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Turbulence developed from Rayleigh-Taylor instability between two compressible miscible fluids in
an unbounded domain is addressed in this paper. It is demonstrated that the turbulent Mach number
in the turbulent core has an upper bound, independent of the density ratio under a broad range of
initial mean configurations. The initial thermodynamic state of the system determines the amount of
potential energy per unit mass involved in the turbulent mixing stage, and thus the characteristic
level of turbulent fluctuations that is achievable is linked to the characteristic speed of sound such
that the turbulent Mach number is limited. For the particular case of an ideal gas, this bound on the
turbulent Mach number is found to be between 0.25 and 0.6, depending on the particular initial
thermodynamic state. Hence, intrinsic compressibility effects �those owing to large Mach number�
are likely to be limited in the turbulent stage of a pure Rayleigh-Taylor problem. This result is
confirmed by large-eddy simulations �LES� of systems with density jumps at the interface of 3 :1,
a density ratio for which there is extensive data available in the literature. The LES predictions of
the mixing depth growth and overall mixing agree with results previously obtained in
incompressible configurations with a negligibly small Mach number, and the data fully describing
the Reynolds stresses and the budget of the �resolved� turbulent kinetic energy equation are
provided. © 2005 American Institute of Physics. �DOI: 10.1063/1.1965130�

I. INTRODUCTION

Rayleigh-Taylor instability occurs when the interface be-
tween two fluids with different densities is subjected to a
pressure force �−� p� pointing toward the heavy fluid, and
this instability can eventually lead to a turbulent flow. The
standard configuration is the hydrostatic equilibrium under
the presence of a volumetric force g, directed toward the
light fluid,

�p = �g . �1�

The problem was described by Rayleigh1 and the first
linear stability analysis was carried out by Taylor,2 an analy-
sis extended later to include diffusion effects3 and, more re-
cently, compressibility effects.4 Interest in the topic reap-
peared strongly in 1980s, due to the inertial confinement
fusion �ICF� programs.5–8 Literature covers theoretical,3,4,7,9

experimental,5,8,10,11 and numerical6,8,12–15 approaches to the
problem. A detailed comparison between experiments and
simulations has also been documented.16,17

Qualitatively, the flow evolves as follows.6,7 If the per-
turbation of the interface is small enough, then the linear
analysis is valid and describes the exponential growth in this
linear stage. Then follows a nonlinear stage, where asym-
metric structures in the form of rising bubbles and falling
spikes start forming owing to the baroclinic production of

vorticity, organized in rings around the protruding fingers.
This stage is shown in Fig. 1 �top row�, where isosurfaces of
the density field and the horizontal vorticity field are repre-
sented. The latter is defined by �h

2=�x
2+�y

2 if the OZ axis is
chosen parallel to the volumetric force. The vortex rings are
slightly distorted in the vertical direction due to the shear
between adjacent fingers.

This organized distribution of coherent structures is
eventually lost due to the nonlinear interaction among them,
and more intertwined distributions of both fields are ob-
served in the bottom row of Fig. 1. Larger structures appear,
either by the amalgamation of smaller ones or by their pres-
ence in the initial condition. At the same time, Kelvin-
Helmholtz instabilities appear at the sides of the fingers. By
the end of this stage the memory of the initial conditions �at
least “small scales”� can be potentially lost, with the turbu-
lent stage taking over. Larger scales continue to be formed,
viscosity having little effect on them and nonlinearity driving
their energy toward the smallest scales.

If the previous description holds and the statistics of the
flow become truly independent of the initial conditions and
viscosity, then the width of the mixing region between the
two layers, denoted by h�t�, in the low Mach number case
usually considered in the literature, depends only on �L, �H,
g, and t. Thus, dimensional analysis yields h /gt2= f�A�
which, for the case A�1, can be approximated by the linear
relationship
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h = �Agt2, �2�

the Atwood number being defined in terms of the ratio be-
tween the densities of the heavy fluid �H and the light fluid
�L as

A =
�H/�L − 1

�H/�L + 1
. �3�

This scaling leads to a temporal variation of the Reynolds

number as Reh=hḣ /�� t3 , � being the kinematic viscosity,
which implies that the Kolmogorov scale �= ��3 /��1/4, where
� is the mean dissipation rate of turbulent kinetic energy per
unit mass, continually decreases with time13 as �� t−1/4.
Therefore, direct numerical simulation �DNS� is restricted in
the temporal interval that can be used. As an alternative to
DNS, the problem can be closed using numerics alone, for
example, Youngs12 and Linden et al.16 solved the Euler equa-
tions with a monotone scheme. Cook et al.15 performed
large-eddy simulation �LES� employing a subgrid eddy dif-
fusivity that is strongly nonlinear, being dependent on the
eighth-order derivative of the velocity. Here we adopt the
LES strategy as well, but using a dynamic mixed model,
already demonstrated to provide the temporal evolution of
the large-scale three-dimensional fields with reasonable ac-
curacy in different flows.18 The reader is referred to any of
the several review articles available in the literature18–21 for a
general description of the LES approach.

A large extent of the research on the Rayleigh-Taylor
problem has focused on the growth of the mixing zone. The
total thickness h is usually split into the bubble penetration
distance hb and the spike penetration height hs. According to
the literature, �b seems to be independent of the Atwood
number, whereas �s exhibits a slight increase with it, causing
asymmetry in the flow for sufficiently large density ratios. A
recent thorough review of the available data22 shows �b

varying between 0.03 and 0.08, the numerical simulations
generally indicating smaller growth rates than the experi-
mental results. In this regard, the strong influence that large-
scale initial conditions �large meaning comparable to the fi-
nal mixing thickness� may have in the subsequent flow
development has been reported by Linden et al.16 and Cook
et al.,13 among others.

However, an analysis of the role of compressibility in the
turbulent stage of the Rayleigh-Taylor problem has not been
reported. This paper considers this turbulent stage with mis-
cible fluids in an unbounded domain. As mentioned before,
work has been done on the effect of compressibility on the
initial linear stage, an example for immiscible fluids being
provided by Livescu,4 but our paper is concerned with the
stage of fully developed turbulence. A priori, these compress-
ibility effects could appear if the speed of sound of the fluid
is sufficiently reduced �e.g., reducing the reference pressure
of the system� so that a characteristic Mach number is suffi-
ciently large, and this is the motivation for the present study.
It should be noted that the Richtmyer-Meshkov problem is
fundamentally different in this respect, since the velocity
scale, imposed there by the impulsive deposition of vorticity
at the front, can be set independently of the thermodynamic
state.

A general overview containing the latest results on com-
pressible turbulence can be found in the work by Chassaing
et al.23 In the case of free shear flows, there is a strong
intrinsic compressibility effect: the growth rate of the shear
layer thickness and the turbulence intensity are significantly
reduced as the Mach number increases. The cause has been
the subject of a considerable amount of study during the past
years,24–29 leading to the following picture: the production
term in the turbulent kinetic energy equation reduces as a
consequence of the decrease in the pressure-strain correla-
tion, which diminishes the transfer of energy from the
streamwise fluctuations to the cross-stream fluctuations. It is
reasonable, then, to formulate the same questions for the
Rayleigh-Taylor problem, where the input of energy is essen-
tially different. Is the growth rate � of the mixing depth h a
function of the Mach number? And if so, is the physical
mechanism the same as in the case of a shear flow?

The focus of this paper is on intrinsic compressibility,
density variations due to pressure variations, that is measured
by the flow Mach number. There is no mean flow in the
problem, and the compressibility associated with the turbu-
lent fluctuations is measured by the turbulent Mach number,

Mt =
q

�c�
, �4�

where q=�2K , K being the turbulent kinetic energy, and �c�
the average speed of sound. The average of any variable � is
written as ��� and it is computed as a plane average at a
fixed inhomogeneous location z. They denote Reynolds av-
erages for quantities � per unit volume and Favre averages
for quantities � per unit mass, unless otherwise stated. The
quantity Mt�z� varies across the mixing zone. The value of
Mt in the core is of interest where the speed of sound is that
of the mixed interfacial fluid, c0.

The compressibility of the fluid also modifies the stabil-
ity inside of the fluid layers with respect to the incompress-
ible situation. This stability is measured by the
buoyancy-frequency30,31

FIG. 1. Isosurfaces of density field �left�, �=2, and of horizontal vorticity
�right�, �h=0.2 of maximum. Top—t=2.5	 �nonlinear stage�; bottom—t
=10	 �turbulent stage�. The characteristic time 	=�
�,0 / �Ag� is defined us-
ing the initial thickness of the mixing layer. Gravity is acting downward.
Only 1/4 of the whole domain is shown for clarity.

076101-2 Mellado, Sarkar, and Zhou Phys. Fluids 17, 076101 �2005�

Downloaded 27 Jul 2005 to 129.187.68.124. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



N2 =
g

�

d�

dz
, �5�

with � being the potential temperature. For an ideal gas, it
follows that

N2 = g
�

p1/�

d

dz
	 p1/�

�

 , �6�

where p is the pressure, � is the density, and � is the ratio of
specific heats. The coordinate z increases in the opposite di-
rection of the volumetric force g. The buoyancy-frequency
has been written in terms of the pressure and the density
because it is more suitable for the analysis to be presented
below. The sign of N2 determines the static stability of the
configuration. Therefore, in addition to the Rayleigh-Taylor
instability at the interface between the two layers originating
from the density jump, each layer can individually be
buoyancy-stable if N2
0 or buoyancy-unstable if N2�0.
Although the topic of the investigation reported here is in-
trinsic compressibility in a turbulent flow, the buoyancy-
compressibility coupling may affect the evolution of
Rayleigh-Taylor turbulence and is included in the analysis.
Note that one could also study the evolution of small �non-
turbulent� fluctuations in cases with positive, negative, and
zero values of N2, but this is not what is being done here.

The paper is organized as follows. In Sec. II, the prob-
lem is defined and a theoretical analysis of the role of com-
pressibility, giving definite bounds on the turbulent Mach
number, is presented. The dynamic mixed model used to
close the subgrid terms in the filtered equations is presented
in Sec. III along with the general formulation of the problem.
Sections IV and V contain the results from the LES, confirm-
ing the theoretical predictions obtained in Sec. II. Several
statistics, such as mean profiles, Reynolds stresses, and the
budget of the resolved turbulent kinetic energy, are also
discussed.

