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Abstract: Light scattering and aberrations limit optical microscopy in biological tissue, which
motivates the development of adaptive optics techniques. Here, we develop a method for
wavefront correction in adaptive optics with reflected light and deep neural networks compatible
with an epi-detection configuration. Large datasets of sample aberrations which consist of
excitation and detection path aberrations as well as the corresponding reflected focus images
are generated. These datasets are used for training deep neural networks. After training, these
networks can disentangle and independently correct excitation and detection aberrations based
on reflected light images recorded from scattering samples. A similar deep learning approach is
also demonstrated with scattering guide stars. The predicted aberration corrections are validated
using two photon imaging.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Diffraction limited imaging in many samples, for example in biological tissue, is limited due to
aberrations and scattering. In this situation, combining laser scanning microscopy with adaptive
optics can improve image resolution by correcting for aberrations using wavefront shaping [1–4].
Using reflected light for wavefront shaping has the advantage that it relies on intrinsic sample
contrast [5] and is therefore independent of sample labeling [1,6,7]. Additionally, even for
fluorescently labeled samples, particularly for dim or sparsely labeled samples, the scattered light
signal can be larger than the fluorescent signal [6–8].
Imaging with reflected light comes however with the difficulty that excitation and detection

aberrations are not easily separated [8–11]. In reflection-mode imaging, the signal depends on
the excitation point spread function (PSF), which undergoes aberrations, the scattering object,
and the detection PSF, which can undergo different aberrations [9,10,12].
For making an accurate correction of the excitation focus under these conditions, therefore

contributions to aberrations accumulated in the excitation and reflected detection pathway through
the sample need to be disentangled. For strongly scattering samples, separation of illumination
and detection pathways has been achieved using matrix methods [9–12], which however require
a large number of phase sensitive measurements to obtain a correction. For weakly scattering
samples, one option to separate excitation and detection aberrations is to use a wavefront sensor
that only detects light that is reflected from a tightly constrained focal volume. This can be
achieved using coherence gating with high-bandwidth light sources combined with interferometric
detection [6,7]. A technically less demanding approach was implemented using confocal imaging
with a pinhole sufficiently large to retain wavefront information [13]. In this situation, however,
due to the extended confocal volume, aberrations measured with a wavefront sensor depended on
a combination of sample and detection characteristics [4,8,13].
More recently, approaches for wavefront sensing based on deep neural networks have been

developed [14–24]. These methods relate recorded images to computationally generated ones
with neural networks that are trained on computationally generated data. These approaches work
so far only for a configuration that requires the correction of a single pass through a scattering
medium, such as the atmosphere in astronomy, and therefore cannot be applied for reflected light
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detection. In the epi-detection configuration commonly used in biological imaging, aberrations
in the excitation and detection pathways need to be considered.

Here, we extend this deep learning approach for transmission wavefront sensing to reflection-
mode imaging in an epi-detection configuration. Reflected foci for different aberrating samples are
generated by independently modulating the excitation as well as detection path of the microscope
using a spatial light modulator. With this setup, imaging for example a reflecting planar object
through an aberrating layer can be modeled by modulating both, the excitation as well as the
detection pathway while at the same time recording the light reflected off a mirror at the sample
plane. Imaging a guide star through an aberrating layer can be modeled by only modulating the
detection pathway while forming a focus on the mirror with the unmodulated excitation pathway.
Datasets generated in this way are used to train deep neural networks. We show that after

training, these neural network models can disentangle excitation and detection aberrations of
scattering samples. We verify the resulting excitation corrections using two-photon imaging.

2. Results

The experimental approach is shown schematically in Fig. 1. A two-photon microscope is
combined with a spatial light modulator (SLM) and reflected light detection for wavefront sensing
and correction. The reflected focal spot is monitored at three different focal planes using cameras
(see for example [14,20,25]). Different from other reflection-mode adaptive optics approaches
[6,7,13,26] we separate excitation and detection such that both pathways can be modulated
independently.

Fig. 1. Setup schematic. Fluorescence is observed using two-photon scanning microscopy.
Excitation and detection pathways are each controlled with an SLM. Reflected light is imaged
in an epi-detection configuration onto three cameras. MO = microscope objective, DC =
dichroic mirror, SM = scanning mirrors, PBS = polarizing beam splitter, SLM Excitation =
spatial light modulator in excitation pathway, SLM Detection = SLM in detection pathway,
PH = pinhole, CMOS 1-3 = cameras, PMT = photomultiplier tube.

