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Abstract. 
 
Native chemical ligation continues to play a pivotal role in the synthesis of increasingly 
complex peptide and protein targets twenty years after its initial report. This opinion article 
will highlight a number of recent, powerful extensions of the technology that have expanded 
the scope of the reaction, accelerated ligation rates, enabled chemoselective post-ligation 
modifications, and streamlined the ligation of multiple peptide fragments. These advances 
have facilitated the synthesis of a number of impressive protein targets to date and hold great 
promise for the continued application of native chemical ligation for the detailed study of 
protein structure and function.   
 
Introduction. 
 
Proteins exhibit a diverse array of structure and function. The immense variety of functional 
roles played by these macromolecules results from the precise make-up of the polypeptide 
amino acid sequence, the consequent three-dimensional structure of the folded protein 
molecule, and finally, the potential for adornment with post-translational modifications. 
Thus, as a result of the multi-layered structural complexities of these important molecules, 
the total chemical synthesis of homogeneous, functional proteins represents a challenging 
facet of modern organic synthesis.  
 
One of the most influential advancements in the chemical synthesis of peptides and proteins 
has been the development of chemoselective ligation protocols, in particular the discovery of 
native chemical ligation[1]. This reaction enables the condensation of two unprotected 
peptide fragments, in aqueous media and under mild reaction conditions, to generate a native 
amide linkage in an efficient and high-yielding manner. First reported in 1994 by Kent and 
coworkers, this methodology involves the reaction of a peptide containing a C-terminal 
thioester with a peptide bearing an N-terminal cysteine (Cys) residue (Figure 1). 
Mechanistically, the reaction proceeds via an initial transthioesterification between the thiol 
side-chain of Cys and the C-terminal acyl donor to generate an intermediate thioester-linked 
adduct, which rearranges through an intramolecular S-to-N acyl shift via a 5-membered ring 
intermediate to generate a native peptide bond. Since its inception, a number of advances to 
the initial ligation methodology have aimed to increase the scope of the reaction (particularly 
to address the requirement for an N-terminal Cys residue), accelerate the rate of ligation, and 
to facilitate iterative ligations and chemoselective post-ligation amino acid modifications. 
These advancements can be broadly distilled into three main research areas: 1) the 
development of new N-terminal Cys surrogates; 2) the development of new C-terminal acyl 
donors; and 3) the inclusion of various exogenous thiol additives to modulate the reactivity of 
the C-terminal thioester moiety[2] (see Figure 1). Over the years, there have been several 
comprehensive reviews of native chemical ligation and the application of the technology in 
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the chemical synthesis of peptides and proteins[3-9]. In addition, Dirksen and Dawson 
provided an insightful perspective on the expanding scope of ligation strategies, including 
native chemical ligation, in 2008[10]. On the 20th anniversary of the seminal report of the 
reaction, this opinion article serves to update the reader by highlighting a number of recent, 
powerful extensions to the native chemical ligation manifold in each of the three areas listed 
above as well as provide a commentary on current limitations and future challenges. 
 

 
 
Figure 1. Mechanism of the native chemical ligation reaction. 
 
1. Development of new N-terminal Cys surrogates. 
 
Ligation-desulfurization chemistry. 
 