II. COMPRESSIBILITY OF THE TURBULENCE

We consider the hydrostatic equilibrium of a layer of
heavy fluid on top of a layer of lighter fluid. Choosing the
OZ axis parallel to and in the opposite direction of the con-
stant volumetric force g, the equilibrium is determined by

dp

dz
= − �g . �7�

The function �=��p� has to be provided in order to solve the
problem, and different configurations will be explored below.

The equation of state for a mixture of two ideal gases
reads

p

�
=

R0T

W
= R0T	 YL

WL
+

YH

WH

 , �8�

where Yi denotes the species mass fraction of the fluid i and
R0 is the universal gas constant. The molecular weight of the
mixture, W, has been written in terms of the molecular
weight of the heavy fluid and the light fluid, WH and WL,
respectively.

The intrinsic compressibility is determined by the turbu-
lent Mach number, defined by Eq. �4�. The local speed of
sound of an ideal gas is given by

c =��
R0T

W
=��

p

�
, �9�

where �, the ratio of specific heats, lies in the range 1��
�5/3.

With respect to the turbulent kinetic energy, turbulent
theory predicts and experiments confirm that, in the incom-
pressible limit, a self-similar state is achieved after a suffi-
ciently long time. A thorough dimensional analysis is pre-
sented in the work by Cook et al.13 �see Eq. �6� therein�,
which yields

q0 = ��Agh �10�

as a characteristic scale of the turbulent velocity fluctuations
at each time. In this expression, Ag represents the constant
external force per unit mass, with A being the Atwood num-
ber and h�t� the thickness of the increasing mixing depth.
With miscible fluids, an �smaller� effective Atwood number
instead of the nominal Atwood number A would be more
appropriate, as discussed by Cook et al.15 The coefficient �,
of order 1, has to be provided by the experimental data.

A priori, it is not known how Eq. �10� is modified by
compressibility. Hence an analysis based on the available
potential energy is preferred to study the problem and Eq.
�10� is not used. However, the fact that the fluid velocity is
determined by the potential energy per unit mass �set by the
initial thermodynamic variables� links the maximum of q0

over the time to c0, the characteristic speed of sound, such
that Mt is bounded from above. The consequence is that Mt,
small at early times because of an initial state that is steady,
might not become large enough for intrinsic compressibility
effects to be strong, so that Eq. �10� might be reasonably
well satisfied even in the compressible case of Rayleigh-
Taylor turbulence.

This section is devoted to obtain analytically an upper
bound on Mt for three different initial configurations ��p�
leading to the three different types of static stability: �1� con-
stant � / p in each layer, in Sec. II A, which is buoyancy-
stable �N2
0�; �2� constant � / p1/� in each layer, in Sec. II B,
which is buoyancy-neutral �N2=0�, a pure Rayleigh-Taylor
problem; �3� constant � in each layer, in Sec. II C, which is
buoyancy-unstable �N2�0�.

A. Two buoyancy-stable layers

This section considers two layers which are buoyancy-
stable, i.e., a relation ��p� in each of them such that the
buoyancy-frequency is positive. The particular configuration,
shown in Fig. 2, is formed by two layers, each composed of
a pure homogeneous fluid. The ratio between the molecular
weight and the temperature of the mixture varies between
two well-defined levels, WL /TL at the bottom and WH /TH

�larger� at the top. This setup implies a relation �� p, and Eq.
�6� provides N2
0. This case can be easily set up, for in-
stance, by depositing a layer of heavy fluid on top of a sec-
ond lighter fluid at the same temperature.
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The pressure is obtained by substituting the expression
for the density from the equation of state, Eq. �8�, into the
balance equation, Eq. �7�, which yields

p�z� = p0exp	−
gWH

R0TH
�

0

z W���/WH

T���/TH
d�
 , �11�

p0 being the value of the pressure at the middle plane, z=0.
This equation shows that the pressure decays exponentially
with increasing height with a characteristic length scale

LH =
R0TH

gWH
, �12�

the scale-height,32 which is directly related to the speed of
sound, in particular, proportional to cH

2 /g. There is a similar
length scale associated with the light fluid

LL =
R0TL

gWL
. �13�

The density profile is then computed from the equation
of state, which yields

��z� = �0
+W�z�/WH

T�z�/TH
exp	−

1

LH
�

0

z W���/WH

T���/TH
d�
 , �14�

�0
+ being related to p0 by

�0
+ =

p0WH

R0TH
=

p0

gLH
. �15�

Either �0
+ or p0 has to be provided. It is interesting to note

that they are also linked to the amount of mass deposited on
the top, mH, a relation obtained by integrating the density
profile along the OZ axis. Sketches of the different profiles
are presented in Fig. 2.

The density has a jump at the interface z=0 from �0
− at

z=0− to �0
+ at z=0+ given by

�0
+

�0
− =

WHTL

WLTH
=

LL

LH
, �16�

where the last equality follows from the definition of the two
scale-heights. This equation shows that, if �0

+ /�0
−
1, a con-

dition required to have Rayleigh-Taylor instability, then
TH /WH�TL /WL and, consequently, LH�LL.

1. Energy analysis

In order to estimate the characteristic intensity of turbu-
lent fluctuations q0, the available potential energy of the sys-
tem is calculated, since this constitutes an upper limit to the
kinetic energy released to the flow. The length over which

the profile jumps from WL /TL to WH /TH is assumed to be
small compared to the scale-heights, the latter being defined
by Eqs. �12� and �13�. The density profile is

��z� = ��0
+e−z/LH, z 
 0

�0
−e−z/LL, z � 0


 �17�

according to Eq. �14�.
A mass of light fluid mL is deposited over a domain

depth DL and, on top of it, a mass of heavy fluid mH over a
depth DH. These four lengths and two masses completely
define the system, since

mH = �
0

DH

��z�dz = �0
+LH�1 − e−DH/LH� ,

�18�

mL = �
−DL

0

��z�dz = �0
−LL�eDL/LL − 1�

can be used to obtain �0
+ and �0

−. The equation of state pro-
vides the pressure, if desired.

This system is not in stable equilibrium, and, either
slowly by diffusion or more rapidly by Rayleigh-Taylor in-
stability, it evolves toward a totally mixed configuration. A
final buoyancy-stable configuration with TF /WF constant is
assumed. The final density distribution is

� f�z� = �Fe−�z+DL�/LF, �19�

where the density at the bottom, �F, is the final density at z
=−DL and the scale-height of the final state is defined by

LF =
R0TF

gWF
. �20�

The constants �F and LF need to be determined. One equa-
tion is the conservation of total mass

mH + mL = �FLF�1 − e−�DL+DH�/LF� . �21�

A second equation is derived from the conservation of total
mass of each component separately. Working with the heavy
fluid, its mass fraction is given, in general, by

YH�z� =
1 − WL/W�z�
1 − WL/WH

, �22�

and the mass of heavy fluid is the integral of the profile
��z�YH�z� between −DL and DH, which yields the relation

mH

mH + mL
=

1 − �

1 − WL/WH
, �23�

with

� =
WL

mH + mL
�

−DL

DH �

W
dz . �24�

Conservation of the mass of heavy fluid, mH, implies then
that the function � is equal between the initial and the final
states. For the initial configuration, which is buoyancy-stable
and isothermal in each of the two layers, it is

FIG. 2. Profiles of the thermodynamic variables in a system formed by two
layers of homogeneous fluids, which is Rayleigh-Taylor unstable.
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�1,i =

�eDL/LL − 1� + �1 − e−DH/LH�
TLLH

THLL

eDL/LL − e−DH/LH
, �25�

and for the final distribution

�1,f =
WL

WF
. �26�

Thus, the conservation of mass of the heavy species provides
the equation

WL

WF
= �1,i, �27�

and from the definitions of the scales heights, Eqs. �13� and
�20�, we have

LF

LL
=

WLTF

WFTL
=

TF

TL
�1,i. �28�

Equations �21� and �28� provide �F /�0
+, and LF /LL as a

funcion of DH /LL, DL /LL, and LH /LL, once TF /TL and TH /TL

are known.
The potential energy of the fluid particle located at z is

given by ��z�gz, the reference level chosen at z=0, and the
total amount of potential energy V of a certain region in
space is the integral of ��z�gz over that region.

Hence, for the heavy fluid layer of the initial configura-
tion we have

VH = �0
+gLH

2 �1 − e−DH/LH�1 + DH/LH��

= mHgLH − �0
+gLHDHe−DH/LH. �29�

The light fluid region yields

VL = �0
−gLL

2�e+DL/LL�1 − DL/LL� − 1�

= mLgLL − �0
−gLLDLeDL/LL. �30�

Lastly, the final configuration provides

VF = �FgLF
2e−DL/LF�e+DL/LF�1 − DL/LF� − e−DH/LF�1 + DH/LF��

= �mH + mL�gLF − �FgLF�DL + DHe−�DH+DL�/LF� . �31�

The difference between the total initial potential energy
and the final one is the available potential energy,

Ep = VH + VL − VF = Ep,t + Ep,i, �32�

which has been decomposed as the sum of two parts

Ep,t = �mHgLH + mLgLL� − �mH + mL�gLF,

�33�
Ep,i = �FgLF�DL + DHe−�DH+DL�/LF� − �0

+gLH�DLe+DL/LL

− DHe−DH/LH� .

It is the specific �per unit mass� available potential energy

Ep

�mH + mL�
�34�

which determines the velocity attained by the fluid.
Equations �25� and �28�, under the assumption TH=TL,

allow to write

Ep,t

�mH + mL�gLL
= �i,1 −

LF

LL
= 	1 −

TF

TL

�i,1, �35�

where gLL is used to normalize the specific potential energy.
This is a thermal contribution to the change in potential en-
ergy, nonzero only in the case of change in temperature be-
tween the initial and the final states.

The second part, which is nonzero even for an isother-
mal case, can be written as

Ep,i

�mH + mL�gLL
= �1	DL

LL
,
DH

LL
,
LH

LL

 , �36�

where the function �1 is defined by

�1 =
�DL/LL�eDL/LF + �DH/LL�e−DH/LF

eDL/LF − e−DH/LF

−
�DL/LL�eDL/LL + �DH/LL�e−DH/LH

eDL/LL − e−DH/LH
, �37�

and LF /LL is given by Eq. �28� in terms of the length ratios
of the problem shown as the arguments of �1. The charac-
teristic intensity of the turbulent fluctuations is given by
q0 /�gLL=�2�1.