This is motivated by that fact that excitation and detection aberrations can differ [8–12].
Generally, the incoming beam undergoes aberrations which alters the PSF at the focal plane.
This secondary light source again undergoes sample aberrations on the return path. Due to
the extended nature of the secondary light source, the return path does not necessarily overlap
with the excitation path, thus resulting in different aberrations for the two pathways. This is
illustrated with a simulation in Fig. 2 (see Methods for details on simulation). Figure 2(a)
shows the simulated optical system, a simplified version of the actual setup: light is focused
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through an aberrating phase mask onto a reflecting surface with a lens. The reflected light passes
again through the lens and the phase mask and is focused onto a detector with a second lens.
Figure 2(b) shows the resulting reflected focus image (bottom row) after passing a plane wave
(top row) through the optical system (see figure legend for details). As seen in Fig. 2(c), for a
weak aberration consisting of radial even Zernike modes, the combined aberrations accumulated
in the excitation and detection pathway double (as expected, see [8]), resulting in the interference
pattern in the focal volume (bottom row). In contrast, odd radial Zernike modes cancel [8], and
a diffraction limited focal volume is preserved (Fig. 2(d), bottom row). However, for stronger
aberrations of odd radial Zernike modes (Fig. 2(e)) differences in the excitation and detection
pathway lead to only incomplete cancellation of aberrations in the focal volume. Differences in
excitation and detection path lead to the asymmetric reflected phase pattern (Fig. 2(e), second
row from top) and result in a distorted reflected focal volume. This also suggests that in such a
situation the odd components can be detected.

Fig. 2. Simulation of impact of different aberrations on resulting reflected focal volume. a
Schematic of simulated optical system (see Methods for details). A flat wavefront enters the
microscope objective and undergoes sample-induced phase modulation at the distance of 0.5
mm form a mirror surface on the excitation and reflected return path; the returning beam is
focused with a 200 mm lens. The PSF at the sample and reflected focal planes are simulated.
b Example with no aberrations. Top row: flat wavefront, second row: reflected wavefront,
third row: focus at sample plane, bottom row: focus at reflected volume. c Aberration of
even radial order which magnifies itself on the return path. d Self-correcting aberration of
odd radial order. e Same as d, but with higher magnitude of phase aberration, demonstrating
the failure of self-correction in this situation.

Taking such differences in excitation and detection aberrations into account, we generated
datasets modeling three different sample configurations. First, we modeled the situation of
a planar reflecting object with entirely uncorrelated excitation and detection aberrations with
randomly selected Zernike modes of up to order 28 in both pathways (Network 1, see Methods for
details). Secondly, modeling the expected similarity between excitation and detection aberrations
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in weakly scattering samples, we used a dataset with a variance of ±30 % between excitation and
detection Zernike coefficients to constrain the sample space (Network 2, see Methods). Third, to
model scattering from a guide star, we generated a dataset with only detection modulations, while
focusing with the unmodulated excitation beam at the mirror surface (Network 3, see Methods).

These datasets of (pairs of) phase modulations together with the corresponding reflected focus
images, were then used for training deep neural network models. The pairs of phase patterns in
the excitation and detection path served as an output, and images of the reflected focal spots from
the three cameras in different focal planes served as the input. After training, these networks
predict Zernike coefficients for the excitation as well as the detection pathway based on images
of the focal light distribution obtained when imaging through scattering samples. In this way, a
correction of the excitation beam that is not confounded by aberrations in the reflected beam can
be extracted.

