 3%) occurring for only 1 of the 37 analyzed workloads,
involving 5 different programs.

B. Paper structure
This paper is divided as follows: Section II presents our

approach in the context of related work; Section III describes
background material for the following sections; Section IV
details the proposed hardware architecture; Section V de-
scribes the software systems developed for letting the new
architecture serve Task Scheduling applications; Section VI
discusses the experimental setup and its results; at last, we
present our final remarks in Section VII.

II. RELATED WORK

Researchers have been aware of the need for hardware
acceleration of task-based systems since, at least, the late

2000s. The earliest solutions consisted of processor exten-
sions for improving scheduling of dependence-less tasks.
Then, as StarSs and later OpenMP 4.0 introduced tasks
with data dependencies [11, 17], new architectures were
proposed for reducing task graph management overhead, and
HDL implementations of several of these architectures were
conceived [7, 9, 22, 23, 24].

Kumar et al. [15] developed hardware task queues that
could be used for accelerating the dynamic scheduling of
tasks with only parent/child dependencies. Their work also
aimed at improving load balance between cores by imple-
menting a fast HW work stealing mechanism.

Meenderinck and Juurlink [16] argued that the software
StarSs runtime then available did not deliver enough schedul-
ing throughput to let Task Parallel programs scale well in
scenarios with more than five Cell cores, concluding that
hardware acceleration was needed for those cases.

Etsion et al. [12] proposed the Task Superscalar architec-
ture, which aimed to improved the scheduling performance of
tasks with dependencies. The design was evaluated with an
adapted processor simulator fed with task parallel application
traces from several domains.

Then, Dallou et al. [7] brought about an FPGA-
synthesizable hardware architecture called Nexus# for accel-
erating StarSs runtimes. This architecture was an optimized
version of a prior HW task scheduler, Nexus++ [6]. Although
having similar goals to Task Superscalar, this work had the
edge of encompassing an actual VHDL prototype that could
be used for more precise performance evaluation.

Yazdanpanah et al. [24] presented a similar HW task
scheduler called Picos. After performing a thorough design
space exploration of the main system components, this work
presented performance results based on program traces and
on timing analysis of a Picos VHDL implementation.

After that, Tan et al. [19] extended the work on Picos by
embedding it in the first Task Scheduling system, capable
of serving real Linux applications, based on a Zynq-7000
Xilinx development board. With this platform, Tan et al.
[19] confirmed that systems with HW-based Task Scheduling
outperform software-only alternatives and showed that FPGA-
CPU communication latencies have great impact on program
performance. The Picos VHDL implementation used in that
work is the same that we integrated to Rocket Chip.

Some time afterwards, Tan et al. [20] unveiled Picos++,
a new version of Picos with support to nested tasks and
improved FPGA-CPU communication.

Performance results presented by many of these works
[7, 22, 24] do not assess the impact of communication
latencies between the CPU and the HW Task Scheduler. Con-
sequently, the performance figures they report are far more
favorable than those reported for full-system implementations
of Picos [19] or Picos++ [20]. Moreover, while these full
implementations succeed at proving that HW Task Scheduling
consistently outperforms SW Task Scheduling, they have
important limitations. First, they do not allow programs to be
executed on more than two or four cores, since they are based



on a dual-core or quad-core ARM+FPGA SoCs. Second,
even though Picos++ greatly improves upon the original
Picos FPGA-CPU communication scheme, the lifetime-cost
of processing tasks is in the range of thousands of processor
cycles for any of these systems, degrading performance of
fine-grained task applications.

Our system overcomes both of these limitations. Being
based on Rocket Chip, it enables program execution on up to
eight floating-point-enabled cores in our FPGA of choice, the
ZCU102-ES2. Additionally, by embedding Task Scheduling
logic into the processor itself, all FPGA-CPU communication
latencies have been eliminated, thus reducing the total amount
of cycles needed for scheduling a task by up to two orders
of magnitude with respect to the best previous system based
on the same accelerator [20]. In doing so, it greatly expands
the number of applications that can be efficiently handled by
Task Scheduling.

III. BACKGROUND

A. Task Scheduling

The Task Scheduling Paradigm involves the scheduling
of elementary computational units called tasks to processors
according to the dependence relationships between them,
an activity that is typically coordinated by a software Task
Scheduling Runtime. According to the paradigm, task B is
said to depend on some task A if, and only if, B is generated
after A and one of the following propositions is true:

• Task A writes to some memory position p and B reads
from p (RAW dependence)

• Task A writes to some memory position p and B writes
to p (WAW dependence)

• Task A reads from some memory position p and B writes
to p (WAR dependence)

B. Chisel

Chisel is a modern open-source HDL conceived by Berke-
ley researchers that is based on Scala [2]. Rocket Core
and BOOM are among the most popular RISC-V processor
implementations designed with this language.

C. Rocket Chip

Rocket Chip is a parametrizable, open-source, Chisel-based
SoC generator of RISC-V systems capable of emitting synthe-
sizable RTL code [1]. It can be used for generating single-core
or multi-core processors with either in-order (Rocket Core)
or out-of-order (BOOM) pipelines. Caches, interconnects, and
other system aspects are tailored by user-defined parameters.