The characteristic speed of sound c0 is required at this
stage in order to construct a characteristic turbulent Mach
number. The speed of sound in the final mixed configuration
�miscible fluids are being considered�, �R0TF /WF, is used for
this purpose, which normalized by gLL provides

c0
2

gLL
= �

LF

LL
�38�

according to the definition of the final scale-height, Eq. �20�.
Hence, a characteristic turbulent Mach number is given by

Mt,0 =� 2�1

��LF/LL�
, �39�

which is a function of DL /LL, DH /LL, and LH /LL.
The mixing region �−DL ,DH� must now be estimated. A

first estimate in the turbulent case for the upper limit of the
final mixing region is given by the distance from the initial
density jump until the point in the upper layer where the
density becomes equal to �0

−. This reasoning yields

DH = LHln
LL

LH
. �40�

Similarly, the turbulent motion can develop toward the lower
layer at most until the downward position z=−DL at which
the initial density profile equals the value �0

+. This distance is
given by

DL = LLln
LL

LH
. �41�

However, bubbles expand as they rise, and this could
imply larger values of DH and DL if turbulent mixing is not
fast enough to eliminate the density gradients through mo-
lecular diffusion. We explore this other limit now. Consider
pure fluid bubbles that rise through the upper layer without
turbulent mixing. Close to the interface there are bubbles
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with density �b=�0
− surrounded by a fluid with density �0

+.
These bubbles expand as they rise because the surrounding
pressure is lower, and their density diminishes. If this process
is adiabatic, then �b� p1/�, a smaller rate of decrease with
height than the surrounding density, which varies proportion-
ally to the pressure. Therefore, at a certain height, the density
of the rising bubble is no longer smaller than the surrounding
density and the buoyancy force is zero. This height deter-
mines the upper limit of the mixing zone and is given by the
equation

�0
−	 p�DH�

p0

1/�H

= �0
+	��DH�

�0
+ 
 , �42�

where the density and the pressure follow the known expo-
nential decay given by Eq. �17�. The solution is

DH =
�H

�H − 1
LHln

LL

LH
. �43�

Similar reasoning provides an estimate for DL,

DL =
�L

�L − 1
LLln

LL

LH
. �44�

These two lengths are equal to those defined by Eqs. �40�
and �41� multiplied by the same constant � / ��−1�, greater
than one, when a mean value of � is considered. Therefore,
we can consider the mixing zone given by �−�DL ,�DH�,
with DL and DH given by Eqs. �43� and �44�, and this ap-
proach covers also the former estimate of the thickness of the
mixing layer for an intermediate value of �. The parameter �
varies between 0 and 1, increasing in time corresponding to
the evolution of h�t�. It has to be noted that the function �1

gives the maximum specific available potential energy that
would be released if the instantaneous mixing thickness h�t�
would be held constant sufficiently long to allow complete
mixing. The actual potential energy being released is smaller
because the characteristic time for mixing inside the region is
the same as the characteristic time to engulf new mass into
the mixing zone, namely, the turbulent time scale determined
by the turbulent kinetic energy and the rate of turbulent dis-
sipation.

To conclude the analysis, the maximum of Mt,0, Eq. �39�,
along the curves DL /LL=���L / ��L−1��ln�LL /LH� and
DH /LL=���H / ��H−1���LH /LL�ln�LL /LH� for all values of �
in the range 0���1 has to be calculated. When a mean
value of � between 1 and 5/3 is substituted in that equation,
the characteristic turbulent Mach number is found to be
bounded by 0.62. Note that this value is a conservative esti-
mate, because a considerable amount of the available poten-
tial energy �of the order of 50% according to the data regard-
ing the incompressible case� is dissipated and does not
contribute to the turbulent kinetic energy.

B. Two buoyancy-neutral layers

This section considers two layers which are buoyancy-
neutral, i.e., a relation ��p� in each of them such that the
buoyancy frequency is zero. Equation �6� with N=0 implies
�� p1/�. Hence, the thermodynamic state is defined by the
group p /�� varying between two uniform values �p /���L and

�p /���H, the profile W /T being as required by the equation of
state in order to obtain such a distribution. When the layers
are pure fluids, then the entropy is constant inside each layer.
This initial condition has been studied in the past by Chen et
al.,33 although they analyzed the two-dimensional problem
with immiscible fluids, fundamentally different from the
fully turbulent configuration with miscible fluids considered
here.

For notational convenience, the profile p1/� /� is denoted
by s�z�, which then varies from sL at the bottom to sH at the
top. Substituting �= p1/� /s into the balance equation, Eq. �7�,
the pressure distribution is

p�z� = p0	1 −
� − 1

�

g

p0
��−1�/�sH

�
0

z d�

s���/sH

�/��−1�

, �45�

where p0 is again the pressure at the center plane. The ratio
of specific heats � has been taken as constant. The charac-
teristic length scale is

LH =
p0

��−1�/�sH

g
=

p0

g�0
+ =

R0T0
+

W0
+g

, �46�

having defined �0
+= p0

1/� /sH. Similarly, the scale-height of the
lower layer is

LL =
p0

��−1�/�sL

g
=

p0

g�0
− =

R0T0
−

W0
−g

. �47�

The density profile is

��z� = �0
+ 1

s�z�/sH
	1 −

� − 1

�

1

LH
�

0

z d�

s���/sH

1/��−1�

. �48�

The density has a jump at the interface z=0 from �0
− at z

=0− to �0
+ at z=0+ given by

�0
+

�0
− =

sL

sH
=

LL

LH
. �49�

It can be observed that the derivation is parallel to that of
Sec. II A. In fact, that section considers �� p, which is the
limit �→1 of the case considered here, �� p1/�. Since � is
always of order one, this convergence suggests that there is
no qualitative change in the bounding of Mt with respect to
the buoyancy-stable configuration presented in Sec. II A.

It is also observed that the density and the pressure fall
down to zero along the upper layer on a distance of order
O�� / ��−1�LH�.

1. Energy analysis

The calculation of specific potential energy is now pre-
sented, neglecting once more the thickness of the initial in-
terface with respect to the scale heights LH and LL, Eqs. �46�
and �47�, respectively. The initial mean density profile is
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��z� = ��0
+	1 −

�H − 1

�H

z

LH

1/��H−1�

, z 
 0

�0
−	1 −

�L − 1

�L

z

LL

1/��L−1�

, z � 0.� �50�

It can be verified that Eq. �50� tends toward Eq. �17� in the
limit �→1.

In a fashion similar to that of the previous sections, a
mass of light mixed fluid mL is deposited over a domain
depth DL,

mL = �
−DL

0

��z�dz = �0
−LL�	1 +

�L − 1

�L

DL

LL

�L/��L−1�

− 1� ,

�51�

and, on top of it, a mass of heavy mixed fluid mH over a
depth DH,

mH = �
0

DH

��z�dz = �0
+LH�1 − 	1 −

�H − 1

�H

DH

LH

�H/��H−1�� .

�52�

The temperature is supposed to be uniform inside each
layer, as done by Chen et al.33 and as assumed in Sec. II A as
well. This condition implies that the two layers are not com-
posed of pure fluid, but that the molecular weight varies,
according to the equation of state, as

1

W�z�
= �

1

W0
+	1 −

�H − 1

�H

z

LH

 , z 
 0

1

W0
−	1 −

�L − 1

�L

z

LL

 , z � 0.� �53�

The same reasoning as in the preceding section is now
applied. The final state is considered to be a complete homo-
geneous mixture, buoyancy-stable, which provides the mini-
mum final potential energy and therefore a conservative es-
timate for the potential energy released into the flow. The
density is given by Eq. �19� and the conservation of total
mass is expressed again by Eq. �21�. The corresponding
function �2,i, defined by Eq. �24�, is given by

W0
−

WL
�2,i =

�L

2�L − 1
�	1 +

�L − 1

�L

DL

LL

�2�L−1�/��L−1�

− 1� +
�H

2�H − 1
�1 − 	1 −

�H − 1

�H

DH

LH

�2�H−1�/��H−1��LHTL

LLTH

	1 +
�L − 1

�L

DL

LL

�L/��L−1�

− 	1 −
�H − 1

�H

DH

LH

�H/��H−1� . �54�

It can be again verified that Eq. �54� recovers Eq. �25� in the
limit �→1. Then the conservation of the mass of heavy fluid
implies, using Eq. �26�,

WL

WF
= �2,i. �55�

The final scale-height is given by Eq. �20�, which can be
written explicitly as

LF

LL
=

TF

TL

W0
−

WF
=

TF

TL

W0
−

WL
�2,i �56�

with Eq. �47�.

Calculating the potential energies as explained in Sec.
II A �TH=TL is again assumed�, the normalized specific
available potential energy due to temperature changes be-
comes

Ep,t

�mH + mL�gLL
=

W0
−

WL
�2,i −

LF

LL
= 	1 −

TF

TL

W0

−

WL
�2,i. �57�

The remaining part is written as

Ep,i

�mH + mL�gLL
= �2	DL

LL
,
DH

LL
,
LH

LL

 , �58�

where �2 is defined by

�2 =
�DL/LL�eDL/LF + �DH/LL�e−DH/LF

eDL/LF − e−DH/LF
−

DL

LL
	1 +

�L − 1

�L

DL

LL

�L/��L−1�

+
DH

LL
	1 −

�H − 1

�H

DH

LH

�H/��H−1�

	1 +
�L − 1

�L

DL

LL

�L/��L−1�

− 	1 −
�H − 1

�H

DH

LH

�H/��H−1� . �59�
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The characteristic intensity of the turbulent fluctuations is
given by q0 /�gLL=�2�2.

The characteristic speed of sound c0 is now needed. The
squared speed of sound in the final mixed configuration is
�R0TF /WF, which normalized by gLL provides

c0
2

gLL
= �

LF

LL
�60�

according to the definition of the final scale-height, Eq. �20�.
Finally, a characteristic turbulent Mach number is given by

Mt,0 =� 2�2

��LF/LL�
, �61�

similar to Eq. �39� but with the corresponding function �2.
The final mixing region �−DL ,DH� has to be estimated.

