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Abstract
Although large-eddy simulation (LES) has been shown to produce a reasonable representation of the turbulent
circulations within the stratocumulus-topped boundary layer, it has difficulties to accurately predict cloud-top
entrainment rates. In this paper, we present a front-tracking algorithm for LES to untangle the numerical
and physical contributions to entrainment. Instead of resolving the cloud-top inversion, we treat it as a
discontinuity separating the boundary layer from the free atmosphere and use the level set method to track its
location. We apply our method to the smoke cloud test case as presented by Bretherton et al. (1999) which
is simpler than stratocumulus in that it is only driven by radiative cooling avoiding evaporative feedbacks on
entrainment. We present three-dimensional LES results with and without use of the level set method varying
the grid resolution and the flux limiter. With the level set method, we prescribe zero entrainment and use this
case to evaluate our method’s ability to maintain a non-entraining smoke-cloud layer. We use an empirically-
based entrainment law to estimate numerical errors. With the level set method, the prescribed entrainment
rate was maintained with errors about one order of magnitude smaller than the entrainment errors found in
the standard LES. At the same time, the dependence of the entrainment errors on the choice of the limiter was
reduced by more than a factor of 10.
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1 Introduction

Marine stratocumulus clouds extend over large regions
of the subtropical eastern oceans where their annual
mean coverage exceeds 40 % (Wood, 2012). Due to
their high albedo and high frequency of occurrence, stra-
tocumulus clouds significantly affect Earth’s radiative
balance making them one of the climatologically most
important cloud systems. However, simulation of such
clouds and their associated feedbacks remain key un-
certainties in current climate models (Bony, 2005). The
wide range of temporal and spatial scales characteristic
of these clouds make it still impossible to simulate all
important details despite increasing computational re-
sources.

The stratocumulus-topped atmospheric boundary layer
(STBL) consists of a layer of cool moist air which is
capped by relatively warmer and drier air. The boundary
layer is well mixed due to turbulent convection and is
topped by a stratocumulus cloud. The convection in the
boundary layer is driven from the cloud top, mainly by
radiative cooling and evaporative cooling. Entrainment
at the cloud top is tied to the inversion layer which sepa-
rates the mixed cloudy layer and the free atmosphere
above the cloud. The thickness of this inversion layer
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is measured in metres giving rise to small-scale mixing
processes.

Large-eddy simulation (LES) has been used exten-
sively to improve understanding of the dynamics of the
STBL. However, important quantities such as entrain-
ment remain dependent on the grid resolution and grid
spacing aspect ratio, even in recent high-resolution LES
with vertical grid spacings of 2.5 m (Yamaguchi and
Randall, 2012). The reasons for the difficulty of sim-
ulating the STBL with high accuracy using LES are
both physical and numerical. The physical aspect is that
small-scale mixing processes are not explicitly simu-
lated but typically parameterized using standard clo-
sures, the underlying assumptions of which are not sat-
isfied at the cloud top. The numerical aspect is that the
steep gradients of total water content and temperature in
the inversion layer are insufficiently resolved. As a re-
sult, important quantities such as cloud-top entrainment
can develop leading-order errors (Dietze et al., 2013).
The fact that many physical and numerical uncertainties
interact makes it hard to separate their individual con-
tributions and make the solution dependent on details in
the numerics as well as in the microphysical and turbu-
lence model (c.f. Moeng et al., 1996).

Lilly (1968) introduced a simplified model of the
STBL, the smoke cloud. It is similar to the STBL in
that the convective boundary layer (CBL) is driven by
radiative cooling. It is simpler than the STBL in that it
is dry and, thus, avoids evaporative feedback on entrain-
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ment. Instead of water, in the form of vapour or droplets,
it contains radiatively active smoke. This simplification
has two main advantages. First, it makes the bound-
ary layer problem accessible to experiments. McEwan
and Paltridge (1976) as well as Sayler and Brei-
denthal (1998) conducted tank experiments the latter
of which was also numerically reproduced by Schmidt
et al. (2012) using a 1D stochastic model. Secondly, it
allows more direct investigation of the uncertainty asso-
ciated with differences in the numerical methods used
in LES. Bretherton et al. (1999) carried out LES of
the smoke cloud comparing various LES codes. Because
they specified the radiation using the identical depen-
dence on the smoke concentration, they could attribute
differences among the various codes to differences in
the numerical algorithms and the choice of subgrid-scale
models. Small-scale studies are also possible. de Lozar
and Mellado (2013) carried out direct numerical sim-
ulations of the smoke cloud-top interface, but the link
to the large-scale boundary-layer motions remains diffi-
cult.

In this paper, we present and evaluate an algorithm
for tracking the cloud-top boundary with the main goal
being to untangle the numerical and physical contribu-
tions to entrainment. Using the level set method, we rep-
resent the cloud-top boundary as a discontinuity on the
LES grid and by supplying internal boundary conditions
on both sides we avoid discretization over the disconti-
nuity. A similar front-tracking algorithm has been used
before by one of the authors in the context of combus-
tion modelling for tracking flame fronts (Schmidt and
Klein, 2003). The entrainment process can be included
in the form of an additional velocity component in the
level set transport. In a similar effort to improve the rep-
resentation of cloud boundaries and to reduce numerical
errors in their vicinity, e.g. Margolin et al. (1997) and
Kao et al. (1999) have used the volume-of-fluid method.
The main advantage of the level set method is, however,
that there is no substantial logic required in order to re-
construct the topology of the interface. Rather, it is given
by an isosurface of the associated level set scalar. In this
paper, we apply our model to the case of the radiatively
driven smoke cloud as presented by Bretherton et al.
(1999). We consider the case of vanishing entrainment.

The present paper is structured as follows. In sec-
tion 2, we describe the smoke cloud case, the govern-
ing equations, and initial and boundary conditions. We
describe our numerical method in the third section, and
discuss the simulation results thereafter in section 4. We
summarize and present our main conclusions in sec-
tion 5.

2 Formulation

2.1 Governing equations

We consider the smoke cloud case as described by
Bretherton et al. (1999). It is a dry CBL filled with
radiatively active smoke. The CBL is topped by clear

Table 1: Physical parameters

Smoke absorptivity Ka 0.02 m2 kg−1

Specific gas constant of dry air R 287 J (kg K)−1

Isobaric heat capacity of dry air cp 1004 J (kg K)−1

Gravitational acceleration g 9.8 m s−2

Reference pressure p00 1000 hPa
Reference temperature Θ0 291.5 K
Reference density ρ0 1.1436 kg m−3

and relatively warmer air forming a temperature inver-
sion between the two layers. Convection is solely driven
by radiative cooling from the top of the smoke layer.
There are no surface fluxes of heat or smoke. We formu-
late the problem in terms of the potential temperature
θ and the non-dimensional smoke concentration S . The
latter is bounded by 0 and 1 and can also be interpreted
as a mixture fraction relating mass of air from the CBL
relative to the total mass of a fluid parcel (c.f. Mellado
et al., 2010).