2.1. Methods

2.1.1. Setup

The setup, shown schematically in Fig. 1 and in detail in Fig. 3, consists of a custom-built
two-photon microscope (with components similar to the setup described in [27]) equipped with
a resonant scanner and controlled through ScanImage [28] with an added detection path for
reflected light. Both the excitation path, as well as the reflected detection path are independently
modulated with a spatial light modulator (SLM).
The excitation beam is expanded, reflected off the SLM, demagnified, and imaged onto the

scanner through a polarizing beam splitter (PBS) (see legend of Fig. 3 for details). The (linear)
polarization direction is adjusted for maximum transmission through the PBS with a half-wave
plate. The scanner is imaged onto the back focal plane of the objective. A quarter wave plate
is placed after the tube lens to achieve circular polarization and to optimize reflected light
transmission through the PBS with orthogonal linear polarization with respect to the excitation
light [7]. Reflected light is detected in a descanned configuration through the polarizing beam
splitter, imaged onto a different part of the SLM and imaged onto a pinhole. The pinhole is
imaged onto three cameras in different focal planes using 50/50 beam splitters and relay lenses.
One camera focal plane was selected at the focus, one in front and one behind the focus (see for
example [14,20,25]).
For independent excitation and detection path modulation, the SLM was divided into two

equal parts, each having a size of 960 × 1080 pixels. The SLM was controlled through custom
software written in Python using Blink SDK provided by Meadowlark Optics. To precisely center
the phase modulations displayed on the SLM with respect to the beam, for initial alignment
a center-symmetric phase pattern was displayed subsequently in both parts of the SLM. The
center pixel of the respective SLM window was found by moving the pattern until the reflected
focus was center-symmetric. The polarization direction of the beam imaged onto the SLM was
optimized for modulation using lambda-half plates in both the excitation and detection pathways
(see Fig. 3).

2.1.2. Relationship between excitation and detection path phase patterns

To calibrate the relation between excitation and detection pathways, which was required for
experiments with guide stars (see below), we calculated a linear correspondence model (matrix)
between excitation and detection Zernike modes. For this purpose a mirror was placed at the
sample plane and random modulations were displayed in the excitation path. The resulting
reflected confocal images were fed into Network 3 (trained on detection modulations only).
With a set of 10 000 modulations applied in the excitation path and predicted as detection-path
aberrations, a matrix relationship was determined (Fig. 4). The magnitude difference between
excitation and detection phase corrections in the two pathways was taken into account in all
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Fig. 3. MO1 = Nikon 16 x, N.A. 0.8, water immersion objective (CFI75 LWD 16X W),
MO2 = Olympus 40x, N.A. 0.8, LUMPLFLN. All lenses were from Thorlabs, achromatic
doublets, antireflection coated for 650 to 1050 nm. Focal lengths were (in mm) L1 = 300,
L2 = 30, L3 = 50, L4 = 125, L5 = 300, L6 = 100, L7 = 400, L8 = 75, L9 = 250, L10 =
150, L11 = 150, L12 = 40, L13 = 50, L14 = 75, L15 = 75, L16 = 300. PBS = polarizing
beam splitter, BS = beam splitter, (both anitreflection coated for 650 nm to 1050 nm), λ/2 =
polymer zero order half-wave plate (WPH05ME-980), PM = reflecting prism mirror, P =
pinhole with 300 µm diameter, CMOS = CMOS cameras (Basler, acA640-750um), SLM =
spatial light modulator (Meadowlark, HSP1920-1064-HSP8), M = mirror, DC = dichroic
mirror, SM = resonant scanning mirror, PMT = photomultiplier tube for fluorescence
detection (two-photon imaging). The transmission pathway (light-gray box) was only used
for observing the resulting corrections for a stationary excitation beam and was not used to
compute corrections.
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generated datasets. The matrix shows that, as expected, even components in the excitation are
sensed with the same magnitude in the detection, and odd ones are sensed with a negative
magnitude.

Fig. 4. Linear correspondence model between Zernike modes displayed in the excitation
and detection pathway (see Methods for details). Even components in the excitation are
sensed with the same magnitude in the detection, and odd ones are sensed with a negative
magnitude.

2.1.3. Simulations

Using a Rayleigh-Sommerfeld solver [29], we simulated light propagation through the microscope
and sample and monitored the point spread function at the sample and reflected focal plane
(Fig. 2). The simulated pathway is illustrated in Fig. 2(a): a flat wavefront enters the microscope
objective, propagates to the surface of an aberrating layer (which adds a spatial phase modulation
to the beam), reaches the mirror (the PSF is calculated in this plane), is reflected back, passes
again through the lens and the aberrating layer and is finally focused with a lens in the reflected
focal plane (see legend of Fig. 2 for parameters used).