A first estimate for the upper limit of the final mixing region
is given by the distance from the initial density jump until
the point in the upper layer where the density becomes equal
to �0

−. This reasoning yields

DH =
�H

�H − 1
LH�1 − 	LH

LL

�H−1� . �62�

Similarly, the turbulent motion can develop toward the lower
layer until the downward position z=−DL at which the initial
density profile equals the value �0

+. This distance is given by

DL =
�L

�L − 1
LL�	 LL

LH

�L−1

− 1� . �63�

Now, the role of the neutral stability of each initial layer
has to be considered, as it was done in Sec. II A. The same
reasoning here implies that pure bubbles continually rise
through all the available upper layer, whose limit is given by
the point where the density becomes zero. From Eq. �50�,
this singularity occurs at a distance

DH = LH
�H

�H − 1
. �64�

Therefore, we consider the mixing zone given by
�−�DL ,�DH�, with � varying between 0 and 1, DH given by
Eq. �64�, and

DL = DH	 LL

LH

�

. �65�

Such a choice for the mixing zone covers that described by
Eqs. �62� and �63� for some intermediate value of �, and
includes the whole upper layer when �=1. Note that Eq. �65�
recovers the ratio DL /DH of the buoyancy-stable initial con-
figuration, Sec. II A, in the limit �→1.

The maximum of Mt,0, Eq. �61�, along the previous
curves DL /LL=��� / ��−1���LL /LH���−1� and DH /LL

=��� / ��−1���LH /LL� for 0���1, is now to be calculated.
When a mean value of � between 1 and 5/3 is substituted in
this equation, the characteristic turbulent Mach number is
bounded by 0.57. The reader is again reminded that all the
potential energy is assumed to be converted to turbulent ki-
netic energy without any loss to molecular dissipation; there-
fore, this upper bound of Mt,0 is a conservative value.

C. Two buoyancy-unstable layers

This section considers two layers which are buoyancy-
unstable, i.e., a relation ��p� in each layer such that the
buoyancy-frequency is negative. The particular configura-
tion, shown in Fig. 3, is formed by two layers of constant
density with a jump from �L to �H �larger� at the interface
z=0, the profile T /W varying as required by the equation of
state in order to obtain such a distribution. Equation �6� with
� constant implies N2�0 inside each layer. This case might
not be set up as easily as the one considered in the previous
sections �it is unstable�, and it will be not considered with
such generality, but it is of interest for several reasons. First,
because it represents a hydrostatic profile that is unstable.
Second, the Atwood number based on the mean density pro-
file is constant instead of decreasing with time �although the
effective Atwood number increases, as it is later shown in the
simulations�. Third, there are data available in the literature
for the incompressible limit of this configuration that can be
utilized to validate the LES results.

Given ��z�, the integration of Eq. �7� yields

p�z� = p0	1 −
�Hg

p0
�

0

z ����
�H

d�
 . �66�

The scales that characterize the thermodynamic variation are

LH =
p0

�Hg
, �67�

similar to Eq. �15� with �0
+ in that equation corresponding to

�H in Eq. �67�, and

LL =
p0

�Lg
. �68�

The required ratio T�z� /W�z� is calculated from the equation
of state,

T�z�
W�z�

= 	 T

W



0

+
1 − �

0

z

����/�Hd�/LH

��z�/�H
, �69�

where

	 T

W



0

+

=
p0

R0�H
. �70�

The profiles are sketched in Fig. 3. The constancy of density
over each �heavy or light� fluid column can be achieved by
either decreasing the temperature or increasing the molecular
weight as z increases. Needless to say, the distribution W�z�

FIG. 3. Profiles of the thermodynamic variables in a system formed by two
layers of constant density, which is Rayleigh-Taylor unstable.
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determines the two species to be used in the problem, since
the relation

WL � W�z� � WH �71�

holds.
In this configuration, the buoyancy frequency, Eq. �6�, is

negative, and this instability implies that the whole domain
will be involved in the mixing process. However, it is imme-
diately observed from the linear decrease in the pressure that
the maximum domain length cannot be larger than O�LH�,
given by Eq. �67�, because the pressure reaches zero at that
limit �we would need either zero absolute temperature or a
species of infinite molecular weight�. The problem is studied
up to this instant of time.

1. Energy analysis

An analysis based on the specific available potential en-
ergy similar to that of the preceding section is performed
again. The thickness of the density jump is neglected and the
density profile is

��z� = ��H, z 
 0

�L, z � 0.

 �72�

We consider a mixing region between −DL and DH.
Based on the available incompressible data,13,15 the density
profiles at each time are estimated approximately by a linear
variation from �L at z=−DL to �H at z= +DH. This assump-
tion is later verified in the simulation for the compressible
case. Conservation of mass inside this mixing region then
implies DH=DL. Experimental results show, however, that
spikes evolve significantly faster than bubbles when the den-
sity ratio is large enough,8 therefore, the analysis presented
here for this configuration is applicable only to relatively
small Atwood numbers, A�0.5.

Utilizing the same formulation as in the preceding sec-
tion, the potential energies are

VH = �HgDH
2 /2,

VL = − �LgDH
2 /2, �73�

VF = ��H − �L�gDH
2 /3,

the available potential energy is Ep=VH+VL−VF, and the
normalized specific available potential energy is

Ep

�mH + mL�gLL
= �3	DH

LL
,
LH

LL

 , �74�

where

�3 =
1

6
A

DH

LL
=

1

6

LL/LH − 1

LL/LH + 1

DH

LL
. �75�

A characteristic turbulent intensity is then given by
q0 /�gLL=�2�3.

On the other hand, an estimate of the characteristic speed
of sound at the center plane, c0, can be obtained now using a
mean value �p0 /�H+ p0 /�L� /2 in Eq. �9� and the definitions
Eqs. �67� and �68�, which yields

c0
2

gLL
=

�

2
	1 +

LH

LL

 . �76�

The minimum of the speed of sound corresponds to the up-
per limit of the domain, where the pressure is minimum, and
it can be made as small as desired by reducing p0. However,
the turbulent motion develops around the middle plane and it
is the value of c there that matters. Hence, a characteristic
turbulent Mach number is given by

Mt,0 =� 4�3

��1 + LH/LL�
, �77�

which is a function of DH /LL and LH /LL, the function �3

defined by Eq. �75�.
The final size of the mixing region DH /LL must now be

expressed in terms of the given configuration LH /LL

=�L /�H. As already mentioned before, the upper domain
height DH cannot exceed LH so that the maximum value that
the mixing zone can reach is precisely

DH

LL
=

LH

LL
. �78�

The maximum of the function Mt,0, defined in Eq. �77�,
along the curve DH /LL= f�LH /LL� gives an upper bound for
the turbulent Mach number of 0.25, having used again a
mean value of � between 1 and 5/3. Note that �3, Eq. �75�,
increases monotonically with the mixing region DH /LL, and
the final value of DH /LL used above maximizes the interme-
diate states �DH /LL , 0���1.

D. Summary of the analytical results

The major result of Sec. II is that the turbulent Mach
number has an upper bound, independent of the density ratio
under a wide range of initial thermodynamic configurations,
which may not be large enough for intrinsic compressibility
effects to be important in Rayleigh-Taylor turbulence. This
result holds for three different choices of static stability in-
side each layer: stable, neutral, and unstable. An assumption
underlying the analysis is that the flow is fully turbulent. In
this respect, if a large scale perturbation, O�LH�, is imposed
initially at the interface then there could be compressibility
effects as a blob of pure fluid rises/falls into the opposite
pure fluid layer; this is not the case studied here. Also, mis-
cible fluids subject to a turbulent flow have been considered,
which allows the characteristic speed of sound to be esti-
mated by that of the mixed fluid. This aspect of the problem
could be different in the case of immiscible fluids. Another
assumption is that of an ideal gas. The fundamental cause of
the limitation of Mt is independent of this latter assumption,
however, the particular upper bound of the turbulent Mach
number found in the analysis depends on the details of each
equation of state.

It is also worth noticing that Secs. II A and II B consider
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a final state that is buoyancy-stable. A final state that is
buoyancy-neutral could also have been assumed. However,
the latter yields higher final potential energy, i.e., smaller
characteristic turbulent Mach number. Thus the former pro-
vides a conservative estimate.

The aforementioned work of Chen et al.33 reaches a dif-
ferent conclusion, reporting a significant influence of com-
pressibility on the development of the flow. However, this
reference considers immiscible fluids and it is two-
dimensional, which is fundamentally different from the case
addressed here, namely, miscible fluids and a three-
dimensional configuration. In the two-dimensional case,
larger and larger bubbles appear without a transfer of energy
toward smaller scales. Furthermore, there is no molecular
mixing and therefore the effective Atwood number cannot be
reduced with respect to the completely segregated state, this
result being radically different from what is observed in the
miscible three-dimensional case,15 where the effective At-
wood number can be half of the immiscible one. Hence, in
the two-dimensional case, larger and fewer bubbles of im-
miscible fluid are present and the only possibility for the
effective Atwood number is to increase due to the expansion
as they rise. In the three-dimensional problem, however, this
expansion due to compressibility is counteracted by mixing,
and precisely what our investigation shows is that turbulent
mixing dominates over this expansion phenomenon in the
case of a fully turbulent flow. Therefore, the results obtained
here do not contradict Chen et al.;33 we simply look at a
different problem.

III. FORMULATION OF THE NUMERICAL
SIMULATIONS

A. Governing equations and subgrid model

A spatial filter operation over a field ��x� representing
any physical property per unit volume �pressure or density�
at a fixed time is defined by

�̄�x� = �
�

��r�G�x − r�dr , �79�

where the filter kernel G�x ,r� has been assumed to be ho-
mogeneous in space and the integral extends over the flow
domain. The filtered field of any quantity per unit mass ��x�
�velocity, species mass fraction, or the group R0T /W�, is
Favre or density weighted,

�̄�x� = �
�

��r���r�G�x − r�dr��
�

��r�G�x − r�dr ,

�80�

yet it will be denoted equally by an overbar in order to sim-
plify the notation of the subgrid-scale model.

The equations used to describe the flow are obtained by
applying this filter to the Navier-Stokes equations, which,
after certain simplifying assumptions described below, yield
the system

� �̄

�t
+ � · ��̄ū� = 0,

���̄ū�
�t

+ � · ��̄ūū� = − � p̄ − � · qu + �̄g ,

�81�
� p̄

�t
+ ū · � p̄ = − �rp̄ � · ū − � · qp,

���̄Ȳ�
�t

+ � · ��̄ūȲ� = − � · qY .