Native chemical ligation traditionally relies on the presence of an appropriately placed Cys 
residue in a peptide or protein sequence in order to effectively disconnect the target. 
However, the relatively low abundance of Cys (1.1%) in naturally occurring proteins has 
prompted intense efforts to develop N-terminal Cys surrogates that can extend the 
applicability of the reaction, via a similar pathway to native chemical ligation, but that can be 
subsequently removed or manipulated to generate other proteinogenic amino acids at the 
ligation junction. In the early 2000s, there was a flourish of activity in the study of removable 
N-linked and side-chain ligation auxiliaries in the ligation-based assembly of peptides and 
proteins[10]. Challenges in expanding the scope and increasing the yields of these auxiliary-
promoted ligations, however, have prompted the exploration of alternative approaches. These 
efforts have recently converged on the use of ligation-desulfurization chemistry[11,12], a 
concept first demonstrated by Yan and Dawson through reductive desulfurization of Cys 
following the ligation event to generate a native Ala [13]. The development of a mild and 
metal-free radical desulfurization protocol employing the water-soluble radical initiator VA-
044 in the presence of tris(2-carboxyethyl)phosphine (TCEP) and t-BuSH[14] or reduced 
glutathione[15] has further fuelled the adoption of post-ligation desulfurization 
methodologies. 
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The concept of employing unnatural amino acid derivatives bearing suitably positioned thiol 
auxiliaries[13] in ligation-desulfurization chemistry has recently come to fruition (Figure 
2I) and represents a crucial extension to the native chemical ligation methodology. Beginning 
with the preparation of β-thiol phenylalanine (Phe)[16,17] and the application of this Phe 
derivative in peptide ligation followed by a post-ligation reductive desulfurization with nickel 
boride[17], a number of additional thiol-derived amino acids have been added to the ligation-
desulfurization toolbox. These additions include access to post-desulfurization Xaa-Yaa 
ligation junctions where Yaa can be valine (Val)[15,18], lysine (Lys)[19-21], threonine 
(Thr)[22], leucine (Leu)[23,24], proline (Pro)[25,26], glutamine (Gln)[27], arginine 
(Arg)[28], aspartic acid (Asp)[29,30], glutamic acid (Glu)[31] or tryptophan (Trp)[32] using 
suitable thiol-derived amino acid building blocks (Figure 2Ia-c). Importantly, thiolated amino 
acids tend to exhibit increased rates of reactivity and improved reaction scope relative to N-
linked and side-chain appended auxiliaries, owing in part to the decreased steric bulk at the 
ligation junction (relative to N-linked auxiliaries) and the ability to proceed primarily through 
5-membered (for β-thiol derivatives, Figure 2Ia) or 6-membered (for γ-thiol derivatives, 
Figure 2Ib) ring intermediates in the S-to-N acyl transfer step. Ligation-desulfurization 
chemistry using these thiol-derived building blocks has also been successfully employed in 
the synthesis of a number of complex peptide and protein targets, including the construction 
of human parathyroid hormone[33], a mucin 1 (MUC1) glycopeptide oligomer[28] and to 
facilitate side-chain ubiquitination of α-synuclein[34]. 
 
On-going challenges in the development of ligation-desulfurization methodologies include 
the development of more practical routes to thiol-derived amino acid building blocks. With 
the exception of penicillamine[15] and γ-thioproline building blocks[25], which are 
commercially available, and the late-stage installation of a Trp thiol auxiliary onto 
unprotected peptides[32], the majority of synthetic approaches to thiol-derived amino acids 
require multiple synthetic steps. Challenging syntheses of the various β-, γ- and δ-thiol amino 
acids in suitably protected form currently present a barrier to the widespread adoption of 
these building blocks by the peptide and protein chemistry community. 
   
Chemoselective ligation-deselenization and ligation-desulfurization chemistries. 
 
One drawback of employing a post-ligation global desulfurization is that the chemistry in 
most cases is not chemoselective in the presence of other sulfhydryl moieties. As such, it is 
necessary to protect native Cys residues within the target sequence to avoid concomitant 
conversion to Ala upon treatment with reductive or radical desulfurization conditions. The 
development of side-chain ligation auxiliaries that can be chemoselectively manipulated in 
the presence of unprotected, non-ligation site Cys residues therefore represents an important 
area of on-going research. Towards this end, following a 2010 discovery by Dawson and 
coworkers that selenocysteine (Sec) residues can be chemoselectively deselenized in the 
presence of unprotected Cys residues (Figure 2II)[35], there has been renewed interest in 
the use of Sec as a viable Cys ligation surrogate[36]. The key deselenization reaction takes 
place at room temperature in the presence of TCEP and dithiothreitol (DTT) and is thought to 
proceed through a similar mechanism to the phosphine-mediated radical desulfurization of 
Cys in the presence of a radical initiator [35]. The selectivity of the deselenization may be 
attributed to the preferential formation of selenium-centered radicals over sulfur-centered 
radicals and the relatively weak carbon-selenium bond; however, detailed mechanistic studies 
have not yet been reported. 
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The observed chemoselectivity in the deselenization of Sec in the presence of Cys has 
catalyzed an interest in unnatural, selenol-derived amino acid derivatives for use in ligation-
deselenization chemistry[35]. To date, a γ-selenoproline[37] and a 
β-selenophenylalanine[38] derivative have been successfully employed in chemoselective 
deselenization reactions in the presence of unprotected thiols. Our laboratory has recently 
reported that β-thiol Asp residues can also be chemoselectively desulfurized in the presence 
of unprotected Cys residues upon treatment with TCEP and DTT at elevated 
temperatures[29]. The utility of this unique reactivity was demonstrated through the 
synthesis of CXCR4(1-38), a chemokine receptor fragment bearing an internal Cys residue 
and two post-translational modifications, using a one-pot β-thiol Asp-mediated ligation 
followed by a chemoselective desulfurization reaction. In light of these recent discoveries, it 
is anticipated that the development of post-ligation, chemoselective manipulations of both 
thiol- and selenol-derived amino acids will be a subject of further exploration to increase the 
flexibility of ligation chemistry in the synthesis of proteins. 
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Figure 2. Cys surrogates used for native chemical ligation: (I) ligation-desulfurization 
chemistry employing (Ia) β-thiol amino acids, (Ib) γ-thiol amino acids and (Ic) other thiol-
derived amino acids; (II) development of chemoselective ligation-deselenization chemistry at 
Sec and selenol-derived amino acids. NB: With the exception of 2-thiol Trp [32], the thiol 
and selenol amino acids are synthesized in protected form before incorporation into resin-
bound peptides by standard solid-phase synthesis methods. The reader is referred to the 
original articles for the details of these protecting groups. 
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2. Development of new C-terminal acyl donors. 
 