We use the same 1D, column-wise radiation model
as presented by Bretherton et al. (1999) where radia-
tion is incorporated in terms of the vertical radiative flux
Frad(z) whose vertical gradient contributes to the tem-
perature tendency according to

(
∂θ

∂t

)
rad

= − 1
cpρ0

∂Frad

∂z
. (2.1)

Assuming the average temperature of the smoke cloud
stays close to its initial value over the time considered,
the cloud cools at a constant net rate limited by the
radiative flux F0 at the top of the domain. With this
assumption, the radiative flux at any given height z is
given by

Frad(z) = F0 exp
(
− Ka

∫ H

z′=z
ρ0S dz′

)
. (2.2)

Here, H is the height of the domain and Ka is the smoke
absorptivity (c.f. Table 1). The remaining prognostic
variables are the Cartesian velocity vector v = (u, v,w)
and the dynamic Exner pressure π = (p/p00)R/cp (p is
the physical dynamic pressure). The governing equa-
tions are the LES-filtered, Ogura-Phillips-type (Ogura
and Phillips, 1962) anelastic equations

∂v̄
∂t

+
1
ρ0
∇ · (ρ0v̄ ⊗ v̄) = cpΘ0∇π̄ +

gθ̄′

Θ0
k

+
1
ρ0
∇ · (ρ0τ) (2.3)

∂θ̄

∂t
+

1
ρ0
∇ · (ρ0θ̄v̄) =

1
ρ0
∇ · (ρ0γθ)

−
1

ρ0cp

∂Frad

∂z
(2.4)
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Figure 1: Vertical structure and initial conditions of the smoke cloud case. The left side shows a sketch of a vertical cut through the domain.
The boundary layer filled with smoke (grey) has an initial depth h and is driven by a constant radiative heat flux F0. The right hand side
shows the initial profiles of the non-dimensional smoke concentration S , the potential temperature θ, and the level set function φ.

∂S̄
∂t

+
1
ρ0
∇ · (ρ0S̄ v̄) =

1
ρ0
∇ · (ρ0γS ) (2.5)

∇ · (ρ0v̄) = 0 , (2.6)

with the bar representing the filter operator. In these
equations, ρ0 is the hydrostatic density profile of the
isentropic atmosphere at temperature Θ0, θ̄′ is the tem-
perature anomaly (θ̄−Θ0), and k is the vertical unit nor-
mal vector. Table 1 shows the values of the physical pa-
rameters used here. These are the isobaric heat capacity
and the gas constant of dry air, cp and R, respectively,
the gravitational acceleration g, the basic state tempera-
ture Θ0, and reference pressure p00.

From the filtering of the equations, the additional
turbulent fluxes of momentum, τ, and scalars, γθ,S , arise.
These additional unknowns are approximated using a
Smagorinsky-Lilly model (see Stevens et al., 2000).
The anelastic continuity equation (2.3) is obeyed by
solving the Poisson equation for π̄

∇ · (ρ0∇π̄) =
1

cpΘ0

[
∇ ·

(
− ∇ · (ρ0v̄ ⊗ v̄)

+
ρ0θ̄
′g

Θ0
k + ∇ · (ρ0τ)

)]
. (2.7)

In the present case of the radiatively driven smoke cloud,
two scalar transport equations are solved, one for S ,
the non-dimensional smoke concentration, and another
one for θ, the potential temperature. Both equations are
coupled via the radiative cooling term in the temperature
equation.

2.2 Initial and boundary conditions

Following Bretherton et al. (1999), we consider a 3D
domain extending over 3.2 km in the two horizontal
directions and from 0 to 1.25 km in the vertical. The
bottom of the domain is filled with smoke over a depth
of 700 m (c.f. Fig.1). The initial profiles of the potential
temperature θ and the smoke S are:

S (z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if z ∈ [0, 687.5] m

1 − 0.04( z
m − 687.5) K if z ∈ (687.5, 712.5) m

0 if z ∈ [712.5, 1250] m

and

θ(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
288 K if z ∈ [0, 687.5] m

288 K + 0.28 ( z
m − 687.5) K if z ∈ (687.5, 712.5) m

295 K + 10−4 ( z
m − 712.5) K if z ∈ [712.5, 1250] m .

When the level set method is used, we omit the linear
transitional layer and set up the profiles such that they
are piecewise constant with only one vertical cell having
an intermediate value. In order to accelerate the spin-up
of the boundary layer (BL) convection, all temperature
values below 650 m where perturbed by a spatially un-
correlated uniform random noise. The amplitude of the
noise was set to ±0.1 K. The boundary layer is initially
at rest. The domain is periodic in the two lateral direc-
tions and free-slip boundary conditions are imposed at
the top and bottom. For scalars, zero-gradient boundary
conditions are set at the top and bottom. A sponge layer
is used occupying the top ten grid levels. We simulated
the smoke cloud for a period of four hours.

3 Numerical methods

3.1 The UCLA-LES

As a basis for the numerical algorithm, we use the
UCLA-LES. The code has been widely used for sim-
ulation of various problems in the realm of atmospheric
convection, such as shallow cumulus clouds (Math-
eou et al., 2011; Stevens and Seifert, 2008; Van-
Zanten et al., 2011) and stratocumulus clouds (Ack-
erman et al., 2009; Stevens et al., 2005) as well as
transitions between cloud types under changing large-
scale conditions (Bellon and Stevens, 2012; Sandu
and Stevens, 2011). We augmented it by a level set-
based front-tracking algorithm the details of which we
describe in the following section.