Henceforth, Y is the species mass fraction of heavy fluid YH,
and the species mass fraction of the light fluid is given by
YL=1−Y. The subgrid-scale terms are defined by

qu = �̄�uu − ūū� ,

qp = �pu − p̄ū� , �82�

qY = �̄�uY − ūȲ� .

The following simplifications have been adopted. First,
the Reynolds number is assumed to be large enough for the
molecular dissipation terms to be negligible compared to the
subgrid-scale terms. The second simplification has been done
in the pressure equation, where the subgrid-scale pressure-
dilatation term has been dropped. It has been documented
that the average value of this term is negligible for low-to-
moderate Mach numbers24 and further investigation34 has
shown that this term has a negligible impact on the LES
results. The ratio of specific heats � is given by

� =
1

1 − R0/�CpW�Y��
, �83�

the resolved part of which is denoted by �r. The specific heat
of the mixture at constant pressure Cp has been taken as a
constant. The subgrid-scale term arising from the product of
� and the pressure-dilatation correlation has been neglected
due to the small variation of the ratio of specific heats
�1���5/3�.

The filtered equation of state is written as

p̄

�̄
= R0T̄	 �

i=L,H

Yi

Wi
+ �

i=L,H

TYi − T̄Yi

Wi

 . �84�

Isothermal conditions are imposed, and the subgrid-scale
term in the above equation arising from the temperature fluc-
tuations is expected to be small compared to the resolved
part.

The coupling between the species mass fractions and the
flow variables enters the original �not filtered� equations
mainly through the viscous terms.13 Since the high-
Reynolds-number case is considered here, the only coupling
enters through the ratio of specific heats �, Eq. �83�, and this
coupling is expected to be small. Hence, the species mass
fraction behaves basically as a passive scalar.

The subgrid-scale model employed to close the remain-
ing subfilter terms in the governing equations is a dynamic
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mixed model.34 This model is able to allow backscatter and
to adapt itself to the flow characteristics at each time, its
main drawback being the high computational cost. It is
shown35 thorough a posteriori comparisons among the most
usual closure approaches that the dynamic mixed model, at
least for the case analyzed there �mixing layer�, is superior
�though not perfect� to the rest of the closures, and the re-
view of Meneveau et al.18 also points out several advantages
of this subgrid model. It has to be realized, however, that the
present problem is characterized by strong variations of the
density. The differences between the constant-density and the
variable-density flows, from a LES point of view, are that, in
the latter case, the energy equation has to be solved and the
isotropic part of subgrid-scales shear stress has to be mod-
eled �cannot be included in a modified pressure�. Several
studies have been made in this direction.34,36–40

Hence, the closure of the system, Eq. �81�, is done by

qu
d � �� �ūū − u� u� �d − 2�̄�sgS f

d,

qu
i � �� �ūū − u� u� �i,

�85�
qp � �ūp̄ − u� p� � − �̄Dp,sg � �p̄/�̄� ,

qY � �� �ūȲ − u� Y� � − �̄DY,sg � Ȳ ,

where �sg=Cu� f
2�S f�, Dp,sg=Cp� f

2�S f�, and DY,sg=CY� f
2�S f�,

and Cu, Cp, and CY are computed dynamically. S f
d is the

deviatoric part of the strain rate tensor of the filtered velocity
field ū and �S f� is defined by �2Sf ,ijSf ,ij�1/2.

The eddy-viscosity part of the model for the isotropic
component of the subgrid-scale stress tensor is not retained.
First, there is a negligible impact of this isotropic part on the
flow, since it is small compared to the thermodynamic pres-
sure for moderate Mach numbers.38,39 Besides, it has been
reported that the Smagorinsky contribution to it may lead to
instability of the LES �Ref. 34� and provides a lower corre-
lation with exact values in the a priori analysis.34,37

The dynamic methodology is applied using the basic fil-
ter �F level� at � f and the test filter �G level� at � f as well.
Application of these two filters defines a new filter �FG
level�, with an associated filter scale �� f. The value of �,
computed as suggested by Vreman et al.,35 is �2.

B. Numerical scheme

The governing equations, written in Cartesian coordi-
nates, are discretized on a structured uniform mesh with the
same grid spacing in each direction. The spatial derivatives
are computed using a compact Padé scheme of sixth-order
accuracy.41 This numerical scheme yields numerical errors
that are small compared to the subgrid-scale terms of the
governing equations when the filter size is chosen as twice
the grid size,42 as it is done here. It is biased inward at the
nonperiodic boundaries �top and bottom�, having locally
third-order accuracy. The advancement in time is performed
with a low-storage fourth-order Runge-Kutta scheme.43 The
boundary conditions in the nonperiodic directions are imple-
mented in characteristic nonreflective form.44

A compact filter41 is applied to remove the aliased en-
ergy at the high wavenumbers originated by the nonlinear
interaction of resolved-scale modes. The diffusive terms aris-
ing from the subgrid-scale models are treated in conservative
form, and, therefore, two successive first-order difference op-
erators are used. The transfer function of this operator41 is
characterized by falling to zero at the highest wavenumber,
which eliminates any dissipation at those scales. The fre-
quency and intensity of the filter is set in order to remove an
amount of energy that is negligible compared to the subgrid
dissipation. This ratio is monitored along the simulation and
maintained of the order of 5% of the subgrid-scale dissipa-
tion.

The nonlinear terms are treated in the skew-symmetric
form to reduce aliasing errors,

Nu = − 1
2 �� · ��̄ūū� + �̄ū · � ū + ū � · ��̄ū�� ,

�86�
NY = − 1

2 �� · ��̄ūȲ� + �̄ū · � Ȳ + Ȳ � · ��̄ū�� .

This formulation, along with the symmetric differencing
scheme, ensures conservation of mass, momentum, and ki-
netic energy inside the domain and across periodic boundary
conditions with respect to the nonlinear terms.39,45,46 It is
noted that there are two slightly different skew-symmetric
formulations for variable density flows.39,47 Two-dimensional
simulations of the Navier-Stokes equations without filtering
showed that the regrouping proposed by Erlebacher et al.39

was stable for a larger number of iterations, and, therefore, it
was chosen for the present LES.

IV. SIMULATION OF THE CONFIGURATION
WITH EACH LAYER AT CONSTANT COMPOSITION

A. Problem definition

The configuration shown in Fig. 2 and analyzed in Sec.
II A is numerically simulated. The species mass fraction has
a smooth transition from 0 �bottom� to 1 �top� over a thick-
ness hY,0 and the temperature is constant everywhere. Ini-
tially, the system has no fluctuations. At time t=0, the inter-
face between the two fluids is perturbed and the temporal
development of the resultant Rayleigh-Taylor instability into
turbulence is simulated.

The problem is nondimensionalized with p0 , g, and the
thermodynamic state of the pure heavy fluid, WH and TH. A
length scale is given by LH, Eq. �12�, and velocities are non-
dimensionalized with �gLH and densities with �0

+, defined by
Eq. �15�. The nondimensional governing equations for the
nondimensional variables �*, u*, p*, and Y take the same
form as the original system, Eq. �81�, with

�r =
�H

�H − ��H − 1�/W* , �87�

where, from Eq. �83�, the reference ratio of specific heats is
�H=1/ �1−R0 / �CpWH��. Hence, only �H enters in the gov-
erning equations described in the preceding section. Hence-
forth, the asterisk denotes nondimensional values. The over-
bar denoting filtered quantities has been dropped for
notational convenience.
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The initial condition for the species mass fraction is
given by

Y�z*� =
1

2�1 + erf	 z* + �*�x,y�
2hY,0

* /6.58

� , �88�

varying between 0 at the bottom and 1 at the top. In this
equation, hY,0

* is the initial thickness of the mixing layer and
the initial perturbation is described by �*�x ,y�. The thickness
hy

* is defined by the length over which the mean mass frac-
tion profile varies from 0.01 to 0.99. Note that the mixing
thickness in this configuration is based on the mass fraction
profiles and not on the density profile because the latter var-
ies exponentially with the vertical distance from the center
plane.

This distribution of species mass fractions imposes a
variation of the nondimensional molecular weight as follows:

1

W* = Y +
1 − Y

WL
* . �89�

The initial pressure is given by Eq. �11�, which written in
nondimensional variables reads

p*�z*� = exp	− �
0

z*

W*���d�
 . �90�

The density is then calculated by �*= p*W* /T*, where T*

=1 has been assumed in this case, as said before.
The nondimensional external parameters defining the

isothermal problem are therefore hY,0
* =hY,0 /LH, WL

*

=WL /WH, and �H. The effect of the molecular weight ratio
on compressibility has already been analyzed in Sec. II. The
influence of varying �H is expected to be small because the
ratio of specific heats varies between 5/3 and 1 in the case of
an ideal gas.

The ratio of molecular weights is WL
* =1/3 �initial den-

sity jump at the interface �0
+ /�0

−=3, initial Atwood number
A=0.5�. The reference ratio of specific heats, �H, has been
fixed such that the value in the lower layer corresponds to
�L=1.4; ��z� decreases with increasing z* according to Eq.
�87� until �H=1.1 at the top of the domain.

The equations are solved in a rectangular domain 2LT
*

�2LT
* �11LT

*, where LT
* =LT /LH=ln�WH /WL�. This size is

chosen such that the upper half of the domain spans six times
the distance LT and the lower half of the domain five times.
This length scale LT, defined by

LT = LHln
LL

LH
, �91�

is the important scale of this configuration, as shown by Eqs.
�43� and �44�, rather than LH, because it retains information
about the density jump at the interface.

The mesh size is 128�128�704. The initial thickness
is set to hY,0

* =0.171, so that there are ten points to resolve the
initial gradient. The initial perturbation field �*�x ,y� is set
following Cook et al.13 by considering a Gaussian distribu-
tion of energy content in its two-dimensional spectrum, with
the peak located at a wavelength �0

*=LT
* /6. The standard

deviation in frequency space is f0
* /6, where f0

*=1/�0
*, so that

there is practically no energy in the frequency range between
0 and f0

* /2. The root-mean-squared value of the perturbation
is 10% of �0

*, which implies �rms
* /hY,0

* =0.1.

