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Abstract 

The majority of road cycling races finish with a sprint and as such sprints are a key 

determinant of success. Surprisingly, the scientific literature on this specific topic is scarce, 

with limited to few studies describing the characteristics of road cycling sprinters and the 

demands of road sprinting. Cyclists’ sprinting velocity, which is mostly influenced by power 

output and aerodynamic drag (CdA) is critical to performance outcomes. However, to date, 

there is very limited research specifically examining how to maximise road sprint velocity. 

Thus, the overall objective of the four studies outlined in this thesis was to manipulate CdA, 

physiology, and coaching cues to improve road sprint cycling velocity and performance.  

The first study examined the validity of the Velocomp PowerPod, which calculates 

power output based on opposing/resistive forces experienced. When power output is known 

(using a direct force power meter), the Velocomp PowerPod is able to calculate a continuous 

CdA which was the reason why this study was included into this thesis. The research was split 

in to two separate studies: i) 12 recreational male road cyclists completed a power profile test 

(5-600 s); and ii) 4 elite male road cyclists completed 13 outdoor cycling training sessions. In 

both studies, power output of cyclists was continuously measured using both the Velocomp 

PowerPod and Verve Cycling InfoCrank power meters. The results showed that rolling 

resistance estimated by the Velocomp PowerPod (0.011 ± 0.0) was higher than what has been 

previously reported (0.006), which likely occurred due to errors in the subjective selection of 

road surface type in the device setup. This overestimation of rolling resistance increased the 

calculated power output, which was significantly greater than the power output measured by 

the Verve Cycling InfoCrank power meter in both study i and ii (27 to 39% and 16 to 49%, 

respectively). When rolling resistance was adjusted to previously reported values (0.006), the 

Velocomp PowerPod power meter was shown to be comparable to the Verve Cycling InfoCrank 

power meter during a controlled field test (−0.57 to 0.24%) but not dynamic training sessions 
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(8.94 to 33.14%). Consequently, the Velocomp PowerPod power meter was not used in 

subsequent studies within this thesis. 

The following two studies examined the effect of a seated, standing, and novel forward 

standing (lower and further forward head and torso) sprint position on performance. In study 2, 

eleven recreational male road cyclists rode 250 m at approximately 25, 32, and 40 km·h−1 and 

in each of the three positions. Riding velocity, power output, wind direction and velocity, road 

gradient, temperature, relative humidity, and barometric pressure were measured and used to 

calculate CdA using regression analysis. Sprinting in a forward standing position resulted in a 

23% and 26% lower CdA, when compared with a seated and standing position, respectively. 

Furthermore, in contradiction with previous research no difference in CdA was observed 

between a seated and standing position. Additionally, despite no significant difference in CdA 

between the two test days a poor between-day reliability was observed. In study 3, eleven 

recreational male road cyclists performed a 14 s sprint in the three different sprint positions 

before and directly after a 10 min high-intensity lead-up. Peak and mean power output were 

similar between the forward standing (1126 ± 49 W and 896 ± 33 W, respectively) and both the 

seated  (1043 ± 47 W and 857 ± 29 W, respectively) and standing positions (1175 ± 45 W and 

928 ± 29 W, respectively). Collectively the results from studies 2 and 3 indicate that sprinting 

in the forward standing position may result in an increase in sprint cycling velocity of 5.6-6.5 

km·h-1 and 2.1-5.1 km·h-1, when compared with the seated and standing sprint positions, 

respectively.  

In study 4, 28 recreational road cyclists completed a two-week (3 sessions per week) 

sprint training intervention during which they received either i) visual and external focused 

verbal instructions, and positive feedback on their cycling sprint position (intervention group), 

or ii) neutral verbal instructions and feedback (control group). The combination of these 

coaching techniques did not enhance the training induced improvement in forward standing 
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sprint performance. While improvements in peak (4%) and mean power output (3%), and peak 

torque (5%) were observed in both groups, it is unclear if these improvements are entirely due 

to the training programme because of the absence of a non-sprint training control group. 