D. Rocket Core

Rocket Core is a in-order open-source RISC-V implemen-
tation that can be instantiated in both 32-bit or 64-bit form. It
supports easy integration of custom accelerators through its
RoCC Interface.

1) RoCC Interface: This interface allows a compliant
accelerator to make cache-coherent memory accesses and be
exposed to user programs through custom instructions. The
RoCC instruction format is described by Figure 1. There,
fields rs1 and rs2 indicate the two optional operand regis-
ters; rd encodes the optional destination register; operands
xd, xs1, and xs2 indicate whether rs1, rs2, or rd,
respectively, are used; opcode stores the instruction opcode;
finally, funct7 encodes the desired behavior, allowing in-
structions with identical opcodes to trigger distinct accelerator
functionalities.

funct7 rs2 rs1 xd xs1 xs2 rd opcode 

7 5 5 1 1 1 5 7 

roccinst[6:0] src2 src1 dest custom 0/1/2/3 

31 25 24 20 19 15 11 714 13 12 6 0

Figure 1. Format of RoCC instructions.

E. Terminology

This subsection defines some terms found in the rest of this
work.
Task granularity refers to the duration of a task. We say

that a task is fine grained if it has comparatively short
execution time, conversely, that it is coarse grained if it
has comparatively large execution time.

Task retirement refers to the action by which a program
informs a supporting Task Scheduling system that a
certain task has finished executing.

In-flight task Refers to a task that is currently being exe-
cuted.

Pending task Refers to a task that has been submitted but
whose execution has not yet started.

Ready task refers to a task that does not depend on any in-
flight or pending task and that is, consequently, ready to
be executed.

Task submission refers to the action by which a program
requests a supporting Task Scheduling system to add a
new task to the task dependence graph.

Maximum Task Throughput is the number of tasks that
a given task scheduling system is able to retire per
unit of time, considering all scheduling overheads and
assuming that task payloads are instantly executed by
worker processors.

IV. PICOS + RISC-V INTEGRATION

A. Architecture Overview

Our work adds native Task Scheduling support to a Rocket
Chip processor by integrating it with the Picos Task Schedul-
ing accelerator. In order to do so, it introduces two major
Chisel modules: Picos Manager, that is instantiated once
in the system and is visible to all cores; and the Picos
Delegate module, which implements the RoCC interface and
that is instantiated once in every processor core. Additionally,
Picos Manager decouples the CPU from the API of the
HW scheduler. As a consequence, the same architecture with
the same custom instructions could be used for integrating



HW schedulers other than Picos. A simplified view of this
architecture is given by Figure 2.

Figure 2. Overview of the Picos + Rocket Chip system architecture

Task Scheduling functionality is provided by Picos and
exposed to each core through custom instructions imple-
mented by the core-specific RoCC Picos Delegate instances
(called ROCC Acc-Stub in Figure 2). These instances in-
teract with Picos through the mediation of Picos Manager,
which implements logic for (1) ensuring the atomicity of
some Picos-CPU transactions; (2) reducing the number of
submission packets that must be provided by the CPUs by
compressing null packets; (3) arbitrating the distribution of
ready-to-run packets to cores; (4) allowing Chisel queues
found in Rocket Chip to correctly interact with Picos queues,
which implement a different handshake protocol; (5) buffering
Picos-CPU transactions for hiding short Picos downtimes. In
the near future, we plan to use Picos Manager for developing
optimizations like task-scheduling-aware cache prefetching,
faster parameter passing for tasks, etc.

B. The Software Interface

The main goal of this work was to develop a system
with as little scheduling overhead as possible. To this effect,
we not only leveraged the power of Picos to track task
dependencies much faster than software runtimes but we
also tried to keep communication latencies between Task
Scheduling applications and Picos to a minimum. In our
system, communication latencies are limited by the use of
low-latency Picos-CPU dedicated datapaths bypassing system
memory and by the provision of custom processor instructions
for requesting Task Scheduling functionality. The existence of
such instructions simplifies the construction of middleware to
connect task applications to the underlying Task Scheduling
hardware, thus avoiding additional software overheads.

While designing Picos Manager and the auxiliary Picos
Delegate, we opted for making most of the new instructions
non-blocking: of all instructions, only Retire Task is blocking.
In this context, blocking instructions are those that only return

Name Description
Submission

Request
Informs the system that the core executing this

instruction will attempt to submit a task.
Submit
Packet Submits a single 32-bit wide submission packet.

Submit
Three

Packets
Submits three 32-bit wide submission packets.

Ready Task
Request

Requests the system to move one more Ready Task
packet from the global Ready Queue to the queue

of the executing core.

Fetch SW
ID

If the ready queue of the execution core is not
empty, it returns the SW ID relative to the front

element of the queue.

Fetch Picos
ID

If the ready queue of the execution core is not
empty and the SW ID relative to the front element
of the queue has already been fetched, it returns the
Picos ID of the same element and pops the queue.

Retire Task Informs the system about the retirement of the task
with the Picos ID given.