B. Density field

Figure 4 presents the vertical profiles of the normalized
mean density. In addition to the initial distribution, the den-
sity variation at times t�Ag /LT equal to 3.5, 6.9, and 12.0 is
plotted. The mixing zone thickness hY at each of these times
is also indicated. This figure shows that the density jump at
z=0 is rapidly reduced due to the mixing process in a time
that scales with �LT / �Ag�, the instantaneous Atwood number
based on the mean density decreasing with time. By the time
that the mixing layer grows to hY /LT=4, the regions with
static instability of the mean density profile have practically
disappeared, clearly showing that the mixing by Rayleigh-
Taylor turbulence is restricted to a central zone that scales
with the length LT, as assumed in the theoretical analysis of
Sec. II A.

Figure 5 shows the temporal evolution of the normalized
intensity of the density fluctuations at the center plane, de-
fined as

Ae

A
=

�rms

��̄�A
. �92�

The maximum value at late times is only slightly larger than
the center plane value presented in this figure and occurs in

FIG. 4. Normalized mean density profiles at different times: �—� t�Ag /LT

=0; �---� t�Ag /LT=3.5�hY /LT=2�; �-·-� t�Ag /LT=6.9�hY /LT=4�; �¯¯¯�
t�Ag /LT=12.0�hY /LT=8�.

FIG. 5. Temporal evolution of the normalized intensity of the density fluc-
tuations or effective Atwood number, Eq. �92�, at the center plane.
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the lower layer of fluid, where eventually the density is
higher than in the whole upper layer. This quantity is the
effective Atwood number of the flow, Ae, as proposed by
Cook et al.15 The initial peak for t��LT / �Ag� represents the
increase in segregation during the initial development of the
flow, before turbulence dominates the problem. After transi-
tion, the effective Atwood number decreases continuously
due to the stable stratification of the upper and the lower
layers, which confines the region of fluid involved in the
problem to a finite size, and turbulent mixing, which even-
tually mixes both species at the molecular level.

C. Intrinsic compressibility

Figure 6 shows the temporal evolution of the turbulent
Mach number. Along with the value at the center plane, the
maximum value, which occurs somewhat off-center toward
the upper layer of fluid where the speed of sound is lower, is
also plotted.

The fact that the mean density evolves in a scale of order
LT as observed in Fig. 4 confirms the overall available po-
tential energy calculated in the theoretical analysis. The
speed of sound was estimated by the mean final value and it
is observed that Mt at the center plane in the LES is less than
the upper bound found in Sec. II A, �0.6, confirming the
analysis. There is a displacement of the maximum value of
Mt toward the initially heavy fluid side �upper layer�, but the
difference observed in Fig. 6 is small enough for the bounds
obtained in Sec. II A to hold in general.

It has to be underlined as well that the initial perturba-
tion of the interface is chosen small compared to LT, so that
fully developed turbulence could be established as much as
possible before hY�t� reaches values of the order of LT. How-
ever, if a large perturbation is set initially so that a large-
scale velocity field develops in the beginning with little
�small-scale� mixing, there could be stronger compressibility
effects as the upper layer, with low speed of sound, is
strongly perturbed in the areas of pure heavy fluid. This is
not the case considered in this study, not because it is less
important, but because that situation would be strongly prob-
lem dependent.

In order to further analyze the compressibility of the
flow, apart from looking at the turbulent Mach number, it is

also customary to split the density fluctuation shown in Fig.
5 into an acoustic part and an entropic part, one possible
definition being23

�ac� = p�/�c�2,

�93�
�en� = �� − �ac� .

Here, since the flow is practically isothermal, the entropic
part originates from the composition fluctuations. Results
show that the major part of the fluctuation �rms shown in Fig.
5 corresponds to the entropic mode, the acoustic contribution
being only 6% of the entropic one at the center plane at
t�Ag /LT=3.5, which is characteristic of a situation with low
intrinsic compressibility. At later times, this ratio slightly in-
creases, being 10% at t�Ag /LT=6.9, which is still a small
value. Consistently, the pressure-dilatation term in the trans-
port equation for the turbulent kinetic energy �to be dis-
cussed more thoroughly for the next configuration� is less
than 10% of the buoyancy-production term.

The results of the LES thus confirm the theoretical pre-
dictions of the bounds of the turbulent Mach number. The
value of Mt in the turbulent stage of the Rayleigh-Taylor
problem does not have significant intrinsic compressibility
effects.

V. SIMULATION OF THE CONFIGURATION
WITH EACH LAYER AT CONSTANT DENSITY

A. Problem definition

The configuration shown in Fig. 3 and analyzed in Sec.
II C is now considered. The density has a smooth transition
from the lower to the higher value over a thickness h�,0 and
the temperature is constant everywhere. Initially, the system
has no fluctuations. At time t=0 the interface between the
two fluids is perturbed and the temporal development of the
resultant Rayleigh-Taylor instability into turbulence is simu-
lated.

The problem is nondimensionalized with p0 , g and the
thermodynamic state of the pure heavy fluid, �H and TH. A
length scale is given by LH, Eq. �67�, and velocities are non-
dimensionalized with �gLH and molecular weights by WH

+

=R0TH�H / p0. The nondimensional governing equations are
the same as in the preceding section, the only parameter
entering in those transport equations being now the reference
ratio of specific heats �H

+ =1/ �1−R0 / �CpWH
+ ��.

The setup is a vertically varying mixture of two species
such that the profile of the density is given by

�*�z*� =
1 + �L

*

2 �1 + A erf	 z* + �*�x,y�
2h�,0

* /6.58

� , �94�

where h�,0
* is the initial thickness of the mixing layer and the

initial perturbation is described by �*�x ,y�. The thickness h�

is defined by the length over which the mean density profile
varies from 1% of the density jump above �L

* to 1% of the
density jump below �H

* =1. Again, the asterisk denotes non-
dimensional values.

The nondimensional pressure is obtained from Eq. �66�,

FIG. 6. Temporal evolution of the turbulent Mach number, Mt=q / �c�: — at
the center plane, --- maximum value.
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p*�z*� = 1 − �
0

z*

�*���d� . �95�

The nondimensional parameters defining the isothermal
problem are h�,0

* =h�,0 /LH , �L
* =�L /�H �or, equivalently, the

Atwood number, Eq. �3��, the molecular weights of the pure
species WL

* =WL /WH
+ and WH

* =WH /WH
+ �which determine the

profiles of species mass fractions�, and �H
+ . The effect of the

density ratio on compressibility has already been taken into
account in the analysis presented in Sec. II. The last three
nondimensional parameters are coupled with the velocity
field only through �, as explained in Sec. III, and their influ-
ence in the results is then expected to be small. With respect
to the initial thickness h�,0

* , it is desirable to set it as small as
possible so that a self-similar turbulent stage is achieved, but,
on the other hand, it determines the resolution required in the
LES. Its possible effect on compressibility is studied in the
following section.

The density ratio considered in this simulation is
�H /�L=3 �Atwood number A=0.5�. The reference ratio of
specific heats has been fixed such that the value in the pure
light fluid is �L=1.4; ��z� then varies from �=1.33 at the
bottom to �1 at the top of the domain.

The equations are solved in a rectangular domain LH

�LH�2LH. Thus, the vertical size of the upper layer, LH, is
the maximum possible according to the definition of the
scale-height, Eq. �67�, and is chosen to obtain the maximum
achievable velocity fluctuation in this configuration. The
pressure is not exactly zero at the top boundary because of
the initial thickness h�,0

* at the center plane. The mesh size is
256�256�512, double the resolution of the case consid-
ered in Sec. IV. The motivation for this larger simulation is
the attempt to reach self-similar behavior in some of the
statistics, as will be discussed below. The initial thickness is
set to h�,0

* =0.039, so that there are ten points to resolve the
initial gradient. The initial perturbation field �*�x ,y� is set as
explained in Sec. IV, scaled accordingly to the smaller char-
acteristic scale of the initial perturbation h�,0

* considered in
this case. Thus, the peak of the spectral distribution of the
perturbation is �0

*=1/24.

B. Intrinsic compressibility

The results describing the intrinsic compressibility of the
flow are now presented. It is interesting to note that the co-
efficient � of Eq. �10� is 0.36 in the simulation, based on the
Reynolds stresses obtained in the LES, to be discussed later,
Fig. 14. This result is close to the value 0.3 reported by Cook
et al.15 for the incompressible case. Furthermore, negligible
explicit compressibility effects in the following sections will
be seen, recovering scaling laws and quantitative results re-
ported in incompressible situations.

The first quantity to be examined is the turbulent Mach
number, defined by Eq. �4�. Its temporal evolution at the
center plane, where it approximately peaks, is represented by
the solid curve in Fig. 7, observing a maximum value about
0.15. Note that the computational box extends to a height LH

above the center plane, the maximum available to ensure
positive pressure. Consequently, the maximum value of tur-

bulent Mach number achieved in the simulation is a good
estimate of the maximum Mt achievable in this configura-
tion. This result of Mt,max=0.15 is consistent with the bounds
obtained in Sec. II. The smallness of Mt implies that com-
pressibility effects are expected to be too weak to alter the
general characteristics of the flow.

In addition to the solid curve, there is a dashed curve in
Fig. 7 corresponding to another LES that only differs in the
size of the initial mixing depth, h�,0

* =0.078 �instead of h�,0
*

=0.039� and the mesh size, 128�128�256. As mentioned
in the beginning of this section, the size of the initial pertur-
bation is the second relevant nondimensional parameter de-
fining the problem �the first one, �L /�H, has been considered
in Sec. II� and its influence on the achievable turbulent Mach
number is not easy to analyze theoretically. Both simulations
stop when the mixing thickness becomes h�

*�0.7 because
the domain size affects the results beyond that point. The
consequence of this difference in the initial conditions is that
Mt increases less during the initial developing stage up to
three nondimensional time units, leaving more time for the
turbulent evolution, as the size of the initial perturbation h�,0

*

is decreased. However, the final value maximum Mt�0.15 is
the same in both cases.

As it was done in the two-layer configuration, Sec. IV,
the density fluctuation was split into an acoustic part and an
entropic part, as defined by Eq. �93�. Results show that al-
most all the fluctuation �rms correspond again to the entropic
mode, the acoustic part being only 2.5% of the entropic part,
confirming a quasi-incompressible situation.

C. Comparison with previous work

As mentioned in Sec. II C, the choice of a configuration
formed by a constant density layer over another constant �but
lighter� density layer is partly motivated by the possibility of
comparison with previous work and, thus, validation of the
LES. We now briefly discuss subgrid model coefficients, the
evolution of the thickness h�, and molecular mixing.