The UCLA-LES solves the anelastic system of
Eqs. (2.3) to (2.5) using finite volumes on a staggered
Cartesian grid where velocities are located half a point
up-grid in the direction of the respective velocity com-
ponent from the rest of the variables (θ, S , π). An exam-
ple grid cell is shown in Fig. 2. For the present case, the
grid spacing is equidistant in all three directions. Mo-
mentum advection uses a fourth-order directionally-split
central method, and scalar advection uses a second-order
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Figure 2: Sketch of a cell of the staggered grid. The prognostic
variables are located at the cell centre (◦), velocities are located at
the cell faces ( ) and the level set scalar is located at the cell
corners (•).

directionally-split upwind method. The code offers vari-
ous algorithms to monotonize scalar advection. The ones
we use in this study are the Minmod, Superbee, and
the Monotonized Central (MC) limiter. The flow is ad-
vanced in time using a third-order Runge-Kutta method
where the new time step is computed as a weighted aver-
age of tendencies at intermediate steps. The intermediate
steps of any variable, here for the smoke variable S , are
calculated according to

S ∗ = S n + α1Δt

[
∂S n

∂t

]
(3.1)

S ∗∗ = S ∗ + Δt

(
α2

[
∂S n

∂t

]
+ β2

[
∂S ∗

∂t

])
(3.2)

S n+1 = S ∗∗ + Δt

(
α3

[
∂S ∗∗

∂t

]
+ β3

[
∂S ∗

∂t

])
(3.3)

where
[
∂S
∂t

]
are the numerical approximations of the

smoke tendencies at the steps n, ∗, and ∗∗, respectively.
The weights are (α1, α2, α3) = (8/15,−17/60, 3/4) and
(β1, β2, β3) = (0, 5/12,−5/12).

Fourier decomposition in the two periodic directions
is used to reduce the Poisson Eq. (2.7) to a second-order
ordinary differential equation (ODE) in the vertical. The
resulting ODE is solved directly to machine accuracy
using a tridiagonal solver.

3.2 The level set method

Theory Level set methods have been successfully
used in a variety of fields to describe the evolution
of interfaces. The concept goes back to Osher and
Sethian’s (1988) seminal paper and since then many
methods have been developed for a variety of prob-
lems. These include multiphase and compressible flows,
combustion modelling, as well as image processing and
computer vision. An overview of the spectrum of ap-
plications can be found in Osher and Fedkiw’s (2003)
book.

Level set methods are based on the idea of implicit
surfaces. Rather than explicitly keeping track of a num-
ber of points connecting to a surface, level set methods

describe the surface geometry in terms of the zero iso-
surface, or level set, of a space filling scalar function
φ(x, t). Hence, the surface φ0 is given as the set of im-
plicit points where φ vanishes:

φ0 = {x : φ(x) = 0} .

The function φ(x, t) is referred to as level set function.
Once defined, the location of the implicit surface is
readily obtained by linear interpolation. Dynamics of the
surface are included by solving a transport equation for
the level set function

∂φ

∂t
+ (v + wen) · ∇φ = 0 , (3.4)

where wen accounts for entrainment and n is the normal
direction of the interface. Note that in the present paper
we consider we ≡ 0. Also note that v and φ above are the
LES-filtered variables and the bars have been dropped
for convenience. Equation (3.4) is equivalent to the G
equation concept used in the combustion literature (e.g.
Markstein, 1964, Schmidt and Klein, 2003). Here,
we use the level set concept to track the location of the
cloud-top interface to the free atmosphere. Specifically,
we track the jumps of the smoke and temperature at the
cloud top. Both are discontinuous by definition when the
level set method is used.

The major advantage of the level set method over
other interface tracking methods is that the level set
function carries specific information about the topology
of the interface.

1. The location of the interface is given by the φ = 0
isosurface.

2. Both sides of the interface are directly identified by
the sign of φ, which divides the domain of interest Ω
into the three regions

Ω+ = {x : φ(x, t) > 0} (3.5)

φ0 = {x : φ(x, t) = 0} (3.6)

Ω− = {x : φ(x, t) < 0} . (3.7)

3. Local information, such as the interface normals n
and curvature κ are given by the local derivatives

n =
∇φ
|∇φ|

, κ = ∇ · n =
∇2φ

|∇φ|
.

In addition, if a relatively smooth level set function is
chosen, the interface can be evolved with high accuracy
as opposed to the case when scalar fields with steep
gradients are advected directly.

Discretization The level set Eq. (3.4) is discretized
using finite differences on the vertices of the finite-
volume grid cells where φ is located (see Fig. 2). This
location was chosen in order to allow for direct evalua-
tion of the interface intersection points on the cell edges.
The interface locations are later used to evaluate face
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fractions and volume fractions which we explain in sec-
tion 3.3. First, the velocities at the cell corners – uφi jk, vφi jk,

and wφ
i jk – are linearly interpolated from the LES ve-

locity field. Then, we use a directionally-split upwind
method based on second-order upwind polynomials. For
example, the first spatial derivative in the x direction is
approximated as
[
∂φ

∂x

]
i
=

⎧⎪⎨⎪⎩
1

2Δx (−1φi−2 + 4φi−1 − 3φi) if uφi ≥ 0
1

2Δx (3φi − 4φi−1 + 1φi+2) if uφi < 0
(3.8)

where indices j and k have been dropped for conve-
nience. The approximations in the other two dimen-
sions are the same with indices and velocity components
changed accordingly. The level set Eq. (3.4) is evolved
in time using the same third-order Runge-Kutta scheme
as used for the other variables (Eqs. (3.1) to (3.3)).

Level set reinitialization The level set function, φ,
may have any sufficiently smooth shape as long as it
satisfies Eqs. (3.5) to (3.7). It is numerically convenient
to initialize φ into a signed-distance function of the
interface which satisfies the eikonal equation

|∇φ| = 1 .

Generally, the level set function will not maintain its
signed-distance property as the flow evolves. Especially,
in the present case of interfacial convection, the level
set function will quickly steepen in the vicinity of the
stably stratified interface. This will generate the very
difficulties in accurately simulating the evolution of zero
level set which we desire to circumvent in the scalar
transport.

This problem can be avoided by frequently reinitial-
izing φ into a signed-distance function. While the most
intuitive way is to directly set φ values to the shortest
distance to the interface, it is more efficient to use a par-
tial differential equation (PDE). Sussman et al. (1994)
proposed to iterate the reinitialization equation

∂φ

∂τ
= sign(φ̃)(1 − |∇φ|) (3.9)

in virtual time τ to steady state. Here, φ̃ is the solution
of the current LES time step and held constant during
the reinitialization process. They propose discretizing
∇φ using upwind differences, upwind here meaning with
a stencil biased towards the interface.

Russo and Smereka (2000) note that, applying this
method may considerably displace the location of the
interface, which they attribute to the choice of the dis-
cretization stencil. On points adjacent to the interface,
Sussman et al.’s (1994) method would discretize |∇φ|
across the interface, locally – only on these points – vio-
lating the upwind principle. Russo and Smereka (2000)
propose a modification making the method strictly up-
wind by approximating |∇φ| based on geometrical con-
siderations in points adjacent to the interface. They call

their modification the subcell fix and showed (i) that the
subcell fix greatly minimizes the spurious displacement
of the interface, and (ii) that the maximum displacement
error is independent of the number of iterations. In the
present work, this is what we use to reinitialize φ.