2.1.4. Data processing and neural network approach

The CNN architecture consisted of a cascade of 4 convolutional layers with ReLu activations (64
filters 11 × 11 with stride 4 × 4 and batch normalization, 64 filters 5 × 5 with stride 2 × 2 and
batch normalization, 128 filters 3× 3 with 2× 2 max pooling, and 192 filters 3× 3 with 2× 2 max
pooling respectively). These layers are followed by a dense layer with 3072 elements, sigmoid
activation and 0.3 dropout regularization, and an output dense layer with linear activation, the
size of which corresponds to the number of predicted Zernike modes. The networks were trained
by minimizing mean absolute error (MAE) of the prediction with Adam optimizer at learning
rate 0.0001.
The confocal volume (imaged in 3 planes) was normalized by dividing by 255 to bring the

8 bpp image to the 0 . . . 1 range and was stacked into a 192 × 192 × 3 tensor serving as input
for the network. The output was the corresponding phase modulation, represented as vector of
Zernike coefficients (Z1 . . . Z28); in cases where both excitation and detection modulations were
used, they were both concatenated into as single vector (Z1exc . . . Z28exc, Z1det . . . Z28det). Each
random modulation was generated by shuffling a harmonic sequence an = 1.5π/n, with integer
n = {1, . . . , 28}, and randomly choosing the sign of each of its elements. The resulting sequence
was then used as the coefficients of the modulation. The Z1 (piston) mode was always set to
0. For Network 1, both excitation and detection modulations were drawn independently with
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this procedure. For Network 2, only one modulation was drawn according to this procedure
and used in excitation and detection. Additionally, the coefficients of the modulations were
independently scaled by random factors drawn form a normal distribution with mean 1.0 and
standard deviation 0.3. This added the desired coefficient magnitude variance in the excitation
and detection modulations.

The models were implemented with Tensorflow 2.0 [30] and trained on a workstation equipped
with 4 Titan RTX GPUs in data-parallel mode, taking about one hour for 50 epochs with a batch
size of 400. The inference time was under 1 ms.

2.2. Disentangling excitation and detection phase modulations

We first tested whether neural networks could extract random, independent phase modulations
displayed in the excitation and at the same time in the detection pathway based on the resulting
reflected focus patterns. We therefore generated a dataset by displaying different random Zernike
modes of up to order 28 simultaneously in each pathway. A mirror was placed at the sample
plane of the microscope and the resulting reflected focus images were recorded. This models a
planar sample with entirely uncorrelated excitation and detection aberrations.
A network (Network 1) was trained on 180 000 such pairs of excitation and detection phase

modulations and the resulting sets of confocal images. Figure 5, top row, shows examples of
predicted and target excitation and detection phase modulation with representative mean absolute
errors. The mean absolute error (MAE) of the examples is also indicated in the full MAE
distribution shown in the bottom row. The histogram of mean absolute error (MAE, Fig. 5,
bottom row) between prediction and target modulations is compared to the error for random
pairing (gray). These results shows that the trained neural network can reliably disentangle and
predict independent excitation and detection phase patterns based on reflected confocal images
resulting from the combined modulation.

2.3. Focusing through aberrating layers

We next tested whether such networks could be used to separate excitation and detection
aberrations based on reflected images from actual scattering samples and whether the resulting
corrections could be used for focusing through the encountered aberrations. In these experiments,
we focused through a layer of vacuum grease onto a reflecting surface. To be able to directly
monitor the focus after the scattering layer, we focused on a fifty-fifty beam splitter. This resulted
in a reflected focus image and at the same time allowed monitoring the focus at the sample
surface with a transmission camera for a stationary beam (non-descanned transmission detection,
see Fig. 3). To monitor the correction during scanning, we placed fluorescent beads (0.1 µm
diameter) on the beam splitter surface and detected fluorescence using two-photon imaging.
Corrections were computed using Network 2 which was trained on a dataset of 180 000

examples with a variance of ±30 % between excitation and detection Zernike coefficients. This
allowed better coverage of the sample space compared to Network 1 (with similar sized training
datasets) and was sufficient for correcting aberrations in weakly scattering samples. Examples of
network predictions with representative MAEs are shown in Fig. 5, top row. The MAE of the
examples is indicated in the MAE distribution shown in Fig. 5, bottom row.