The subgrid model coefficient obtained in the later
stages of the simulation is Cu�0.012, which agrees well
with the range 0.002–0.02 found in the literature for other
flows.35,38,39,48,49 The value of the subgrid Prandtl number,
Prsg=Cu /Cp�0.35, is somewhat lower than the range Prsg

FIG. 7. Temporal evolution at the center plane of the turbulent Mach num-
ber, Mt=q / �c�: �—� h�,0 /LH=0.039 �mesh 256�256�512�; �--� h�,0 /LH

=0.078 �mesh 128�128�256�.
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�0.4–0.85 reported for a passive scalar. The subgrid
Schmidt number, Scsg=Cu /CY, follows closely the evolution
of Prsg. This relatively broad range of values is reasonable
because, in principle, the coefficients could depend on the
filter kernel, the closure model �dynamic or dynamic mixed�,
and the type of flow, and there could be an additional depen-
dence on the Reynolds number and the ratio � f /L of the data
reported by different authors.

The mixing depth based on h� was studied by the growth
coefficients of the bubble penetration, �b, and the spikes pen-
etration, �s, as defined in the Introduction. Figure 8 plots the
time derivative of the bubble penetration, h�,b�t�, and the
spike penetration, h�,s�t�, with respect to �Agt2�, following
Cook et al.13 A tendency toward a constant value, confirming
a quadratic time dependence of the mixing depth, is ob-
served. The intrinsic compressibility does not affect this qua-
dratic growth law because the value of Mt remains rather
small, as seen previously. The final value of �b and �s, about
0.04, is consistent with the data found in the literature.

Lastly, mixing is investigated. Mixing has been charac-
terized in the past in several manners. Two depth-integrated
parameters are considered, both based on the ratio

� �Xp�X��dz

� Xp��X��dz

. �96�

The particular choice of the function Xp leads to one param-
eter or another. In this expression, X= ��−�L� / ��H−�L�,
which in the incompressible limit represents the mole frac-
tion of the heavy fluid. We compute first the mixing param-
eter � as proposed by Youngs,12

Xp = X�1 − X� , �97�

and second, the mixing parameter � as proposed by Cook
et al.,13

Xp = �2X , X � 1/2

2�1 − X� , X 
 1/2.

 �98�

The temporal evolution of both parameters is presented in
Fig. 9. It is observed that they evolve very close to each
other, either one giving the same information and following
the general temporal evolution described by the aforemen-

tioned authors. The final values in the current LES, although
still slightly evolving, are about 0.75, which agree reason-
ably well with the result 0.8 reported in both of the previous
references and elsewhere.11,15,22 Again, there is no obvious
influence of intrinsic compressibility on the mixing param-
eters.

D. Density field

The mixing layer is usually measured by the distance h�

over which the density profile varies from 1% over �L to 1%
below �H. However, this measure of the mixing depth is not
very robust, especially with relatively small domains, since
isolated structures �bubbles/spikes� at the fronts can change
it and the temporal evolution is not very regular.14 For this
reason, we choose the mixing depth defined as


� =
��

����̄�/�z�max

, �99�

which is equivalent to the vorticity thickness used in the
mixing layer, a problem where the velocity jump drives the
flow instead of a jump in the density. The initial relation
between 
� and the alternate mixing height h�,0, defined by
Eq. �94�, is 
�,0=0.54h�,0�
�,0

* =0.021� in this particular case.
In order to determine ����̄� /�z�max at a given time, a

fifth-order polynomial is fitted to the data of the mean den-
sity profile between �L+0.01�� and �H, and the derivative is
obtained using second-order centered finite differences. Fig-
ure 10 shows the evolution of the mixing width 
��t� and its

time derivative 
̇��t�. Time has been nondimensionalized by

	 = �
�,0/�Ag� . �100�

Note that the initial irregularities in 
̇��t� do not persist at late
time, the period of most interest.

Theory for the low Mach number situation predicts that

�� t2 once the self-similar stage is achieved. This behavior

is tested more easily with the derivative 
̇��t�, which should
vary linearly with time. The figure shows that there is an
initial period, t�2	, where the increase of 
� is roughly
quadratic. After this initial development, there is an interval
between a nondimensional time of 2.5 and 5 where the av-
erage flow decelerates. Once this initial transient is over-

FIG. 8. Growth coefficients: �b for bubbles �positive values� and �s for
spikes �negative values�. FIG. 9. Temporal evolution of the global mixing parameters: �—Youngs’

definition, �—Cook’s definition.
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come, 
� starts to accelerate again, seemingly toward the
quadratic scaling. The linear fit to the data beyond t=10	
provides


̇�/�Ag
�,0 = 0.25�t/	 − 3.96� . �101�

Again, intrinsic compressibility does not influence the usual
scaling law of the growth of 
� that neglects any Mach num-
ber influence. At the nondimensional time of 16, the thick-
ness of the mixing layer is 
�

*�0.61�h�
*�0.72�. The simula-

tion is then stopped because the vertical extent is comparable
to the homogeneous dimensions �recall that the domain size
is LH�LH�2LH� and the number of structures in the domain
does not allow a reasonable average.

Figure 11 plots the density profile across the flow for two
different times, t=10	 and t=15	. The vertical coordinate is
scaled with the mixing depth 
�, and the collapse of the two
curves suggests an approach to similarity. There is a small
deviation, however, at the two fronts; it is not clear if the
deviation is due to the LES model or truly due to the lack of
self-similarity. This deviation will be shown to be stronger in
the Reynolds stresses profiles.

The last density-related quantity to be analyzed is the
density fluctuation variance, cast in terms of an effective
Atwood number, Eq. �92�. Its temporal evolution at the cen-
ter plane is shown in Fig. 12. The peak occurring at t
�2.5	 represents an increase in segregation taking place in
the nonlinear stage �minimum of the mixing parameters in
Fig. 9�. After that, the sustained increase of density fluctua-

tions beyond transition is due to the unstable stratification
�negative buoyancy-frequency� of the upper and the lower
layers, consistently the opposite tendency from the earlier
case, Fig. 5, where the stratification was stable. This result is
also consistent with the sustained decrease in the mixing
parameters shown in Fig. 9.

The information given by Fig. 12 is relevant for the topic
investigated in this paper. First, miscible fluids are character-
ized by an effective Atwood number significantly smaller
than immiscible fluids. For immiscible fluids, i.e., com-
pletely segregated states, the effective Atwood number is
approximately15 equal to A, or possibly larger because of the
unstable stratification in each layer. Miscible fluids are char-
acterized by a smaller value in the turbulent stage, in particu-
lar, we obtain Ae=0.5A, which is in agreement with the in-
compressible case considered by Cook et al.15 Figure 13, the
visual counterpart of the information conveyed by the curve
in Fig. 12, shows that the late-time mixing �bottom panel� is
turbulent; there is a central region of intermediate fluctuating
values of density, and the probability of bubbles or spikes
enclosing pure fluid and cleanly penetrating in the opposite
layer is small. Turbulent mixing also justifies the choice of
the characteristic speed of sound in the theoretical analysis to
be a mean value of the speed of sound in the turbulent core.

Second, the effect of compressibility can be directly ob-
served comparing Fig. 12 with Fig. 19 in the work of Cook
et al.15 These authors considered the incompressible case and
they observed a constant behavior of Ae for late times due to
stable stratification. Compressibility imposes a negative
buoyancy-frequency and thus unstable stratification, which

FIG. 10. Mixing width 
� �dash-dotted line� and its time derivative 
̇�

�dashed line� as a function of time. The linear fit to 
̇�, Eq. �101�, is also
shown as a solid line.

FIG. 11. Mean density profile using self-similar variables: �-� t
=10�
�,0 / �Ag�; �---� t=15�
�,0 / �Ag�.

FIG. 12. Temporal evolution of the normalized intensity of the density
fluctuations or effective Atwood number, Eq. �92�, at the center plane.

FIG. 13. Density fields. Top—t=2.5	 �nonlinear stage�; bottom—t=10	
�turbulent stage�. Gravity is acting downward.
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results in the increase of the density fluctuations. The in-
crease in the effective Atwood number due to this buoyancy-
compressibility coupling is of the order of 20%.

E. Reynolds stresses

The Reynolds stress tensor is split into resolved, and
subgrid parts,

Rij = Rij
r + Rij

sg, �102�

where

Rij
r = ��̄ūi�ūj��/��̄� ,

�103�
Rij

sg = �qu,ij�/��̄� ,

the subgrid contribution being estimated from the same dy-
namic mixed model used in the LES. The previous relation
between the total, resolved, and subgrid stresses holds if the
filter size � f is small enough to allow the approximation
�������.

Figure 14 shows the temporal evolution at the center
plane of the total Reynolds stresses, as defined above, non-
dimensionalized with the velocity scale �Ag
�. The horizon-
tal Reynolds stress is defined by Rh=Rxx+Ryy. The temporal
evolution shows the transient seen in the mixing depth, with
a strong peak in the vertical Reynolds stress Rzz. It is also
observed that the horizontal stress has certain delay with re-
spect to the vertical one, the peak occurring at later times,
because the input of energy is through Rzz followed by a
transfer to Rh. The tendency toward a self-similar stage is
also approximately seen beyond the nondimensional time
8.0, where the plateau in the curves confirms the expected
scaling with the velocity �Ag
�. However, there is still a
slight increase in anisotropy.

Figure 15 plots the profiles at the times t=10	 and t
=15	 using the similarity variable z /
�. This figure shows a
clear asymmetry in the flow, the peak of the Reynolds
stresses being slightly displaced toward the light fluid. It is
also observed that the profiles do not collapse very well,
especially in the spikes front �negative z�, similar to the den-
sity profiles.

The level of anisotropy of the Reynolds stresses mea-
sured by the ratio between the vertical and the horizontal

fluctuations is Rzz /Rh�1.8, as can be observed in Fig. 15.
This result is in agreement with the value 1.7 reported by
Cook et al.15 and Dimonte et al.,22 and 1.5 reported by Lin-
den et al.16 This anisotropy is larger than that found in free
jets or mixing layers,50 where the ratio of the streamwise
intensity to the cross-sectional fluctuation is closer to unity,
suggesting that a directional volumetric force induces more
anisotropy than a directional shear as driving mechanism.