3.3 Level set/FV coupling

So far, the evolution of the prognostic variables and the
level set function are coupled only one-way, i.e. the level
set is passively advected with the flow. In order to cou-
ple the evolution of the prognostic variables with the
level set, we follow the concept by Smiljanovski et al.
(1997). In their compressible framework, they used a
level set method to track the position of a flame front,
and they used Rankine-Hugoniot jump conditions to
supply internal boundary conditions at the interface. The
reconstruction allows for computing fluxes and source
terms associated with the two states individually. The
individual fluxes and source terms can then be superim-
posed to obtain the net effect in the particular cell. In our
present anelastic system, we retain only the latter part of
the approach and use Fedkiw et al.’s (1999) ghost fluid
method to supply internal boundary conditions.

In the following we describe the process of coupling
the FV method with the level set. It can be divided into
three steps:

1. Reconstruct the two coexisting states (S , θ)0, (S , θ)1.

2. Evaluate fluxes and source terms associated with the
two states.

3. Compute total fluxes.

In the present formulation, we apply the method only to
scalar transport where we, so far, only couple advective
fluxes. For the purpose of illustrating the method in de-
tail, let us consider only the smoke S ; the same method
is applied to the potential temperature θ.

In step one, we use the ghost fluid method by Fedkiw
et al. (1999). The idea is to generate ghost fluids on both
sides of the interface in order to supply internal bound-
ary conditions at the interface. Fedkiw et al. (1999) gen-
erate the ghost fluids by iterating a PDE in virtual time
extrapolating information across the interface. After the
process, there are two fluids present on both sides of the
interface: one physical fluid and one ghost. Let us look
at the generation of the ghost fluid in the top region. For
this, we carry over the notation of Eqs. (3.5) to (3.7) into
the discrete sense: We denote the set of cut cells as Ω0,
the set of cells for which all φ > 0 as Ω+, and the set
of cells for which all φ < 0 as Ω−. First, the physical
field S is copied to a new one, S 0, serving as initial con-
dition. Then, in the top region (Ω0

⋃
Ω+), i.e. in all cut

cells and the uncut cells above the interface, we iterate
the extrapolation equation

∂S 0

∂τ
+ n · ∇S 0 = 0 (3.10)
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Figure 3: Sketch of a cut cell to illustrate the ghost fluid method
(top) and flux superposition (bottom). The dashed line indicates the
location of the interface. Shaded regions are immersed in smoke. The
primed indices abbreviate i′ = i + 1/2 and j′ = j + 1/2.

in virtual time τ with the values in Ω− serving as
Dirichlet boundary conditions. Having defined φ so it
is positive above the interface, this carries information
at speed 1 from the bottom upwards. After the process,
the field S 0 contains physical values of S in Ω− and
ghost values in (Ω0

⋃
Ω+). The process is then repeated

in (Ω0
⋃

Ω−) to generate S 1 from another copy of S .
The only difference is that the plus sign in Eq. (3.10)
is inverted to a minus sign so information travels from
the top downwards. The same is done for the potential
temperature θ, so that we end up with (S , θ)0 and (S , θ)1
both of which consist of physical and ghost fluid. The
index signifies the origin of the ghost information: In-
dex 0 stands for “originating from the bottom”, and in-
dex 1 stands for “originating from the top” (see the top
Fig. 3).

In the second step, following Smiljanovski et al.
(1997), we compute advective fluxes based on the ex-
trapolated fields. Consider the smoke transport Eq. (2.3)
in 2D. The integration over one grid cell Vi j and the ap-
plication of Gauss’s theorem lets us write the integral
form

∂S
∂t

=
Fi′−1, j − Fi′, j

Δx
+
Gi, j′−1 − Gi, j′

Δy
(3.11)

where S is the cell average of the smoke and Fi′, j and
Gi, j′ are the total horizontal and vertical fluxes of S at
the right and top cell faces, respectively. The unprimed
indices signify cell centred locations, and the primed
indices signify cell face locations (abbreviating i′ =
i+1/2 and j′ = j+1/2). Based on the extrapolated fields
S 0 and S 1, we compute fluxes associated with the cloudy
air, F (S 0), and the free atmosphere, F (S 1), individually.
We obtain the total flux as the weighted sum

Fi′ j = (1 − β̃i′ j) Fi′ j(S 0) + β̃i′ j Fi′ j(S 1) , (3.12)

where the β̃i′ j are the face fractions at the respective cell
face (see Fig. 3) time-averaged over one LES time step.
This approach conveniently enables us to use the same

flux scheme both at the interface as well as in the interior
of the flow.

3.4 Level set synchronisation

An interesting detail of the method so far is its overdeter-
mination in terms of how the interface is described. By
introducing the level set Eq. (3.4) we added one more
equation describing the evolution of the interface which,
in terms of this information, is redundant with the scalar
transport equations. If the location of the interface φ0
and the resulting volume fractions and face fractions are
not synchronised with the interface location represented
by the scalar fields, errors in the form of overshoots and
undershoots may accumulate to leading order.

One approach to resolve this redundancy is to
combine the level set method with volume-of-fluid
techniques. Schneider (2001) formulates a correction
method in terms of an elliptical equation connecting all
cells along the interface. The solution of the elliptical
equation are corrections of the face fractions to be used
in Eq. (3.12) which distribute the corrections along the
cut cells. Similar techniques are subject of current re-
search (Waidmann, 2013, private communication).

A second way is to let the level set govern the lo-
cation of the interface and reassign cell averages in cells
cut during an LES time step according to the current vol-
ume fraction given by φ0:(

S
θ

)
cut

= αcut

(
S
θ

)
1

+ (1 − αcut)

(
S
θ

)
0

Here, (S , θ)0,1 are the extrapolated fields as discussed in
Sec. 3.3. In the present case where there is no mixing
across the interface (we = 0), we know the exact recon-
struction in cut cells which are S 0 ≡ 1 and S 1 ≡ 0 which
we use for the synchronisation instead of the extrapo-
lated fields. This is the method we use in the present pa-
per. The method is local and, thus, computationally sim-
pler than the first approach. However, note that this cor-
rection method is not globally conservative. The smoke
mass change in the simulations presented below was
+1.4 % and +0.8 % in the low and high resolution case,
respectively.