This thesis has shown that sprinting in the novel forward standing sprint position could 

result in an increase of cycling velocity by approximately 5 km·h-1, when compared with more 

traditional sprint positions. In unaccustomed cyclists, sprint performance in this position might 

be further improved by a short two-week sprint training programme, however, further research 

is needed in this area. The results from this thesis have implications in training and tactical 

decisions of cyclists, coaches, and support staff aiming to be successful in competitive road 

cycling sprints.  
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1. Introduction 

1.1. Overview 

This Doctor of Philosophy (PhD) thesis presents four applied research studies aimed at 

improving road cycling sprint performance. Specifically, the purpose of this research was to 

examine the effect of different road cycling sprint positions on aerodynamics and power output. 

Furthermore, this thesis examines if it is possible to improve sprint performance of recreational 

cyclists in a novel road cycling sprint position after only two weeks of training using an 

evidence-based combination of different coaching techniques. 

 

1.2. Background 

Road cycling is a physically demanding endurance sport with races ranging from short 

prologues (5-15 min), to single-day events (1-7 h), and multi-stage races (up to 21 days). 

Success in these races depends on many different factors, including aerobic and anaerobic 

capacities of cyclists, biomechanics, technique, tactics, and psychophysiological factors.11-15 

Partly based on these factors, cyclists are often categorised into their area of specialisation (e.g. 

climbers, sprinters, time trialists, all terrain specialists, and flat terrain specialists).4,9,16-18 

Professional and elite road cyclists are required to have high aerobic capacities (e.g. maximal 

oxygen uptake [V̇O2𝑚𝑎𝑥] of 70-80 mL·kg-1·min-1 and maximal aerobic power during an 

incremental exercise test [MAP] >5.5 W·kg-1).19,20 

The outcome of many road races is often decided by a sprint. For example, over half of 

the mass start stages during the three grand tours (i.e. Giro d’Italia, Tour de France, and Vuelta 

a España) as well as most World Championships, are decided in either a head-to-head, small 

group, or mass sprint finish. Only a few studies have examined the capacities needed within 

road sprint cycling.2,3,6,7,14,21 Menaspà and colleagues4 showed that junior sprinters (16.8 ± 0.6 

y) can produce a higher mean power output during a 5 s sprint test, when compared with flat 
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terrain and uphill specialists (16.6 vs. 14.9 and 14.4 W·kg-1, respectively). To date, performance 

in elite and professional road cycling sprints have not been extensively examined.1,3,6,7,14,21,22 

Recently, Menaspà and colleagues7 and Peiffer and colleagues22 have collected and examined 

race data from professional male and female cyclists, respectively. The results of these studies 

have shown that during the final sprint (duration: 9-17 s males; 10-33 s females), male and 

female cyclists reached a peak power output of 17.4 and 13.9 W·kg-1 (1248 and 886 W, 

respectively) with a maximum velocity of 66 and 58 km·h-1, and a peak cadence of 114 and 110 

revolutions per minute (rpm), respectively. These results are slightly higher than those found in 

a single 14 s sprint of a male cyclist (1097 W with a maximum velocity of 65 km·h-1).3 When 

successful sprints of professional male cyclists were compared with those of Under 23 (U23) 

cyclists, no differences in power output and total work were found.6 Unpublished data indicate 

that sprinters need a high sprint power output to finish in the top five; however, differences in 

power output do not appear to differentiate final position among the top 5 finishers.23 These 

data indicate that success in sprints within professional road cycling is not solely determined 

by high power outputs. Indeed, a cyclist’s sprint velocity is likely to be associated with race 

outcomes. Cycling velocity can be calculated from power output, aerodynamic drag (CdA), and 

environmental measurements using Equation (1.1).24  

𝑉𝑔 =  
2 ∙ 𝑃

𝜌 ∙ 𝐶𝑑𝐴 ∙ 𝑉𝑎
2        (Equation 1.1) 

in which 𝑉𝑔  is the ground velocity of the cyclist in m·s-1, 𝑃 is power output in watts, 𝜌 is air 

density, 𝐶𝑑𝐴 is aerodynamic drag, and  𝑉𝑎  is wind velocity relative to the cyclist’s riding 

direction in m·s-1.  