The subgrid Reynolds stresses, as obtained from the dy-
namic mixed model, Eq. �85�, are shown in Fig. 14. The
contribution of the Smagorinsky part to the Reynolds
stresses is negligible, �1% of the scale similarity part. Their
temporal evolution is similar to that of the resolved counter-
parts. The subgrid kinetic energy at the end of the simulation
is about 7% of the total amount, decreasing with time.

It is interesting to see how the latter ratio Ksg /K varies
with L� /� f, where the integral dissipation length is defined
by L�=K3/2 /�sg , �sg being the mean subgrid-scale dissipa-
tion. This dissipation scale achieves an approximate constant
value of L�=0.3
� beyond t=10	. Figure 16 shows the ex-
pected decay, as the energy is continuously displaced toward
the larger resolved sales. Bagget et al.51 reports smaller sub-
grid contribution for smaller ratios of L� /� f �10 in a chan-
nel flow, but this is consistent with the fact that their spectral
cut-off filter yields more energy in the resolved part of the
spectrum. Besides, some dependence on the specifics of the
flow might be expected.

FIG. 14. Temporal evolution at the center plane of the total Reynolds
stresses: �—� vertical, Rzz; �---� horizontal, Rh=Rxx+Ryy. The bottom curves
denote, with the same line pattern, the corresponding subgrid parts.

FIG. 15. Total Reynolds stresses profiles using self-similar variables: �—�
t=10�
�,0 / �Ag�; �---� t=15�
�,0 / �Ag�.

FIG. 16. Variation of the percentage of subgrid energy as the filter size � f

decreases in comparison with the dissipation length scale, L�=K3/2 /�sg.
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F. Turbulent kinetic energy budget

The transport equation for the resolved turbulent kinetic
energy per unit mass, Kr, reads

��̄�
�Kr

�t
+ ��̄��w̄�

�Kr

�z
+

�Tz
r

�z
= �r + ��̄��Pr − �sg� + Br

+ �r, �104�

where

Tz
r = ��̄w̄�ūi�

2�/2 + �p̄�w̄�� + �w̄�qu,zz� � ,

�r = �p̄�ūi,i� � ,

Pr = − Rzz�w̄�,z,

�105�
�sg = − �qu,ij� ūi,j� �/��̄� ,

Br = ��̄��w̄�R���p̄�,z/��̄� ,

�r = ��̄��w̄�R���qu,zz�,z/��̄� .

In these expressions, �w̄�R� denotes the Reynolds fluctuation
of the vertical velocity and B is the buoyancy term. This
equation is obtained from the first two transport equations in
the system, Eq. �81�. In comparison with the transport equa-
tion for the total turbulent kinetic energy, it does not contain
any of the terms due to molecular diffusion, and it includes
instead the subgrid-scale part in the transport Tz

r and the
mean flux �r, in addition to the mean subgrid-scale dissipa-
tion �sg.

Figure 17 shows the temporal evolution at the center
plane of the most significant terms in Eq. �104�. The subgrid
part of the transport term is approximately constant beyond
t=10	 while the resolved part increases so that the ratio fol-
lows a trend similar to Ksg /K, Fig. 16, being about 7% at the
end of the simulation. It is clear that the main input of energy
in this flow is the buoyancy term Br. Note that �p̄�,z

�−��̄�g is negative, and so is the mass flux ��̄��w̄�R�� because
heavy fluid pockets in lighter ambient fluid drop while light
pockets in heavy fluid rise. Therefore, the buoyancy term is
positive and represents turbulent potential energy being

transferred to turbulent kinetic energy �in other cases, e.g.,
stable stratification, the transfer could be in the opposite di-
rection�. Production and convection play a small role be-
cause the mean velocity and its gradient are small. The
pressure-dilatation term is negligible, which further indicates
the quasi-incompressible character of the flow.

The energy is distributed in space by the transport term
Tz,z

r , moving energy from the center of the mixing zone to-
ward the upper and lower fronts, as shown by Fig. 18, where
the profiles across the flow are plotted. A similar result was
obtained from the spectral analysis performed by Cook
et al.14 The energy is finally transferred toward the subfilter
scales through the subgrid-scale dissipation �sg. The dissipa-
tion caused by the numerical dealiasing filter described in
Sec. III is 5.5% of �sg at t=10	 and 5.0% at t=15	. The input
of energy by the buoyancy term goes directly into the Rey-
nolds stress in the inhomogeneous direction, Rzz, and it is
transferred by the pressure-strain correlation, �ij

r = �p̄��ūi,j�
+ ūj,i� ��, toward the turbulent fluctuations in the homogeneous
plane.

It is worth noticing as well that the subgrid-scale model
shows backscatter �owing to the scale similar part� during the
initial time, indicated by the positive values of −�sg for t
�3	.

The curves are nondimensionalized with the quantity
��Ag�3
�, formed by the length scale 
� and the velocity
scale �Ag
�. It is observed in Figs. 17 and 18 that the tem-
poral evolution of the the buoyancy flux and the transport
terms do not reach a plateau after the transient, though the
subgrid-scale dissipation clearly does. This is not surprising
since different statistical quantities achieve self-similarity at
different times. Longer simulations would be interesting to
ascertain this behavior.

Lastly, the integral of Eq. �104� along the vertical direc-
tion implies that the input of energy through the buoyancy
flux is split between the gain of turbulent kinetic energy and
the dissipation. Figure 19 shows the ratio

dissipation

buoyancy production
=
� ��̄��sgdz

� Brdz

. �106�

Instead of the integral of Br, the loss of potential energy
based on the mean density profile is used in the literature.

FIG. 17. Temporal evolution at the center plane of the budget of the re-
solved turbulent kinetic energy equation per unit mass, nondimensionalized
by ��Ag�3
�: �—� buoyancy production, Br / ��̄�; �---� subgrid dissipation,
−�sg; �¯¯¯� transport, −Tj,j

r / ��̄�; �-·-� pressure-dilatation, �r / ��̄�.

FIG. 18. Budget of the resolved turbulent kinetic energy equation, nondi-
mensionalized by ��Ag3�
�: �—� t=10�
�,0 / �Ag�; �---� t=15�
�,0 / �Ag�.
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Both are equivalent when the domain of integration is
closed, as obtained from mass conservation, but the present
case allows outflow at the top and the bottom and the amount
of potential energy released that goes into the turbulent mo-
tion is given by B, as indicated by Eq. �104�. Figure 19
shows a tendency toward an asymptotic value which, how-
ever, is not achieved at the end of the simulation. The ob-
served value, 0.42, is slightly smaller than the value of 0.5
found in experiments11,16 and a recent numerical
simulation.15

VI. CONCLUSIONS

Compressibility effects in Rayleigh-Taylor turbulence
with miscible fluids in an unbounded domain have been stud-
ied using analysis and LES. Three configurations are consid-
ered in the theoretical analysis. The first one is a two-layer
system formed by a step-like distribution of the ratio be-
tween molecular weight and temperature. The density de-
creases exponentially with increasing height in each layer
and each layer is buoyancy-stable. The second configuration
has a density jump between two layers each being buoyancy-
neutral. The third configuration is defined by a step-like pro-
file of the density itself, while the pressure decreases linearly
with height in each layer. Each layer is buoyancy-unstable. It
has been shown analytically that the turbulent Mach number
is bounded from above, in the first two cases independently
of the density jump at the interface and, for the last case, for
moderate Atwood numbers �A�0.5�. The reason is that the
initial thermodynamic state of the system determines the
amount of potential energy per unit mass involved in the
turbulent mixing stage, and thus the level of turbulent fluc-
tuations that is achievable is linked to the characteristic
speed of sound such that the turbulent Mach number is lim-
ited.

In the particular case considered here of an ideal gas,
this bound on the turbulent Mach number is derived to be
Mt,max�0.25 in the constant density configuration. However,
this initial configuration in a compressible case is buoyancy-
unstable and may be difficult to set up. The bound is larger in
the buoyancy-stable and buoyancy-neutral systems, for
which Mt,max�0.6, but the result is independent of the den-
sity ratio. It has to be noted that these values are conservative
because the amount of potential energy that is dissipated

�which is up to 50% in the incompressible case� is retained in
the estimate of the turbulent kinetic energy. In all situations,
Mt is small enough so that compressibility effects may be
relatively small. LES performed with a particular density
jump at the interface of 3:1 for the stable and unstable con-
figurations considered in the analysis indeed confirm that Mt

does not exceed the analytical bounds.
The compressibility effects have been studied in the LES

decomposing the density fluctuation into the entropic part,
due to variation of composition, and the acoustic part, due to
intrinsic compressibility. This latter is found to be less than
10% of the total density fluctuation, indicating that the in-
trinsic compressibility effects are indeed small. Conse-
quently, key features such as the quadratic time evolution of
the mixing depth, the anisotropy of the Reynolds stresses,
and the value of the mixing parameters compare well with
those observed in the incompressible cases reported in the
literature.

The LES is performed using a dynamic mixed model.
The general evolution of the flow has been studied in the
configuration with constant density. Mean profiles and mix-
ing parameters are in good agreement with the available in-
compressible data to the extent that they can be compared.
The structural changes in the flow as it evolves from the
initial ordered finger-like structure to the disordered turbu-
lent stage are manifest in practically all the discussed quan-
tities. Peaks in density and velocity fluctuations, along with a
minimum in mixing that corresponds to a more segregated
state, are observed at times t�2.5�
�,0 / �Ag�, where 
�,0 is
the initial thickness of the mixing region. Subsequently, the
vorticity field, in the form of rings around the density fingers,
starts to break the ordered density structures, mixing in-
creases, and the subgrid model activates to provide the re-
quired dissipation.

The Reynolds stresses and the budget of the turbulent
kinetic energy have been fully described. The level of aniso-
tropy in the Reynolds stresses, measured as the ratio between
the vertical to the horizontal fluctuations, is �1.8. This is
higher than that for shear driven flows, where the ratio of
streamwise to cross-sectional fluctuations is closer to or
smaller than unity. The vertical fluctuations gain energy from
the available potential energy, and then there is a transfer to
the horizontal fluctuations by the pressure-strain terms. This
phenomenon peaks at the center �approximately� of the mix-
ing width. The energy is then transported spatially toward the
upper and the lower fronts of the turbulent core. Finally, the
subgrid-scale dissipation transfers the energy toward the sub-
filter scales.

Although some statistics, notably the thickness of the
mixing region, show signs of self-similarity, others continue
to slowly evolve in time; the size of the problem, the initial
thickness being �4% of the final value, is still too small for
complete self-similarity.
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