Table I
SUPPORTED CUSTOM TASK SCHEDULING INSTRUCTIONS.

after the corresponding transaction between Picos Manager
and the core executing the instructions has completed. Making
most instructions non-blocking gives more freedom for the
runtime/applications programmer to decide what to do in
cases where Picos might not be able to accept a new task or
reply with a new ready task. If the system cannot complete
the required actions, the related instruction returns a failure
flag value and the program is free to keep trying. By quickly
replying with these failure values, our system allows the
runtime programmer to ask the core to sleep for a certain
amount of time, saving energy; to perform alternative work
actions; or even to request a context switch to the operating
system. Additionally, having non-blocking instructions eases
the development of deadlock-free systems, as we discuss in
Subsection IV-C. On the other hand, the Retire Task instruc-
tion was designed as blocking because (1) Picos is always
ready to receive new retirement signals, making the capability
of reporting failures useless; and because (2) this reduces
compiler register pressure, as the non-blocking version of the
instruction would require a result register to be available at
the moment the instruction is executed.

All instructions implemented by the Picos Delegates are
described by Figure 3.

In a typical use scenario, as the execution of a task parallel
application starts, some core ci issues a Submission Request
and, assuming the task has D dependencies, it executes
Submit Packet (3 + 3 · D) times — the number of packets
needed for encoding a task with that many dependencies, as
Figure 3 shows. Then, some core cj (possibly the same as ci)
issues a Ready Task Request to let its private ready queue be
eventually filled by Picos Manager. Once Picos Manager has
(1) noticed that a new Ready Task has been written to the
global ready queue and that it has (2) answered all previous
Ready Task Requests from any cores in their chronological
order — a condition that is trivially satisfied by the fact that
no other request has been previously issued — it pops data
from the global ready queue and encodes it into a new entry of
the private ready queue of core cj . Then, when core cj issues



a Fetch SW ID, it is answered with the SW ID that core ci
provided to the system during task submission. Finally, after
core cj has finished executing the task, it issues a Retire Task
to ensure that Picos removes the task from the Task Graph
and possibly makes more tasks ready for execution.

C. Avoiding deadlocks by using non-blocking instructions

As previously mentioned, ensuring that submission and
work-fetching instructions are non-blocking eases the devel-
opment of deadlock-free systems. In the following lines, we
present two scenarios where blocking instructions could lead
to deadlocks and discuss ways to avoid them.
Deadlock Scenario 1: blocking submission instructions

Let us suppose that some thread T might execute ready
tasks and that it is the only allowed to submit new
tasks to Picos. Let us also suppose that it successfully
executes Ready Task Request while trying to fetch a
new task but fails to get one by running Fetch SW
ID. Finally, let us suppose that just after the latter
instruction was executed, Picos Manager fills the
core-specific ready queue of T with a new descriptor.
Then, if for some reason T blocks while running any
submission-related instruction (Submission Request,
Submit Packet, or Submit Three Packets), it is possible
that it will never recover from it.
This might happen because the two following facts: (1)
submissions and submission requests might block when
buffers and other internal data structures in either Picos
or Picos Manager become full; and (2) it is possible that
more space might be available in these buffers and data
structures only after the task descriptor now sitting in
the core-specific ready queue of T is executed.
Consequently, if T blocks while performing a
submission-related operation in a situation where
it can only succeed after T consumes at least one
element of its own core-specific ready queue, the whole
system will stall.

Deadlock Scenario 2: blocking work-request instruction
As before, let us suppose that thread T might execute
ready tasks and that it is the only one allowed to
submits tasks to Picos. Let us further suppose that just
prior to the execution of Ready Task Request by T , the
routing queue in the work-fetch arbiter (see Fig. 5) is
full. In this case, the Ready Task Request instruction
issued by T will block until writing to that routing
queue is possible again. Nonetheless, if it is also true
that there are no ready queue descriptors either on
Picos or in the RoCC Ready Queue, the routing queue
will never be depleted — since there are no ready
tasks to distribute — and the Ready Task Request being
executed by T will never return. Ready tasks will only
be available after a new task submission succeeds, but
a new submission can only take place after at least one
ready task is fed to Picos Manager. Since these two
events depend on each other, none of them will never
happen, leading to a deadlock.

These deadlock scenarios can be avoided in several man-
ners. In our system, we opted for making the submission and
the work-fetching instructions non-blocking, which allows a
thread holding the responsibilities of both generating and
running tasks to freely switch between these roles. Alter-
natively, one could have decided to keep these instructions
blocking and, for example, use atomic shared variables to
ensure that threads with multiple roles never blocked after
performing actions related to role R1 while it still had pending
actions regarding role R2. This approach should lead to higher
software complexity and slightly lower performance due to
the atomic memory transactions required, though.
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Figure 3. Picos encoding of a task with N data dependencies. This shows
that any task is described by 3 ∗ (15 + 1) = 48 packets. In case a task has
N data dependencies — with 0 ≤ N ≤ 15 — the last Nz of these packets
will be equal to zero, where Nz = (15 − N) ∗ 3. In our system, only the
first 48 − Nz packets must be submitted by the Task Scheduling Runtime
to Picos Manager, as zero packets appended by the Submission Handler.

D. Picos

Picos [18, 20, 24] is the module responsible for providing
fast Task Scheduling functionality. Its communication inter-
face includes queues for (1) receiving information about new
tasks to be added to the task graph, called submission queue;
(2) informing the outside world about tasks that are ready to
be executed, called the ready queue; (3) being informed that
a task has retired, called the retirement queue.