The efficiency of a given native chemical ligation reaction is heavily dependent on the nature 
of the C-terminal thioester in the acyl donor. A number of studies focused on varying this 
component of the reaction have led to improvements in ligation rate, synthetic accessibility of 
precursors, and the ability to perform iterative ligation reactions. The rate of ligation between 
N-terminal Cys residues and peptide thioesters at Xaa-Cys ligation sites is known to be 
heavily dependent on the steric and electronic properties of the C-terminal residue Xaa on the 
thioester component[39]. Sterically encumbered β-branched thioesters (e.g. Xaa = Ile, Thr 
and Val) substantially reduce the rate of ligation at these sites, and decreased electrophilicity 
combined with steric hindrance in the Xaa = Pro thioester (resulting from an orbital 
interaction with the carbonyl oxygen of the adjacent amide bond)[40] generally prohibits 
ligation at a Pro-Cys site. However, the recent report of rapid ligation at preformed peptide 
Pro selenoesters[41], which have superior leaving group ability compared to the 
corresponding thioester analogs, has now provided an innovative solution to accessing the 
otherwise intractable Pro-Cys ligation site.   
 
While Boc chemistry in situ neutralization solid-phase peptide synthesis (SPPS) can be used 
for the efficient construction of peptide thioesters, a number of new methods that are 
compatible with the more widely practiced Fmoc chemistry SPPS have been developed to 
facilitate the efficient construction of C-terminal thioesters and acyl donors[42]. In particular, 
the use of in situ N-to-S acyl transfer strategies has garnered significant attention for the 
preparation of peptide thioesters and has been the subject of a recent review[43]. A 
noteworthy advance in this area has been the development of the bis(2-sulfanylethyl)amino 
(SEA) group[44,45] which has been employed as an on/off redox switch (Figure 3a) enabling 
one-pot iterative ligations in the N-to-C direction[46]. Dawson and coworkers have also 
reported an efficient Fmoc-SPPS approach to peptide N-acyl-benzimidazolinones (Nbz), 
which can be readily converted to peptide thioesters upon treatment with an exogenous aryl 
thiol (Figure 3b)[47]. This strategy begins with the synthesis of resin-bound peptide o-
aminoanilides, which, following peptide elongation using standard Fmoc chemistry SPPS, 
undergo rapid cyclization to generate the resin-bound benzamidazolinone upon sequential 
treatment with p-nitrophenylchloroformate and a hindered base. Cleavage from the resin 
using a standard acidic cocktail generates the unprotected peptide-Nbz, poised for conversion 
to the corresponding thioester through the addition of a suitable thiol. Kent and coworkers 
have recently employed a glycopeptide-Nbz fragment for the total chemical synthesis of the 
chemokine protein CCL1, demonstrating the compatibility of the Nbz synthetic strategy with 
a complex, unprotected N-linked asialo-nonasaccharide[48]. 
 
Another innovative approach to the facile preparation of peptide thioesters as well as an 
enabling technology for iterative ligations has been the development of peptide acyl 
hydrazides for use in the context of the native chemical ligation reaction[49]. In 2011, Liu 
and coworkers reported a one-pot protocol for the ligation of peptide hydrazides to peptides 
bearing N-terminal Cys residues (Figure 3c)[49]. In the first step, treatment of a fully 
deprotected peptide hydrazide with the oxidant NaNO2 affords an intermediate peptide acyl 
azide in a chemoselective manner. The subsequent addition of an aryl thiol additive (e.g. 4-
mercaptophenylacetic acid, MPAA) promotes in situ formation of the reactive thioester, 
which readily ligates with a peptide bearing an N-terminal Cys residue. Importantly, as 
conversion of the peptide hydrazide to the corresponding thioester first requires an 
“activation” step (the addition of the oxidant NaNO2), the hydrazide effectively serves as a 
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masked thioester moiety, enabling careful, programmed control of the reactivity of 
bifunctional peptides bearing both an N-terminal Cys residue and a C-terminal hydrazide. As 
such, this methodology represents a powerful advance to the toolbox of ligation strategies, 
and has been used to enable iterative ligations in the N-to-C direction[49] and, in 
combination with other ligation approaches, in the C-to-N[50] direction. Most recently, 
peptide hydrazides have been employed in the synthesis of the 140 amino acid protein α-
synuclein using a four segment, iterative N-to-C ligation approach (Figure 3d)[51]. In 
addition, this methodology has been successfully applied to protein semi-synthesis using 
protein hydrazides obtained from recombinant expression[49,52]. 
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Figure 3. a) SEAon/off ligation methodology [46]; b) Synthesis of peptide N-acyl-
benzimidazolinones [47]; c) Activation of peptide acyl hydrazides [49]; d) Synthesis of α-
synuclein [51]. 
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3. Exploration of new thiol additives. 
 