4 Simulations and results

4.1 Goals and setup

We present results of our simulations of the smoke cloud
using the Level Set LES (LS-LES) and the standard LES
as a reference. The two main questions we address in
this paper are:

1. How accurately does the LS-LES maintain the pre-
scribed zero entrainment and decouple the entrain-
ment process from the BL convection? This is a re-
quirement for (super-)parameterizing entrainment.
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Figure 4: The smoke cloud after 3 hours as simulated by the LS-LES at the double resolution. The grey sheet indicates the location of φ0.
Colours on the left slice show the smoke concentration, colours on the right slice show potential temperatures. Both slices are overlaid with
streamlines in the respective planes colour-coded by velocity magnitude. In the background is an arbitrary potential temperature isosurface
in red (θ ≈ 287.3 K).

2. Does the method minimize the dependency of flow
statistics on grid resolution and details of numerical
methods used? We hypothesize, that by avoiding dis-
cretization over the interface, part of the problem can
be removed.

For this, we ran a series of simulations where we modify
two parameters. The first one is grid resolution. We
use equidistant grids with Bretherton et al.’s (1999)
standard resolution of 64 × 64 × 50 grid cells, denoted
‘S’, as well as double that resolution which we denote
by ‘D’. The standard resolution corresponds to a grid
spacing of 50 m in the horizontal directions and 25 m
in the vertical direction. The double resolution reduces
these numbers by a factor of 2. The second parameter
is the choice of the flux limiter. We use the Minmod,
Superbee, and Monotonized Central (MC) limiter. These
two parameters span a total of 12 simulations, 6 for both
the standard LES and the LS-LES. In addition, we ran
two simulations with the standard LES with the limiter
switched off.

Figure 4 shows a snapshot of the ‘D’ LS-LES after
3 hours with the grey sheet indicating the φ = 0 isosur-
face. The instantaneous streamlines and the θ isosurface
(red) indicate a complex turbulent flow in the BL. At
the same time, there is a large-scale motion with strong
vertical flow in the BL interior and horizontal redirec-
tion near the cloud top and bottom. In the following sec-
tions, we discuss horizontally averaged statistics where
we specifically focus on entrainment and how it is af-
fected by the choice of the numerical parameters. In ad-

dition, we look at their effect on the turbulent kinetic
energy (TKE), its evolution, and distribution in the ver-
tical and horizontal components. For a more extensive
discussion of the details of the flow we refer the reader
to Bretherton et al.’s (1999) original paper.

The entrainment rate, in the context of interfacial
convection, is typically defined as the time derivative
of the height of an interface, zi, chosen to separate the
turbulent rotational flow from the irrotational flow:

we =
d
dt
〈zi〉 .

Here, we define zi as the height of the S = 0.5 iso-
surface and 〈〉 denotes the horizontal averaging opera-
tor. In order to evaluate the accuracy at which the LS-
LES maintains the prescribed entrainment, we use the
simplest possible case: We prescribe zero entrainment
(we ≡ 0 in Eq. (3.4)). Thus, we separate numerical er-
rors from uncertainties in the modelling of entrainment
and we can attribute any net entrainment to numerical
errors. In both cases, the standard LES and the LS-LES,
an estimate for the exact entrainment is needed in order
to define the error and a common reference entrainment.
Here, we use Bretherton et al.’s (1999) formula

wth
e (A) =

1.25A
1 + 1.25A

gF0(1 − (2/Kaρ0zi))
ρ0cpΘ0Δb

(4.1)

as an estimate (‘th’ stands for theoretical). It is derived
from Sayler and Breidenthal’s (1998) Richardson
number scaling using a mixed layer model. A is an
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Figure 5: Evolution of the horizontally averaged cloud top height 〈zi〉 comparing various limiter choices for the standard LES. zi is defined
as the height of the S = 0.5 isosurface. Left: standard resolution, right: double resolution.

empirical model parameter with values of 0.2 to 0.4
as suggested by Sayler and Breidenthal’s (1998)
experiments. For the physical parameters, we use the
values presented in Table 1 and as the buoyancy jump
Δb we use the value 0.25 m s−2 which is the average
buoyancy difference across the inversion during the third
hour of the D simulations. For the given range of the A
parameter, Eq. (4.1) predicts entrainment rates between

wth
e,min = wth

e (0.2) = 1.24 mm s−1 and

wth
e,max = wth

e (0.4) = 2.06 mm s−1 .

With the LES generally overestimating entrainment, the
two values define the worst case and best case errors,
respectively. We will use these two values as a reference
to define two relative errors in the form

Δwe

wth
e

=
we − wth

e

wth
e

. (4.2)

4.2 Standard LES

In Fig. 5, we show the evolution of the inversion height
for the standard LES for the S and D grid and the above
mentioned limiter choices. All simulations show an ini-
tial transient, after which the BL depth grows quasi lin-
early with superimposed oscillations with a time-scale
of one to two hours. The initial transient as well as the
amplitude of the oscillations are reduced in the double-
resolution case. Relative to the results obtained with the
MC limiter, inversion heights are consistently higher
with the Minmod limiter and lower with the Superbee
limiter. Due to the oscillations in the standard-resolution
case, this order is not always reflected in the hourly av-
eraged entrainment rates. In order to ensure compara-
bility with Bretherton et al.’s (1999) results, we look
at statistics averaged over the third hour (i.e. 2 h-to-3 h
averages). However, as noted by those authors, the os-
cillations in the standard resolution runs render statistics

averaged over just one hour less reliable. For this rea-
son we also include 2 h-to-4 h averages in our consider-
ations.

Average entrainment rates, as presented in Table 2,
are in agreement with Bretherton et al.’s (1999) in-
tercomparison. Across our simulations, we measure en-
trainment rates between 3.1 and 4.1 mm s−1 which is
within the measured range of the 3D runs of the in-
tercomparison. As mentioned before, there is a consis-
tent correlation between higher and lower entrainment
and the limiter used. This is best seen in the 2 h-to-
4 h averages in the second column. Minmod consis-
tently produces greater entrainment than MC (+7.37 %
and +13.41 % in the S and D run, respectively), and
Superbee produces lower entrainment (−6.12 % and
−10.51 %). We observe a trend of increasing entrain-
ment rates over time, consistent with Bretherton
et al.’s (1999) results, which results from the gradual
weakening of the inversion and a slight increase of
cloud-top mixing due to increasing TKE over time.
The increase of the entrainment rate is stronger in the
standard-resolution simulations, which in part may be
attributed to the phase of the oscillations of the inversion
height and in part to greater weakening of the inversion
on the coarser grid. The last two columns show how en-
trainment rates change with grid resolution. Entrainment
rates reduce as the resolution is increased which is also
consistent with Bretherton et al.’s (1999) observation.
The reductions of more than 10 % in the 2-to-3-hours av-
erages should be considered less reliable than the 2-to-4-
hours averages due to the above mentioned oscillations.
The trend, however, clearly remains when considering
2 h-to-4 h averages.