We chose to use Picos instead of Picos++ because (1) we
had prompt access to Picos but not to Picos++; (2) they should
display exactly the same performance in our system, given
that our CPU-Scheduler communication scheme effectively
replaces the asynchronous communication module that made
Picos++ faster than Picos; and (3) we were not interested
in exploring nested task support, which Picos++ implements
and Picos does not. At the same time, replacing Picos with
Picos++ should be straightforward, given that they have the
same HW interface. Also, for making sure that the gains we
report reflect advantages over the previous state-of-the art,
the new proposed architecture is compared with the best-
performing system based on Picos++ from the literature [20].

E. Picos Delegate

The ISA extension interface defined by our architecture is
implemented by the Picos Delegate instantiated in every core.
The following lines describe how this accelerator implements
each of the supported custom instructions.

1) Submission Request: Before issuing submission pack-
ets, software running at a given core should issue a Sub-
mission Request describing the number of packets to be



submitted. This serves two purposes: first, it makes sure that
submission packets coming from such core will be forwarded
to Picos before packets relative to later submissions coming
from other cores; second, it allows the system to infer how
many zero-packets should be sent to Picos after the non-zero
packets, considering that Picos always expects to receive 48
32-bit packets. The non-zero packets of a task with D data
dependencies should be followed by 48−(3+3·D) = 45−3·D
zero packets (see Figure 3). Such null packets are automat-
ically generated by Picos Manager after the relevant Picos
Delegate sends the last non-zero packet.

2) Submit Packet: The Picos Delegate fulfills Submit
Packet instructions by simply forwarding the lower 32-bits
of their single register operand to Picos Manager, which will
then be responsible to forward the packet to Picos.

3) Submit Three Packets: The Submit Three Packets in-
struction is a variation of Submit Packet that submits three
32-bit packets at a time. The three submission packets P1,
P2, and P3 are retrieved from the rs1 and rs2 operand
registers, with P1 = rs1(63, 32), P2 = rs1(31, 0), and
P3 = rs2(31, 0). This instruction is useful for reducing
the amount of cycles taken for submitting tasks. Given that
the number of non-zero packets of Picos task descriptors
is always a multiple of three, task submissions may be
accomplished without resorting to the simpler and slower 1-
packet version of this instruction.

4) Ready Task Request: Picos Delegates do not have direct
access to the single ready queue of Picos. Rather, each of them
is allowed to pop contents of its core-specific ready queue
inside Picos Manager. On the other hand, Picos Manager
only forwards ready packets from Picos to these private
queues after being requested to do so. Picos Delegates issue
such requests upon the decoding of Ready Task Request
instructions. After receiving such request R from a core ci
with ready queue qi, Picos Manager is guaranteed to only
answer later ready task requests by any core after having
satisfied R. Consequently, Picos Manager distributes ready-
to-run tasks in the same order that ready task requests come
from the cores.

5) Fetch SW ID: Suppose that core ci, with private ready
queue qi, issues a Fetch SW ID instruction. If qi is empty, the
Picos Delegate instance in that core fulfills the instruction by
returning a failure value; otherwise, it fulfills the instruction
by returning the SW ID encoded by the front element of the
queue and setting an internal flag signaling its success. In
either case, it does not pop qi.

6) Fetch Picos ID: Suppose that core ci, with private ready
queue qi, issues a Fetch Picos ID instruction. If, and only
if, qi is not empty and a previous Fetch SW ID instruction
succeeded at retrieving the SW ID encoded by the front
element of qi, it fulfills the instruction by returning the Picos
ID encoded by the front element, popping qi, and resetting
the internal flag marking the success of a previous Fetch SW
ID instruction. If qi is empty and/or a previous Fetch SW ID
instruction has not succeeded at retrieving the front element

of qi, Fetch Picos ID will return a failure value and will not
change any internal state of Picos Manager.

7) Retire Task: The Picos Delegate fulfils Retire Task
instructions by pushing the payload of the operand register
to the Round Robin Arbiter in Picos Manager (see Figure 5).
Even though this operation is blocking — the Retire Task in-
struction only succeeds after the arbiter-mediated transaction
has finished — cores will most frequently be able to write
the retirement packet right away, given that Picos consumes
retirement packets fast enough for making sure that its internal
retirement queue can always receive a new packet from the
serializing Round Robin Arbiter.

F. Picos Manager
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Figure 4. Block diagram of the Submission Handler, a module instantiated
by Picos Manager for carrying out transmission of new task descriptors to
Picos.
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Figure 5. Internals of the Picos Manager module.

Picos Manager allows communication between Picos and
the core-specific Picos Delegates without modification of the
Picos interface. Additionally, it improves system performance
by converting compact submission packet sequences, which
come from the Picos Delegates and can have as few as three
packets, to Picos-compliant submission packet sequences,
which are always 48 packets long.