Depending on the equipment and position of a cyclist on the bicycle, air resistance 

represents approximately 95% of the total resistive forces experienced when cycling at 65 km·h-

1.25 Reducing a cyclist’s CdA is therefore extremely important to road cycling performance. 

CdA can be measured using a wind tunnel. However, wind tunnels are expensive and scarce. 
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CdA can also be calculated using mathematical modelling.24,26,27 However, this method requires 

several experimental trials to calculate a single CdA value. The ideal situation would be to 

accurately measure CdA during regular races and training sessions, which may be possible with 

a newly developed device with integrated anemo-, baro-, and accelerometers (Velocomp 

PowerPod). In fact, the Velocomp PowerPod continuously measures the opposing forces caused 

by hills, wind, acceleration, and friction. Based upon these opposing forces and Newton’s first 

law it estimates cycling power output. This differs to the majority of currently available power 

meters which measure torque using strain gauges instrumented in the crank, pedal, or hub of 

the bicycle.28 The Velocomp PowerPod can be paired with a strain gauge-based power meter, 

like a Schoberer Rad Messtechnik (SRM) or Verve Cycling InfoCrank power meter. When 

doing this the Velocomp PowerPod can be programmed to continuously calculate CdA, rather 

than power output. However, the validity of the Velocomp PowerPod to calculate power output 

and CdA is to date unknown. 

Until now sport scientists, coaches, and engineers have predominantly focussed on 

improving CdA in time trial events, probably due to overall duration and importance of these 

events in multi-stage races, along with the relatively higher velocity when compared with road 

races.29-31 However, in road sprints the velocity is significantly higher than in time trials. Given 

that the outcomes of a sprint are often decided by very small margins (as little as 0.0002 s32) 

aerodynamics are as, if not more, meaningful to overall performance. A drop in CdA, which 

changes with a cyclist’s posture, might therefore result in a faster sprinting velocity. According 

to the author’s knowledge only four studies to date have investigated the effect of various 

sprinting positions on CdA.3,27,33,34 Cyclists are known to sprint in three different road cycling 

sprint positions: seated, standing, and the more novel forward standing (Figure 1.1). The 

difference between the seated and the two standing positions is the number of contact points 

with the bicycle (seated: handlebars, saddle, and pedals vs. standing: handlebars and pedals). 



4 

 

The main differences between the standing and the forward standing position are a lower and 

further forward torso and head position in the forward standing position. The forward standing 

position is a novel position in the peloton and has only been adopted by a few cyclists. Changing 

from a seated to a standing position increases CdA by approximately 16.5%.3,27,33 However, 

two of these studies did not focus on comparing different positions.3,27 Blocken and colleagues33 

used computational fluid dynamics and wind tunnel tests of static models of a cyclist to compare 

three different seated (i.e. back up, horizontal, and down) and two different standing positions 

(i.e. regular and low/forward standing). Crouch and colleagues34 analysed the CdA of five 

different standing positions of a male and a female cyclist in a wind tunnel. Both studies33,34 

have shown an improvement in CdA of approximately 24% when changing from a standing 

position to a forward standing position. In addition to increasing one’s absolute sprint power 

output, an improvement in aerodynamics (e.g. sprinting in the forward standing position) should 

lead to a higher velocity for a given power output and hence increase the likelihood of success 

in a road cycling sprint. 

The posture of cyclists has widely been studied during uphill and flat terrain cycling by 

comparing seated, standing, and time trial positions. Studies observed significant effects on 

kinematic, energy cost, and efficiency,35-39 but rarely during cycling at maximal intensities.38 

Millet and colleagues38 showed that greater power output can be produced when standing and 

as a result this is favourable at high intensities, yet a seated position is more efficient at 

submaximal intensities.40 However, there are only a few studies that have compared sprint 

performance differences of seated versus standing cycling.39,41 Reiser and colleagues41 showed 

that a standing position during a 30 s Wingate test resulted in a higher peak and mean power 

output compared with a seated position (19.4 and 11.0 W·kg-1 vs. 17.9 and 10.4 W·kg-1, 

respectively). Likewise, greater average power output was produced during an 8 s sprint in a 

standing position, compared with a seated position in both recreational (14.0 vs. 12.5 W·kg-1, 
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respectively) and elite cyclo-cross cyclists (14.1 vs. 12.4 W·kg-1, respectively).39 How much 

power output cyclists can produce in the novel forward standing position is unclear. 