For operational convenience, preformed peptide thioesters are typically synthesized as alkyl 
thioesters, which are facile to prepare and amenable to long-term storage. However, alkyl 
thioesters as acyl donors in native chemical ligation are, in general, relatively unreactive in 
the absence of an added thiol catalyst. Treatment with excess exogenous thiol (typically an 
aryl thiol) serves to promote a thiol-exchange reaction with the C-terminal alkyl thioester, 
generating a more reactive aryl thioester in situ (see Figure 1) that promotes rapid ligation 
with peptides bearing N-terminal Cys residues or Cys surrogates. In this manner, thiol 
additives enable fine-tuning of thioester reactivity[2], and have been the source of 
considerable improvement in reaction scope and rate as well as the key inspiration for the 
development of kinetically-controlled ligation chemistry[53]. Following a comprehensive 
screen of various thiol additives in 2006, Johnson and Kent identified the water-soluble, aryl 
thiol 4-mercaptophenylacetic acid (MPAA) as the ideal additive, giving enhanced rates of 
ligation relative to other commonly employed thiol additives[54]. 
 
Despite their enhanced reactivities, aryl thiol additives such as MPAA have hindered recent 
efforts to streamline native chemical ligation and radical desulfurization into an efficient one-
pot protocol. The ability of aryl thiols to function as radical scavengers complicates radical 
desulfurization using a phosphine and a radical initiator (e.g. TCEP and VA-044), mandating 
complete removal of the aryl thiol in an intermediary purification step prior to carrying out a 
desulfurization reaction. A number of very recent developments have aimed to circumvent 
these limitations. Brik and coworkers have demonstrated the use of a bifunctional aryl thiol 
additive (Figure 4a) that can be efficiently captured using a resin-bound aldehyde prior to a 
radical desulfurization reaction [55]. Furthermore, trifluoroethanethiol (TFET) (Figure 4a) 
has recently emerged as a versatile, alkyl thiol additive that affords similar reactivity to the 
gold standard aryl thiol MPAA, but that does not interfere with subsequent desulfurization 
reactions[56]. The utility of the TFET alkyl thiol additive was demonstrated through the 
total synthesis of two tick-derived proteins, madanin-1 and chimadanin, using iterative one-
pot ligation-desulfurization approaches (Figure 4b). It is envisaged that the adoption of new 
thiol additives, together with the increased flexibility for iterative ligations offered by novel 
C-terminal acyl donor moieties as reagent equivalents to the thioester synthon (vide supra), 
will serve to greatly streamline the synthesis of complex protein targets from multiple peptide 
fragments. 
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Figure 4. a) Thiol catalysts: MPAA [54], Brik’s bifunctional aryl thiol [55] and 
trifluoroethanethiol (TFET) [56]; b) Application of TFET in a one-pot kinetically-controlled 
ligation-desulfurization protocol to afford madanin-1 [56]. 
 
Perspectives. 
 
The combination of recent advances in the development of novel N-terminal Cys surrogates, 
C-terminal acyl donors and thiol additives has facilitated the synthesis of increasingly large 
and more complex protein targets. Indeed, application of native chemical ligation in 
combination with some of the technologies outlined here in the recent total chemical 
syntheses of a number of impressive targets, including a 304 amino acid tetraubiquitin 
protein by Brik and coworkers[57], homogeneous human glycosyl interferon-β by Kajihara 
and coworkers[58], and the N-glycosylated chemokine protein CCL1 by Kent and 
coworkers[48,59] provides a powerful testament to the functional utility of these 
methodologies. As synthetic chemists continue to push the envelope of protein size and 
complexity, it is anticipated that improvements to existing ligation technologies will be 
necessary. In particular, rapid and selective ligation will need to take place under the high 
dilution conditions often required to solubilize large proteins, and novel techniques will be 
required to access difficult targets, including membrane-bound proteins, via chemical 
synthesis. To this end, the logic of native chemical ligation will no doubt continue to serve as 
a platform for discovery. 
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