1) Interface: As shown by Figure 2, Picos Manager is
connected to Picos and each of the core-specific Picos Dele-
gates. Its core-specific interface, which is replicated for each
core, includes (1) a ready queue, (2) a retirement queue, (3) a
submission queue, (4) a submission request queue, and a (5)
work fetch request queue; its Picos-facing interface includes
(6) ready, (7) retirement, and (8) submission queues; finally,



its debug interface (omitted for simplicity from Figure 2)
includes (9) a 4-bit output signal encoding errors (omitted
from figures).

2) Structural elements: As described by Figure 5, Picos
Manager comprises the following main elements: the Round
Robin Arbiter, the Submission Handler, the Work-Fetch Ar-
biter, several protocol crossing modules, a Packet Encoder,
and core-specific ready queues. In the following lines, we
discuss their behavior and implementation.
Submission Handler The submission handler — shown in

detail by Figure 4 — is the module that handles process-
ing of submission packets in behalf of Picos Manager.
It serves three main purposes: (1) making sure that
submission packet sequences coming from cores are not
interleaved, given that Picos requires task submissions
to happen atomically; (2) enabling faster submission
operation by automatically padding non-zero submission
packet sequences with the necessary zero packets for
completing the 48-packets-long sequences expected by
Picos; (3) implementing the protocol crossing logic
necessary for allowing the standard Chisel queues em-
ployed in Rocket Chip to adequately interact with the
submission interface of Picos.
For achieving these goals, the Submission Handler relies
on the Guided Arbiter, which makes sure that, at any
given moment, (1) only one core is allowed to transmit
submission packets to Picos and that (2) access to Picos
submission interface is transfered between core-specific
submission buffers only after the last transmission se-
quence has been completed. Finally, zero-padding of
packet sequences is implemented by a Zero Padder
module.

Work-Fetch Arbiter The Work-Fetch arbiter is responsible
for distributing ready-to-run task descriptors to cores
according to the total-order at which they requested
such data. We implemented the Guided Arbiter using an
InOrderArbiter — available in the Rocket Chip source
tree as a stock library module — and some additional
low-abstraction logic.

Protocol crossing modules These modules allow the stan-
dard Chisel queues employed in Picos Manager to cor-
rectly interface with the Task Retirement and Ready-Task
interfaces of Picos. They should, for example, ensure
that Picos queues and standard Chisel queues correctly
interact in spite of the former being non-fallthrough
while the latter are fallthrough.

Packet Encoder This module compresses the three 32-bit
ready-task encoding packets produced by Picos for every
ready-to-run task into a single 96-bit packet, which is
then stored in a central Ready-Task queue.

Round Robin Arbiter This is a standard Chisel module
that arbitrates multiple-producer-single-consumer con-
nections in a round-robin fashion. It is used for merging
the task retirement signals coming from different cores
into the single retirement interface of Picos.

Core-specific ready queues These are buffers that hold 96-

bit (Picos ID, SW ID) tuples describing ready-to-run
tasks. Picos Manager contains one instance of such
buffer for every core in the system. Having such buffers
ensures that, in scenarios with plenty of ready-to-run
tasks, half of the the 8-cycle long latency for fetching
from Picos the three 32-bit packets describing a ready-
to-run task is hidden from the application, which will be
able to fetch the corresponding 96-bits of data with two
2-cycle-long RoCC instructions (Fetch SW ID and Fetch
Picos ID).

V. DEVELOPING TIGHTLY-INTEGRATED TASK
SCHEDULING RUNTIMES

With the purpose of evaluating the performance of our
system with Linux-based Task Scheduling runtimes, we both
(1) ported to our system Nanos-SW, a mature Task Scheduling
runtime targeting the OmpSs programming model, and (2)
created Phentos — a light-weight, high-performance task
scheduling runtime — from scratch. The first of these en-
deavors was useful for showing that our system is capable
of running any OmpSs-complying Task Parallel application
not generating nested tasks (which are not supported by
the iteration of Picos integrated by our system). On the
other hand, developing a new minimal runtime gave us the
opportunity to avoid several sources of SW overhead that
were identified in Nanos and that could not be easily removed
without a major library re-write. In the following lines, we
will discuss how each of these runtimes were built and how
the tightly-integrated Task Scheduling accelerator contributed
to their improved performance with respect to Nanos-SW.

A. Building Nanos-RV from Nanos-SW

Nanos is a software runtime supporting the OmpSs pro-
gramming model that is maintained by the Barcelona Super-
computing Center. It was designed to easily accommodate
new features as plugins that are dynamically linked to its core
system depending on environmental variables or command-
line arguments. It served as an important testing ground for
the Task Parallel constructs based on automatically-inferred
data dependences that were introduced by the OmpSs model,
helping them be integrated to OpenMP 4.0.

Using the plugin interface of Nanos, we developed a
new Nanos module capable of offloading data-dependence-
inference computation to Picos using the custom instruc-
tions implemented by our architecture. When this plugin is
activated by setting the NX_ARGS environment variable as
NX_ARGS="-deps=picos", our custom instructions are
used for submitting task descriptors to Picos, fetching ready-
to-run tasks, or informing Picos of retiring tasks. The new
picos dependence-inferring plugin replaces the default plain
plugin, which achieves the same through software. In this
work, we refer to Nanos using the plain plugin as Nanos-SW
and to Nanos using the picos plugin as Nanos-RV.