In the process of learning a new motor skill the instructions and feedback athletes 

receive from their coach are of high importance. When analysed individually visual 

instructions, verbal instructions stimulating an external focus of attention, and positive feedback 

are well known to improve performance, coordination, rate of learning, self-confidence, 

perception of competence, and self-efficacy.42-46 Additionally, combining visual or external 

focused verbal instructions with feedback has been shown to have a positive effect on learning 

when compared with verbal internal focus instructions.47 Appropriate instruction and feedback 

may, therefore, benefit the cyclist’s ability to maintain an effective sprinting position and 

enhance performance during the unaccustomed forward standing sprint position. 

 

 

 

1.3. Significance of the Research 

The research contained in this thesis will further our understanding of sprinting within 

road cycling. Assessing the validity of the Velocomp PowerPod cyclists will determine if this 

 

A B C 

 

Figure 1.1 — The 3 sprinting positions: (A) seated, (B) standing, and (C) forward standing 
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device will allow CdA to be easily calculated, even during regular races and training sessions. 

This would be extremely beneficial when compared with other methods such as wind tunnels 

(logistically difficult and expensive) and mathematical models (strict testing protocol needed 

to be applied). By assessing different sprint positions, we will understand if a sprint position 

recently adopted by some successful professional cyclists (i.e. forward standing position) is 

more aerodynamic than a seated or standing position. We will also gain a greater understanding 

of how such positions influence total power output, cadence, and torque distribution. As a result, 

this thesis will give insight into which sprint position is the fastest based on aerodynamics and 

power output. Given the important role of velocity in road cycling sprint outcomes, such 

findings are important and will ultimately improve elite sprint cycling performance. The final 

research in this thesis will further the knowledge in motor learning by providing insight into the 

effectiveness of combined coaching techniques on learning a new motor task over a two-week 

period.  

 

1.4. Purpose of the Research 

The purpose of this thesis was to manipulate CdA, physiology, and coaching cues to 

improve road sprint cycling velocity and performance. Specifically, the purpose of Chapter 3 

was to determine the validity of the Velocomp PowerPod power meter during field cycling tests 

and training in comparison with the Verve Cycling InfoCrank power meter. The aim of Chapter 

4 was to determine the influence of seated, standing, and forward standing positions on CdA; 

and the reproducibility of a field test to calculate CdA in these different positions. Chapter 5 

assessed the influence of seated, standing, and forward standing positions on power output, 

cadence, and torque. Finally, Chapter 6 examined if visual and verbal external focus 

instructions, in combination with positive feedback, could enhance forward standing sprint 



7 

 

performance following six sprint cycling training sessions, when compared with neutral verbal 

instructions and feedback. 

 

1.5. Research Questions and Hypotheses 

The research questions (Q) and corresponding hypotheses (H) for each study are listed 

below: 

 

1.5.1. Chapter 3 

Validity of the Velocomp PowerPod Compared With the Verve Cycling InfoCrank Power Meter 

Q1. Does power output measured during seven maximal efforts (i.e. 5-600 s) differ between 

the Velocomp PowerPod power meter and the Verve Cycling InfoCrank power meter? 

H1. The Velocomp PowerPod power meter will provide the same power output values as 

the Verve Cycling InfoCrank power meter measured during seven maximal efforts. 

 

Q2. Does power output measured during training sessions of elite cyclists differ between the 

Velocomp PowerPod power meter and the Verve Cycling InfoCrank power meter? 

H2. The Velocomp PowerPod power meter will provide the same power output values as 

the Verve Cycling InfoCrank power meter measured during training sessions of elite 

cyclists. 