Figure 6 shows the evolution of the horizontal aver-
age of the vertically integrated TKE density (VTKE) for
the standard LES. The subgrid-scale part of the TKE is
diagnosed from the filtered velocity field consistent with
the Smagorinsky model (see e.g. Stevens et al., 2000).
As with the evolution of the inversion height, the VTKE
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Figure 6: Evolution of the horizontal average of the vertically integrated TKE density (resolved + subgrid-scale) comparing various limiter
choices for the standard LES. Left: standard resolution, right: double resolution.

Table 2: Time-averaged entrainment rates we (left) and their relative changes (right) with grid resolution and flux limiter choice for the
standard LES. The percentages in brackets are the relative changes with respect to the MC limiter.

we [mm s−1] Relative changes
(I) 2 h–3 h average (II) 2 h–4 h average (I)→ (II) S→ D (2 h–3 h avg.) S→ D (2 h–4 h avg.)

(S) Standard resolution
Minmod 3.4817 (−0.74 %) 4.1339 (+7.37 %) +18.73 %
MC 3.5076 ↗↘ 3.8503 ↗↘ +9.77 %
Superbee 3.3815 (−3.60 %) 3.6148 (−6.12 %) +6.90 %

(D) Double resolution
Minmod 4.0396 (+15.84 %) 4.0727 (+13.41 %) +0.82 % −14.22 % −1.48 %
MC 3.4841 ↗↘ 3.5565 ↗↘ +2.08 % −13.45 % −7.63 %
Superbee 3.0984 (−11.00 %) 3.1519 (−10.51 %) +1.73 % −16.70 % −12.80 %

exhibits an initial transient and a decaying oscillation.
It eventually settles at a relatively stable magnitude af-
ter about 1.5 to 2 hours. In Table 3, we list 2 h-to-4 h
averaged values. We observe a consistent ordering for
the three limiters with Superbee exceeding the MC lim-
iter by +10.12 % (S) and +9.47 % (D), respectively, and
Minmod going below it by −23.6 % (S) and −12, 88 %
(D), respectively. This trend continues to exist in the in-
dividual profiles of the horizontal and vertical velocity
variances which are shown in Fig. 7. The non-vanishing
velocity variances above the cloud layer in the no-limiter
case are due to scalar overshoots caused by the non-
monotone advection scheme.

4.3 LS-LES

In Fig. 8, we show the evolution of the inversion height
for the LS-LES. It exhibits a similar initial transient over
a period of roughly 30 minutes after which it evolves in
a quasi linear way. While there is a dependence on the
limiter visible, it is minimal compared to the standard
LES runs. Overall, entrainment is drastically reduced.

In Table 4 we compare the 2 h-to-4 h averaged en-
trainment rates for both the standard LES and the LS-
LES with the rates predicted by Eq. (4.1). On the left

Table 3: 2 h-to-4 h averages of the vertically integrated TKE

VTKE [kg s−2]
Limiter Standard LES LS-LES

(S) Standard resolution
Minmod 244.80 580.08
MC 320.40 533.94
Superbee 352.83 572.76

(D) Double resolution
Minmod 302.11 579.63
MC 346.78 541.30
Superbee 379.62 535.79

side are the entrainment rates compared to the lower en-
trainment prediction; on the right side we compare to the
greater predicted value. We focus on the maximum and
minimum values from the high resolution ‘D’ runs. This
range of entrainment rates is representative of the overall
range observed with the standard LES. It also contains
the lowest one observed which is closest to theoretical
predictions. The combination of lowest and highest ob-
served entrainment and lowest and highest predicted en-
trainment defines the four cases for which the relative
errors are presented.
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Figure 7: Profiles of various turbulence statistics of the resolved fields averaged over the third hour for the standard LES. From top to
bottom, the profiles shown are the vertical velocity variance 〈w′2〉, horizontal velocity variance 〈u′2〉 + 〈v′2〉, and turbulent kinetic energy
k = 1/2(〈u′2〉 + 〈v′2〉 + 〈w′2〉), for the standard resolution (left column) and double resolution (right column).

In the least favourable scenario, the standard LES
overestimates entrainment by 229 %. This is, if the exact
entrainment meets the lower bound of 1.24 mm s−1. In
the most favourable scenario, assuming 2.06 mm s−1 is
the exact value and choosing the minimal entrainment
rate across all simulations, the overestimation reduces
to 53 % for our simulations. Using the level set method,

these errors are reduced by a about a factor of 25 to
8 % in the worst case and 2 % in the most favourable
scenario. It is important to note, that also the spread of
the errors associated with the choice of the limiter is
reduced by at least a factor of 10, namely from 74 %
and 45 % to 4 % or less.
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Table 4: Entrainment rates we and their relative errors of the double-resolution runs of the standard LES and the LS-LES. Relative errors
according to Eq. (4.2) are shown with respect to the minimum (left major column) and maximum (right major column) entrainment estimate.
Each column subdivides into the case of lowest and highest entrainment across the three limiters.

wth
e = 1.24 mm s−1 wth

e = 2.06 mm s−1

lowest we greatest we lowest we greatest we

Std. LES
we [mm s−1] 3.1519 4.0727 3.1519 4.0727
Δwe [mm s−1] 1.9147 2.8354 1.0899 2.0106
Δwe/wth

e +155 % +229 % +53 % +98 %

LS-LES
Δwe [mm s−1] 0.0465 0.1019 0.0465 0.1019
Δwe/wth

e +4 % +8 % +2 % +5 %

Figure 8: Evolution of the horizontally averaged cloud top height 〈zi〉 comparing various limiter choices for the LS-LES. zi is defined as the
height of the S = 0.5 isosurface. Left: standard resolution, right: double resolution.

Figure 9: Evolution of the horizontal average of the vertically integrated TKE density (resolved + subgrid-scale) comparing various limiter
choices for the LS-LES. Left: standard resolution, right: double resolution.

In Fig. 9, we show the evolution of the VTKE for
the three limiter choices with the LS-LES. Two things
are immediately obvious when comparing the plots with
the ones for the standard LES. First, VTKE levels are
higher; they are increased by about 80 %. And second,
the dependency of the VTKE on the limiter is reduced.