Representative examples of two-photon images of fluorescent beads on the reflecting surface
with and without excitation correction are shown in Fig. 6. Due to aberrations the center plane
of the confocal volume is difficult to determine, and corrections were therefore obtained by
averaging between three and five images of the confocal volume at different axial positions around
the estimated center (separated by 2-5 micrometers). These small shifts in the focal plane mostly
led to minor changes in the reflected focus patterns, and mainly of small, high-frequency features.
This procedure therefore resulted in averaging over several runs of the network with slightly
different inputs with respect to higher frequency patterns that cannot be represented by the low
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Fig. 5. Top row: Examples of pairs of network predictions and targets for all three networks
used for excitation pathway. Samples are drawn as indicated by colored lines at respective
positions in the pertaining error distributions. Center row: Same as top row for detection
pathway phase patterns. Bottom: Histograms of mean absolute error (MAE) between
predicted and target phase masks for the three different networks, compared with errors
obtained for random pairings.

order Zernike modes on which the network was trained. Confocal images were normalized the
same way as training images (see Methods) and independently fed through the network and the
predictions were averaged. The network output is a vector of Zernike coefficients and excitation
and detection aberrations were generated. To correct for aberrations, the complex conjugate of
the network output was displayed on the SLM.
Figure 6(a) shows that aberrations in the fluorescence images can be corrected based on the

reflected excitation light using the trained neural network. The improved focus (monitored with
a transmission camera, Figs. 6(b) and 6(f), leads to improved resolution and signal as seen in
Figs. 6(a) and 6(c), and Figs. 6(e) and 6(g), respectively. (Note that the beads were placed on top
of a beam splitter, so reflection from the beam splitter will likely distort the axial profile shown in
Figs. 6(a) and 6(e) on the right side.) Overall, the decomposition into an excitation and detection
pathway leads indeed to the formation of an improved focus suitable for two-photon imaging.
We implemented a second imaging approach based on deep learning with scattering guide

stars. Since for a guide star the observed focus distortion in the sample is a result of only return
path aberrations, we trained a network on detection-only modulations (Network 3). Examples
of predicted and target corrections are shown in Fig. 5, top row. The MAE of the examples is
shown in the distribution in the bottom row.
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Fig. 6. Aberration correction for imaging through scattering layer on planar reflector. a Left:
example of corrected and uncorrected image of fluorescent beads distributed on reflector
surface imaged through a layer of vacuum grease. Center: white frame in left figure. Right:
axial cross section through lines in center figure recorded in a z-stack with 1 µm step size. b
Top: uncorrected focus at center of filed-of-view in a. Bottom: corrected based on reflected
light. Colorscale is saturated in the corrected image, so that aberrations in the uncorrected
image are visible. c Cross sections for uncorrected (black) and corrected (red) images along
the lines indicated in figure a, center. d Left: excitation and Right: detection phase mask.
e-h Same as a-d for a second example. All scale bars are 5 µm.
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The confocal volume was imaged and corresponding aberration of the return path were
predicted with the network. The correction was carried over to the excitation path using the
correspondence model between excitation and detection path Zernike modes (see Methods and
Fig. 4). The sample consisted of a mixture of scattering guide stars (9 µm diameter silver
coated silica microspheres, Cospheric) and 0.1 µm fluorescent beads embedded in 1 % Agarose.
(The transmission focus was not monitored directly in this case, since the focus was inside a
volume, not at an interface as above.) The sample was again imaged through a layer of vacuum
grease. Experiments were performed as above, with averaging over between three and five focal
planes. Figures 7(a) and 7(d) show two representative examples of corrections achieved with this
approach. Both, resolution and intensity improve due to the applied corrections.

3. Discussion

We have developed an approach for wavefront correction in adaptive optics compatible with
laser scanning microscopy based on reflected light imaging and deep neural networks. For
network training large datasets of aberrated focus images were generated by combined excitation
and detection pathway phase modulations, modeling the aberrations observed from extended
reflecting objects in scattering samples. After training on such datasets, deep neural networks
can extract underlying excitation and detection phase aberrations of modeled (Fig. 5) and actual
(Fig. 6) samples based on reflected focus images. We validated this approach using two-photon
imaging of fluorescent beads distributed on a mirror through an aberrating sample as well as by
directly imaging the transmitted focus (Fig. 6 and Fig. 7). The resulting corrections achieved for
a planar object rely neither on a tight focal volume nor a guide star, as typically necessary for
wave front sensing.