Nanos modularity comes with a price, though. The plugin
interface relies heavily on virtual functions for implementing
policy-oriented design, causing extra memory accesses for



task submissions, retirements, and work-fetches. Additionally,
Nanos code makes heavy use of mutexes and conditional vari-
ables for coordinating accesses to its shared data structures,
leading to the performance penalties of the related system
calls. Moreover, the ready-to-run tasks identified by Picos
are not immediately scheduled to the core that fetched the
corresponding ready-task descriptors, but are redirected to a
Scheduler singleton that pushes all descriptors fetched from
all cores through a single ready-task queue that all cores will
then be allowed to access — which is much more inefficient.

Even though the results of Section VI show that Nanos-
RV is substantially faster than Nanos-SW, the overhead issues
just discussed motivated us to implement a more light-weight
runtime that could allow us to enforce stronger optimizations
targeting the new architecture.

B. The Phentos Fly-Weight Runtime

Phentos was thus designed with the following goals:
1) avoiding all non-IO syscalls, including those related to

mutexes and conditional variables;
2) minimizing the number of cache-line invalidations per

submission event;
3) minimizing the number of cache-line moves per work-

fetching event;
4) minimizing function-call overhead by making most run-

time API methods inlinable in application code;
5) mitigating the cache-bouncing problem by minimizing

writes to atomic shared variables;
6) avoiding false-sharing with cache-aware data packing.
Phentos is implemented as a header-only (hpp) library, in

a similar spirit to that of the amply used Boost library. This
allows Phentos API methods be inlined in application code
by the compiler, complying with design goal (4).

In Phentos, the only data structures that are shared be-
tween threads are the Task Metadata Array — an array of
task metadata descriptors and — a single atomic counter
of task retirements — which is necessary for implement-
ing the taskwait construct used by many Task Parallel
applications. For avoiding false-sharing and contributing to
the minimization of cache-line invalidations per submission
event (goals 2 and 6), the Task Metadata Array is imple-
mented in such a way that the size of each of its elements
corresponds to either one or two cache lines (sufficient for
representing seven or fifteen task dependences, respectively).
A pre-processor macro controls which of the two element
sizes is used, according to the needs of the particular Task
Parallel application employing Phentos.

Also, Phentos is designed in such a way that any active
element of the Task Metadata Array will only be accessed by
the single thread that holds the swID corresponding to such
element. Threads obtain such identifiers by running Fetch SW
ID instructions as described in Section IV. Consequently, the
mere fact that two threads will never compete for the same
data elements deems the use of synchronization artifacts like
mutexes and conditional variables unnecessary in this context,
contributing to design goal (1).

As it is widely known, having a spin-locked thread fre-
quently verifying a memory position that is also frequently
updated by other threads leads to the so-called cache-line
bouncing problem. Combining memory accesses in such a
way causes cache traffic between the relevant cores be domi-
nated by the operations needed for transmitting data between
the memory-modifying cores and the one monitoring changes.
As a result, the general performance of all participating cores
quickly degrades, as less cache-interconnect bandwidth is
available for other memory accesses. Additionally, individual
updates to the contended line might also take much longer to
complete, as writers need to fetch updated content from other
writers before performing their own update. Such problem is
specially problematic for multi-core systems implementing
the MESI coherence protocol — as it is the case for the
Rocket Chip platform we based our prototype on — given that
this protocol does not allow dirty cache lines to be directly
communicated between caches. Instead, these systems require
dirty cache lines to be communicated through the one-step
higher cache level, which might even be main memory.

In order to avoid spin-locks from causing this problem,
several strategies might be employed. The one implemented
by Phentos for minimizing contention for the single atomic
counter of task retirements involves (1) letting cores keep a
private retirement counter that it might freely update; (2) only
allowing cores to update the shared atomic counter if their
private counters are non-zero and a given number of work-
fetch failures have happened since the last shared counter
update it performed; (3) making the spin-locking thread
monitoring the atomic counter check the variable only after
every N cycles, with N varying from 10 to 100 depending
on the taskwait method being used by the Task Parallel
application. By doing so, it fulfills design goal (5).

Finally, the compact single or double cache-line task meta-
data representation employed by Phentos allows the task
metadata of ready-tasks be fetched with only one or two cache
line transfers, contributing to design goal (3).

VI. EXPERIMENTAL EVALUATION

In this section we evaluate the following hypotheses:
1) that Phentos usually leads to better performance than

Nanos-RV or Nanos-SW;
2) that Nanos-RV usually leads to better performance than

Nanos-SW;
3) that the performance gap between the three runtimes

decreases as task granularity increases.
Verifying the two first hypotheses implies that the archi-

tecture described in Section IV succeeds at accelerating Task
Scheduling workloads, while the third hypothesis implies that
the performance gains offered by this architecture are more
significant for fine-grained workloads.

A. Methodology

The performance of the different Task Scheduling runtimes
— making use of HW assistance or not — is evaluated
by running the inputs of varying task granularities of the



benchmarks described in Sub-subsection VI-A2. The same
experiments are also useful for assessing the relationship
between task granularity and the performance gap between the
different runtimes. Processor parameters that are influential
on benchmark performance are described in Sub-subsection
VI-A1.