In Table 3, we summarize 2 h-to-4 h averaged values of
the vertically integrated TKE for both the standard LES
and LS-LES. The higher VTKE levels can be explained
in terms of the missing entrainment in the LS-LES runs.
Entrainment reduces TKE, primarily, because the poten-
tial energy of the BL fluid is increasing as less dense
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Figure 10: Profiles of various turbulence statistics of the resolved fields averaged over the third hour for the LS-LES. From top to
bottom, the profiles shown are the vertical velocity variance 〈w′2〉, horizontal velocity variance 〈u′2〉 + 〈v′2〉, and turbulent kinetic energy
k = 1/2(〈u′2〉 + 〈v′2〉 + 〈w′2〉), for the standard resolution (left column) and double resolution (right column).

fluid from aloft is being mixed into the BL leading to
a deeper layer of dense fluid. In addition, work needs
to be done in order to accelerate entrained parcels be-
ing previously at rest. At the same time, the radiative
cooling reduces as the smoke concentration is progres-
sively reduced due to mixing with the warmed air en-
trained from above. This reduces the buoyant production

of TKE in the first place. All of these processes, when
absent, tend to increase TKE in the BL. In fact, this is
consistently seen across all simulations. The simulations
featuring lower entrainment rates, exhibit higher TKE
levels and vice versa. The simulations using the level set
method, having vanishing net entrainment, exhibit the
highest TKE levels.
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The 2 h-to-3 h averaged profiles of the TKE and their
vertical and horizontal components, shown in Fig. 10,
reflect that increase. Besides the greater magnitude, an-
other interesting feature is the sharper peak in the vari-
ance of the horizontal velocity compared to the standard
LES (Fig. 7). Here a similar reasoning applies as with
the TKE magnitude. In the absence of entrainment at
the cloud top, TKE is dissipated more weakly, resulting
in higher levels close to the cloud top. Also, the sharper
inversion deflects the vertical motions more strongly to-
wards horizontal motions.

Overall, the dependency of turbulence statistics on
the limiter is reduced compared to the standard LES re-
sults. The effect of flux limiters on the advection scheme
is strongest in regions where second derivatives are
great. This is especially the case close to the cloud top.
In the level set framework the discontinuous cloud-top
problem is replaced by two smooth ones based on the
ghost fluids. Thus, the effects of a limiter near the cloud
top are much reduced and the dependence on any spe-
cific limiter reduces also. Some dependence, however,
remains in the interior of the flow.

5 Summary and conclusions

We presented a front-tracking algorithm for cloud-
topped boundary layers under strong inversions based
on the level set method. The main goal of our method is
to separate numerical and physical mixing at the cloud
top. The algorithm is an extension to the UCLA-LES
where we apply it solely to the advective transport of
smoke and potential temperature. The level set method
solves an additional transport equation for a monotone
scalar function which implicitly defines the location of
the cloud-top interface as its zero isosurface. We use the
ghost-fluid method by Fedkiw et al. (1999) to supply in-
ternal boundary conditions.

We applied the LES to a radiatively driven convec-
tive boundary layer filled with optically thick smoke, of-
ten simply referred to as ‘smoke cloud’. This case was
the object of the GCSS LES intercomparison study by
Bretherton et al. (1999) and this is the setup we have
used here. We ran simulations with the standard version
of the LES as reference, as well as simulations with the
level set method enabled. With the level set method en-
abled, we prescribe zero entrainment. This serves as test
case to analyse the accuracy of our front-tracking algo-
rithm. We varied two parameters – the grid resolution
and the flux limiter for scalar advection – to quantify
their influence on statistics of the flow. We focussed
specifically on the entrainment rate and the turbulent
kinetic energy. Using an empirically-based entrainment
law, we estimate an upper and lower bound of entrain-
ment errors and discuss the improvements achieved us-
ing the level set method.

The entrainment rates and turbulence statistics we
measured with the standard LES closely resembled
those observed in Bretherton et al.’s (1999) intercom-
parison. Entrainment was overestimated in all of these

simulations by at least 50 %, on the coarser grid by
more than 150 %. Increasing the grid resolution reduced
simulated entrainment across all runs which is a ten-
dency typically observed in LES of cloud-top entrain-
ment. With the level set method, the prescribed entrain-
ment was maintained with errors less than 5–10 %. At
the same time, the dependence of the entrainment errors
on the choice of the limiter was reduced by more than a
factor of 10.

Acknowledgments

The authors thank the German Research Foundation
(DFG) for their financial support within the Priority Pro-
gramme SPP 1276 MetStröm (Projects ME 3833/1-3,
SCHM 1682/4-3, and STE 1785/1-3).

References
Ackerman, A.S., M.C. VanZanten, B. Stevens, V. Savic-

Jovcic, C.S. Bretherton, A. Chlond, J.-C. Go-
laz, H. Jiang, M. Khairoutdinov, S.K. Krueger,
D.C. Lewellen, A. Lock, C.-H. Moeng, K. Nakamura,
M.D. Petters, J.R. Snider, S. Weinbrecht, M. Zulauf,
2009: Large-Eddy Simulations of a Drizzling, Stratocumulus-
Topped Marine Boundary Layer. – Mon. Wea. Rev. 137,
1083–1110.

Bellon, G., B. Stevens, 2012: Using the Sensitivity of Large-
Eddy Simulations to Evaluate Atmospheric Boundary Layer
Models. – J. Atmos. Sci. 69, 1582–1601.

Bony, S., 2005: Marine boundary layer clouds at the heart of
tropical cloud feedback uncertainties in climate models. –
Geophys. Res. Lett. 32, L20806.

Bretherton, C.S., M.K. Macvean, P. Bechtold, A. Chlond,
W.R. Cotton, J. Cuxart, H. Cuijpers, M. Khairoutdinov,
B. Kosociv, D.C. Lewellen, C.-H. Moeng, P. Siebesma,
B. Stevens, D.E. Stevens, I. Sykes, M.C. Wyant, 1999:
An intercomparison of radiatively-driven entrainment and tur-
bulence in a smoke cloud, as simulated by different numerical
models. – Quart. J. Roy. Meteor. Soc. 125, 391–423.

de Lozar, A., J.P. Mellado, 2013: Direct Numerical Simula-
tions of a Smoke Cloud-Top Mixing Layer as a Model for
Stratocumuli. – J. Atmos. Sci. 70, 2356–2375.