 

1.5.2. Chapter 4 

Reducing Aerodynamic Drag by Adopting a Novel Road Cycling Sprint Position 

Q3.  Does aerodynamic drag calculated from a mathematical model created by Martin and 

colleagues26 differ among three different sprinting positions (i.e. seated, standing, and 

forward standing)? 
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H3.  The aerodynamic drag calculated from a mathematical model created by Martin and 

colleagues26 will differ between sprinting positions (i.e. seated, standing, and forward 

standing). Standing will have a greater aerodynamic drag coefficient than seated, which 

will be similar to the forward standing position. 

 

Q4.  Is aerodynamic drag calculated from a mathematical model created by Martin and 

colleagues26 reliable between two separate test days? 

H4. The aerodynamic drag calculated from a mathematical model created by Martin and 

colleagues26 will be reliable between two separate test days. 

 

1.5.3. Chapter 5 

Power Output, Cadence, and Torque are Similar Between the Forward Standing and 

Traditional Sprint Cycling Positions 

Q5. Does peak or mean power output measured during maximal sprints of 14 s differ 

between a seated, standing, and forward standing sprinting position? 

H5. Peak and mean power output will be the greatest in the standing position and lowest in 

the seated position.  

 

Q6. Does peak or mean cadence measured during maximal sprints of 14 s differ between a 

seated, standing, and forward standing sprinting position? 

H6. Peak and mean cadence will be highest in the forward standing position and lowest in 

the seated position  
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Q7. Does peak and mean torque, torque distribution, or crank angle at peak torque measured 

during maximal sprints of 14 s differ between a seated, standing, and forward standing 

sprinting position? 

H7.  Peak and mean torque will be greatest in the standing position and lowest in the seated 

position. Crank angle at peak torque will be greatest in the forward standing position 

and lowest in the seated position. 

 

Q8. What is the fastest sprinting position (i.e. seated, standing, and forward standing) when 

modelling the interaction between aerodynamic drag and power output? 

H8.  The fastest sprint position will be the forward standing position and the slowest position 

will be the seated position. 

 

1.5.4. Chapter 6 

The Combination of Video and External Focused Verbal Instructions, and Positive Feedback 

does not Enhance the Training Induced Improvement in Forward Standing Sprint Performance 

Q9. Does the combination of visual instructions, verbal instructions promoting an external 

focus of attention, and positive feedback enhance cycling sprint performance (i.e. power 

output and kinematics) following a two-week sprint training intervention when 

compared with neutral instructions and feedback? 

H9. The combination of visual instructions, verbal instructions promoting an external focus 

of attention, and positive feedback will improve cycling sprint performance to a greater 

extent than neutral instructions and feedback. 
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Q10.  Does peak or mean power output, and peak or mean cadence measured during maximal 

14 s cycling sprints in the novel forward standing position improve after two weeks of 

sprint training?  

H10. Peak and mean power output, and peak and mean cadence measured during maximal 14 

s cycling sprints in the novel forward standing position will improve after two weeks of 

sprint training. 

 

Q11.  Does peak torque measured during maximal sprints of 14 s improve after two weeks of 

sprint training? 

H11. Peak torque measured during maximal 14 s cycling sprints in the novel forward standing 

position will improve after two weeks of sprint training. 
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2. Review of the Literature  

2.1. Abstract 

A road cycling sprint can be described as the acceleration which occurs toward the end 

of competitions in order to reach the finish line in front of other competitors. The ability to 

sprint in road cycling is important since most races are decided in either a head-to-head, small 

group, or mass sprint finish. Cycling velocity during these sprints is incredibly important. The 

factors influencing cycling velocity include the cyclist’s physiology and capabilities, the 

cycling biomechanics and application of force, the forces experienced caused by the 

environment, and the interaction between cyclists. To perform well in these sprints road cycling 

sprinters are required to have a very well developed aerobic function (e.g. maximal oxygen 

consumption [V̇O2max] 71.8 ± 4.7 mL·kg-1·min-1; maximal aerobic power during an 

incremental exercise test [MAP] 428.2 ± 32.5 W and 6.3 ± 0.3 W·kg-1) but also extremely well 

established anaerobic capacity. Cyclists can produce higher power outputs when adopting a 

standing position when compared with a seated position, with professional male and female 

sprinters producing approximately 14.2 and 10.0 W·kg-1 during the sprint, respectively. 