1) System Parameters: The Rocket Chip prototype used in
this work is an in-order eight-core processor with eight-way,
32KB, core-specific, cache-coherent L1 data and instruction
caches implementing the MESI protocol. A shared L2 cache
is absent, meaning that data movement between them must be
mediated by main memory. Consequently, the performance of
this system is specially sensitive to inter-core synchronization
and L1 cache misses. On the other hand, this effect is
mitigated by the fact that main memory runs at a much
higher clock — 667 MHz — than the modified Rocket Chip
— which runs at 80 MHz. Benchmarks are executed on a
minimal SMP-capable Linux image. All benchmark versions
— including the serial ones — are compiled with -O3
optimization strength. Also, OmpSs applications are compiled
with the Mercurium compiler [3], wheres benchmark versions
targeting either serial or Phentos execution are compiled with
plain GCC or G++. The fact that a high optimization strength
is used also for the serial versions of the benchmarks is
one of the main reasons why Nanos-SW, Nanos-RV, and
Phentos speedups over serial execution do not exceed the
6x factor. Experiments not included for brevity in this work
show that -O0 compiled Tasks Parallel applications might
have speedups over 7x over corresponding executions of -O0
serial binaries.

2) Benchmarks: System performance is evaluated with
programs from three different domains, as described next:

1) The blackscholes application, representing the Financial
Analysis domain, solves the Black-Scholes partial dif-
ferential equation for evaluating how the price of an
European-style option varies as a result of changes to the
value of its underlying asset. Its implementation is based
on the code found in the parsec-ompss1 GitLab
repository, which augments the Parsec benchmark suite
[4] by offering OmpSs task-based implementations for
most of its benchmarks. It is a highly data-parallel
application.

2) The sparseLU and the jacobi applications represent the
Fundamental Linear Algebra domain. The first of them
solves pseudo-random sparse linear systems, while the
second uses the Jacobi iterative equation solver for
solving the Poisson equation in one dimension. Such
programs are derived from the implementations found
in the Kastors Benchmark Suite [21].

3) The stream-deps and the stream-barr programs are
micro-benchmarks that evaluate system performance at
handling memory intense computation. Examples of
these routines include copying data among memory
positions; adding two arrays and storing the result in

1https://pm.bsc.es/gitlab/benchmarks/parsec-ompss

a third; producing scaled versions of an original array,
etc. The fact that these benchmarks compound these
operations in a complex scheme of data dependencies
make them good targets for parallelization using Task
Scheduling. The implementations of these benchmarks
that are here used are found at the ompss-ee2 Github
repository.

Each of these benchmarks might be executed with inputs
of varying task granularity, which is frequently achieved by
partitioning input matrices in blocks of arbitrary size.

B. Results and Analysis

1) Comparing Nanos-SW, Nanos-RV, and Phentos: Figure
9 compares benchmark performance for the three available
runtimes and all relevant benchmark inputs. As expected,
performance of Nanos-RV, which makes use of the custom
Task Scheduling instructions, is generally (34 out of 37 times)
superior to that of Nanos-SW, which does not make use of
these instructions, with a geomean speedup of 2.13 times with
respect to the latter.

Additionally, the normalized performance of Phentos is
almost always (36 out of 37 times) higher than that of Nanos-
SW and generally (34 out of 37 times) better than that of
Nanos-RV. Such gains result from the fact that it was designed
to have lower synchronization and intra-core communication
overheads than any version of Nanos. Its geomean speedup
with respect to Nanos-RV is of 6.20 times, while its geomean
speedup over Nanos-SW is of 13.19 times.

For Nanos-SW and Nanos-RV, increasing block size of
the benchmarks supporting that option generally increases
performance. This is less frequently true for Phentos, though.
This difference between the two sets of runtimes is probably
caused by the facts that (1) Phentos generates much less
scheduling overheads than the other two runtimes, making
the Task Scheduling overhead reductions caused by increasing
block sizes less meaningful; (2) larger block sizes reduce the
number of generated tasks, possibly reducing available paral-
lelism and amplifying load balancing problems; (3) depending
on how each benchmark was implemented, increasing block
size might even lead to worse cache usage.

For stream-deps and stream-barr, performance increases for
all runtimes as problem size is increased. For these programs,
block size is defined as a fixed fraction of problem size.

2) Deriving theoretical speedup bounds from MTT: As
described in Subsection III-E, Maximum Task Throughput
(MTT) is the maximum number of tasks from a specific
uniform workload that a given Task Scheduling platform
might execute per unit of time. This metric is very important
for comparing different Task Scheduling systems, given that it
defines constraints for the (task granularity, number of cores)
pairs that such systems are able to efficiently service.

In fact, in a system with N cores being served by a
Task Scheduling runtime with an MTT of K, the following
inequality must hold:

2https://github.com/bsc-pm/ompss-ee



Nactive

Texec
≤ K,

where Texec is the fixed task size and Nactive is the average
number of cores actively running tasks — rather than waiting
to be fed with more work by the Task Scheduling runtime.