In a second approach, we obtained corrections by combining guide stars and deep neural
networks. In this situation, training data was modeled using only detection path modulations
and the corresponding corrections were then displayed in the excitation pathway for excitation
correction.

Reflected light detection generally has the advantage of being independent of sample labeling
[6], but comes with the difficulty of separating excitation, detection, and sample contributions to
the scattered signal [10,12]. We addressed here the problem of separating excitation and detection
aberrations with a deep neural network approach and independent phase modulation of both
pathways. While we used either a reflecting surface or a guide star as reflectors, sample scattering
characteristics could for example be included by recording training data from biological samples.
A related approach for correcting multiple aberrations with different spatial light modulators

has been developed in astronomy under the name of multi-conjugate adaptive optics [31] and
has also been adapted for microscopy [32–34]. In astronomy, neural network approaches to find
multi-conjugate corrections have been developed as well [35–37]. While in this multi-conjugate
situation phase corrections are conjugate to different focal planes, in the implementation describe
here, both corrections are conjugate to the same plane. The separability of independent Zernike
modes based on measurements of combined aberrations shown in Fig. 5, suggests that a similar
deep learning approach could also be employed for disentangling aberrations in the different
planes encountered in multi-conjugate applications.

For two-photon imaging experiments we introduced a coupling between excitation and detection
corrections with a variance of ±30 % between excitation and detection Zernike coefficients to
constrain the space of possible aberrations and to limit the required amount of training data. The
similar excitation and detection corrections seen in Figs. 6(d) and 6(h) are expected for samples
with weak aberrations within an isoplanatic patch (see Fig. 2).

The possibility to disentangle jointly recorded Zernike modes from focus images (Fig. 5) will
become more important for more strongly scattering samples that require higher order modes
for correction (see for example Figs. 2(h) and 2(i) in [10]). Generally, including higher order
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Fig. 7. Aberration correction for imaging through scattering layer with guide stars. a Left:
example of corrected and uncorrected image of fluorescent beads distributed in a volume of
Agarose mixed with scattering guide stars imaged through a layer of vacuum grease. Center:
white highlighted box in left figure. Right: axial cross section through lines in center figure
recorded in a z-stack with 1 µ m step size. b Cross sections for uncorrected (black) and
corrected (red) images along the lines indicated in a, center. c Excitation phase mask. d-f
Same as a-c for a second example. All scale bars are 5 µm.
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Zernike modes likely would improve aberration corrections. In the current implementation,
Zernike modes of up to order 28 were used, similar to previous approaches using wavefront
sensors [7]. Up to 120 orders have for example been measured in a transmission configuration
using a combination of deep neural networks and wavefront sensors [23], suggesting that higher
order modes could also be detected in reflection mode imaging. Using larger datasets will also
allow relaxing the coupling constraint between excitation and detection and to address larger
differences between the two aberrations as observed in more strongly scattering samples [10].
Additionally, we obtained best corrections by averaging over three to five different excitation
focal planes to average over high frequency image features that could not be corrected using low
order Zernike modes. Data sets with higher order modes will therefore likely improve single shot
predictions suitable for the fast frame rates required for dynamic biological samples.

In addition to larger datasets, also different network architectures that would benefit from such
larger datasets could be used, such as ResNet [38] or Inception [18]. Additionally, imaging
of reflected light with higher dynamic range would improve resolution of intensity levels and
therefore allow to better distinguish low-magnitude aberrations.

Alternatively to Zernike polynomials (deep) neural networks can also be trained with different
basis sets (see for example [39]) which could potentially better match actual sample scattering
characteristics. As an alternative to generating training data with an SLM, also entirely
computationally generated datasets could be used (as for example in [16,18]). This would allow
simulating datasets with scattered light distributions matched to the those observed in samples
of interest. Overall, the approach outlined here offers a versatile framework for excitation and
detection aberration corrections that is independent of sample labeling and can be integrated
with laser scanning microscopy.
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