Dietze, E., J.P. Mellado, B. Stevens, H. Schmidt, 2013:
Study of low-order numerical effects in the two-dimensional
cloud-top mixing layer. – Theor. Comp. Fluid Dyn. 27,
239–251.

Fedkiw, R., T. Aslam, B. Merriman, S. Osher, 1999: A Non-
oscillatory Eulerian Approach to Interfaces in Multimaterial
Flows (The Ghost Fluid Method). – J. Comp. Phys. 152,
457–492.

Kao, C.-Y.J., Y.H. Hang, J.M. Reisner, W.S. Smith, 1999:
Test of the Volume-of-Fluid Method on Simulations of Marine
Boundary Layer Clouds. – Mon. Wea. Rev. 128, 1960–1970.

Lilly, D.K., 1968: Models of cloud-topped mixed layers under
a strong inversion. – Quart. J. Roy. Meteor. Soc. 94, 292–309.

Margolin, L., J.M. Reisner, P.K. Smolarkiewicz, 1997: Ap-
plication of the Volume-of-Fluid Method to the Advection-
Condensation Problem. – Mon. Wea. Rev. 125, 2265–2273.

Markstein, G., 1964: Nonsteady flame propagation. – Perga-
mon Press, 328 pp.

Matheou, G., D. Chung, L. Nuijens, B. Stevens, J. Teixeira,
2011: On the Fidelity of Large-Eddy Simulation of Shallow
Precipitating Cumulus Convection. – Mon. Wea. Rev. 139,
2918–2939.



674 E. Dietze et al.: Controlling entrainment in the smoke cloud using level set-based front tracking Meteorol. Z., 23, 2015

McEwan, A.D., G.W. Paltridge, 1976: Radiatively driven ther-
mal convection bounded by an inversion – a laboratory simu-
lation of stratus clouds. – J. Geophys. Res. 81, 1095–1102.

Mellado, J.P., B. Stevens, H. Schmidt, N. Peters, 2010:
Two-fluid formulation of the cloud-top mixing layer for di-
rect numerical simulation. – Theor. Comp. Fluid Dyn. 24,
511–536.

Moeng, C.-H., W.R. Cotton, C.S. Bretherton, A. Chlond,
M. Khairoutdinov, S. Krueger, W.S. Lewellen,
M.K. Macvean, J.R.M. Pasquier, H.A. Rand,
A.P. Siebesma, B. Stevens, R.I. Sykes, 1996: Simula-
tion of a Stratocumulus-Topped Planetary Boundary Layer:
Intercomparison among Different Numerical Codes. – Bull.
Amer. Meteor. Soc. 77, 261–278.

Ogura, Y., N.A. Phillips, 1962: Scale Analysis of Deep and
Shallow Convection in the Atmosphere. – J. Atmos. Sci. 19,
173–179.

Osher, S., R. Fedkiw, 2003: Level Set Methods and Dynamic
Implicit Surfaces. – Springer Science+Busines Media, LLC.

Osher, S., J.A. Sethian, 1988: Fronts propagating with
curvature-dependent speed: Algorithms based on Hamilton-
Jacobi formulations. – J. Comput. Phys. 79, 12–49.

Russo, G., P. Smereka, 2000: A Remark on Computing Distance
Functions. – J. Comput. Phys. 163, 51–67.

Sandu, I., B. Stevens, 2011: On the Factors Modulating the
Stratocumulus to Cumulus Transitions. – J. Atmos. Sci. 68,
1865–1881.

Sayler, B.J., R.E. Breidenthal, 1998: Laboratory simula-
tions of radiatively induced entrainment in stratiform clouds. –
J. Geophys. Res. 103, 8827.

Schmidt, H., R. Klein, 2003: A generalized level-set/in-cell-
reconstruction approach for accelerating turbulent premixed
flames. – Combustion Theo. Model. 7, 243–267.

Schmidt, H., A.R. Kerstein, S. Wunsch, R. Nédélec,
B.J. Sayler, 2012: Analysis and numerical simulation of a
laboratory analog of radiatively induced cloud-top entrain-
ment. – Theor. Comp. Fluid Dyn. 27, 377–395.

Schneider, T., 2001: Verfolgung von Flammenfronten und
Phasengrenzen in schwachkompressiblen Strömungen. – Dis-
sertation, RWTH-Aachen.

Smiljanovski, V., V. Moser, R. Klein, 1997: A capturing
- tracking hybrid scheme for deflagration discontinuities. –
Combustion Theo. Model. 1, 183–215.

Stevens, B., A. Seifert, 2008: Understanding macrophysical
outcomes of microphysical choices in simulations of shallow
cumulus convection. – J. Meteor. Soc. Japan 86A, 143–162.

Stevens, B., C.-H. Moeng, P.P. Sullivan, 2000: Entrain-
ment and Subgrid Lengthscales in Large-Eddy Simulations
of Atmospheric Boundary-Layer Flows. – In: R.M. Kerr,
Y. Kimura (Eds.): IUTAM Symposium on Developments in
Geophysical Turbulence. – Dordrecht, Kluwer, 253–269.

Stevens, B., C.-H. Moeng, A.S. Ackerman, C.S. Brether-
ton, A. Chlond, S. de Roode, J. Edwards, J.-C. Go-
laz, H. Jiang, M. Khairoutdinov, M.P. Kirkpatrick,
D.C. Lewellen, A. Lock, F. Müller, D.E. Stevens,
E. Whelan, P. Zhu, 2005: Evaluation of Large-Eddy Simula-
tions via Observations of Nocturnal Marine Stratocumulus. –
Mon. Wea. Rev. 133, 1443–1462.

Sussman, M., P. Smereka, S. Osher, 1994: A level set approach
for computing solutions to incompressible two-phase flow. –
J. Comp. Phys. 114, 146–159.

VanZanten, M.C., B. Stevens, L. Nuijens, A.P. Siebesma,
A.S. Ackerman, F. Burnet, A. Cheng, F. Couvreux,
H. Jiang, M. Khairoutdinov, Y. Kogan, D.C. Lewellen,
D. Mechem, K. Nakamura, A. Noda, B.J. Shipway,
J. Slawinska, S. Wang, A. Wyszogrodzki, 2011: Controls
on precipitation and cloudiness in simulations of trade-wind
cumulus as observed during RICO. – J. Advan. Model. Earth
Sys. 3, M06001.

Wood, R., 2012: Stratocumulus Clouds. – Mon. Wea. Rev. 140,
2373–2423.

Yamaguchi, T., D.A. Randall, 2012: Cooling of Entrained
Parcels in a Large-Eddy Simulation. – J. Atmos. Sci. 69,
1118–1136.