Consequently, one might derive a speedup bound MS for
that system as a function of mean task size as the following:

MS(t) = K × t

Considering that K = 1
Lo

, where Lo is the mean Task
Scheduling overhead experienced by tasks during their whole
lifetime, MS might then be defined as a function of Lo and
Texec as the following:

MS(Lo, t) =
t

Lo
(1)

Having this in mind, for four different workloads, we mea-
sured the mean Task Scheduling overhead of Nanos-RV and
Phentos, as shown by Figure 7. That figure also compares with
the previous state-of-the-art Task Scheduling system based
on Picos++, which implemented Picos-CPU communication
with asynchronous AXI transactions controlled by a dedicated
DMA-like communication module [20].

Figure 7 clearly shows to which extent Picos-RV and
Phentos were able to reduce lifetime Task Scheduling over-
heads for varying workloads. In fact, Phentos presents lifetime
overhead reductions of up to 308x with respect to Nanos-
SW, while Nanos-RV shows reductions of up to 7.53x.
Such measurements were taken with two different lifetime-
overhead-measuring benchmarks: Task Free, which generates
independent tasks with any number of monitored pointer pa-
rameters from 0 to 15; and Task Chain, which generates inter-
dependent tasks forming a data dependence chain where all
tasks have the same number of monitored pointer parameters
similarly ranging from 0 to 15.

Based on the figures for the Task-Chain (1 dep) case and
on Equation 1, we might then evaluate maximum speedup
bounds for the various different Task Scheduling platforms
as a function of mean task size as shown by Figure 6. That
figure shows that the reduced lifetime overheads of Phentos
substantially improves MTT-based maximum speedup with
respect to any other platform for a wide range of mean task
sizes. Concretely, for task sizes around 1000 cycles, MTT-
based maximum speedup for the Phentos platform is just
below 3x, while all other platforms have maximum speedups
lower than 0.1x; moreover, for task sizes around 10000 cycles,
the maximum speedup of Phentos has already saturated to 8x
(the number of available cores), whereas all other platforms
fail to deliver maximum speedups over 1x.

3) Effects of task granularity: As discussed in Sub-
subsection VI-B2, mean task size greatly influences the
maximum speedup that a given Task Scheduling system might
deliver over a corresponding serial execution. Adding to
that discussion, Figure 8 shows how the speedup of Task
Scheduling platforms with respect to lower-MTT platforms
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Figure 7. Lifetime Task Scheduling overhead for several platforms, in Rocket
Chip equivalent cycles. The Nanos-RV and Phentos platforms correspond to
work described in this paper, while data for Nanos-AXI derives from a recent
work based on Picos++ [20]. The measurements reported by the latter work
were performed on an ARM based system based on a Cortex-A9 quad-core
processor, so the numbers reported in this figure are scaled by the ratio
between the average instruction-per-cycle metrics of Cortex-A9 and Rocket
Chip reported by Celio et al. [5]. Consequently, the Nanos-AXI figures here
reported are about 57% higher than those described by Tan et al. [20].

and corresponding serial executions depends on mean task
size. The data points there represented correspond to the same
benchmark executions reported by Figures 9 and 10.

4) Resource utilization: Table II showcases the resource
utilization of several relevant system components. In partic-
ular, it shows that the whole Task Scheduling sub-system
(including Picos, Picos Manager, and the Delegates) takes
less than 2% of the resources of the whole octa-core SoC.
Given that the CPU cores are in-order and relatively simple,
it is to expect that the same set of HW modules would take
an even lower fraction of a production-grade SoC featuring
out-of-order cores with a more complete cache hierarchy.

Module Usage Fraction Description
top 384K 100.00% Whole system
Core 44K 11.56% Core with FPU and L1$
fpuOpt 18K 4.77% Floating-point unit
dcache 6K 1.57% D-cache of a single core
icache 1K 0.32% I-cache of a single core

SSystem 7K 1.79%
Picos, Picos Manager,
and Delegates

Table II
RESOURCE USAGE BREAKDOWN IN NUMBER OF FPGA CELLS.
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VII. CONCLUSION

In this paper, we propose an architecture where the capa-
bilities of a Task Scheduling accelerator are made available
to Task Scheduling runtimes through (1) low-latency, custom
processor instructions and (2) dedicated accelerator-CPU in-
terconnects. Compared with previous solutions that relied on
MMIO CPU-accelerator communication, our system is shown
to greatly reduce lifetime scheduling overhead, leading to
proportional gains in whole-application speedup. We validate
the proposed architecture with a Linux-capable, 8-core FPGA
prototype based on Rocket Chip, a popular SoC generator
featuring a parametrizable, in-order, 64-bit, Linux-capable
multi-core processor.

To evaluate performance gains of Task Parallel programs,
we execute a set of OmpSs Task Parallel benchmarks on (1)
Nanos-SW, an widely-available OmpSs runtime using no HW
acceleration; (2) Nanos-RV, an in-house port of Nanos-SW for
the new architecture; (3) Phentos, a completely new, light-

weight, high-performance Task Scheduling runtime. Nanos-
RV allows applications to achieve an average speedup of
2.13x with respect to executions based on Nanos-SW, while
Phentos delivers an average speedup of 13.19x over the same
baseline. Such gains are made possible by the fact that,
making use of the low-latency Task Scheduling capabilities
of the new system, lifetime scheduling overheads with respect
to Nanos-SW are reduced by up to 7.53x by Nanos-RV and
by up to 308x by Phentos.
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