Additionally, lowering the torso and head during the standing sprint position results in an 

aerodynamical improvement of around 25%. Before starting the sprint, road cycling sprinters 

can ride at very low cost in terms of energy before getting to the finish because cycling in a 

peloton can reduce the CdA down to 5-10% for almost half of the cyclists in the peloton. 

However, being close to the front of the peloton during the last part of the race, together with 

several teammates, is of high importance. Road cycling sprinting could be improved based on 

physiology, biomechanics (aerodynamics), and smart positioning in the peloton.   

 

Keywords: aerodynamics, power output, performance, cyclist specialisation, sprint 



Chapter 2 is not available in this version of the thesis. 
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3. Validity of the Velocomp PowerPod Compared With the Verve 

Cycling InfoCrank Power Meter 

3.1. Abstract 

Purpose: To determine the validity of the Velocomp PowerPod power meter in 

comparison with the Verve Cycling InfoCrank power meter. Methods: This research involved 

2 separate studies. In study 1, 12 recreational male road cyclists completed 7 maximal cycling 

efforts of a known duration (2 times 5 s and 15, 30, 60, 240, and 600 s). In study 2, 4 elite male 

road cyclists completed 13 outdoor cycling sessions. In both studies, power output of cyclists 

was continuously measured using both the PowerPod and InfoCrank power meters. Maximal 

mean power output was calculated for durations of 1, 5, 15, 30, 60, 240, and 600 seconds plus 

the average power output in study 2. Results: Power output determined by the PowerPod was 

almost perfectly correlated with the InfoCrank (r > 0.996; P < 0.001) in both studies. Using a 

rolling resistance previously reported, power output was similar between power meters in study 

1 (P = 0.989), but not in study 2 (P = 0.045). Rolling resistance estimated by the PowerPod was 

higher than what has been previously reported; this might have occurred because of errors in 

the subjective device setup. This overestimation of rolling resistance increased the power output 

readings. Conclusion: Accuracy of rolling resistance seems to be very important in determining 

power output using the PowerPod. When using a rolling resistance based on previous literature, 

the PowerPod showed high validity when compared with the InfoCrank in a controlled field 

test (study 1) but less so in a dynamic environment (study 2). 

 

Keywords: cycling, power profile, training, performance, power output 
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3.2. Introduction 

Cycling power meters typically rely on a measurement of crank arm, chain, pedal, or 

rear hub torque and angular velocity to calculate power output.28 There are several models of 

power meters available on the market, with many validated against the SRM power meter 

(Schoberer Rad Messtechnik,  Jülich, Germany)28,157-161 or a mathematical model of treadmill 

cycling.162 The high accuracy of power output data recorded by SRM devices has been 

previously reported (<1%163 and 2.3 ± 4.9% error164). Both the SRM and the Verve Cycling 

InfoCrank power meter (Verve Cycling, Perth, Australia) have shown similar mean deviation 

(trueness) to a mathematical model of treadmill cycling and coefficient of variation (precision; 

i.e. trueness = −0.5 ± 2.4% and −1.7 ± 1.1%; precision = 0.8 ± 0.4% and 0.6 ± 0.4%, 

respectively).162 

The Velocomp PowerPod power meter (Velocomp LLC, Jupiter, FL) is among the 

cheapest on the market. An advantage of this power meter is that no changes to the bicycle have 

to be made (e.g. changing crank arms, rear hub, etc.), and it can be easily mounted on to the 

handlebars of the bicycle. The novel aspect of this power meter is that when paired with a speed 

sensor, it continuously calculates the opposing forces caused by road gradient, air resistance, 

acceleration, and friction. These forces are calculated using 9 different measurements: 3 

accelerometers to measure displacements in the x, y, and z directions; frontal air pressure using 

a small port at the front of the device; environmental air pressure; altitude; air temperature; 

inclination; and wheel speed (using an ANT+ or Bluetooth speed sensor). Based upon these 

calculated opposing forces and Newton’s first law, the Velocomp PowerPod power meter 

calculates cycling power output. This differs to most of the currently available power meters in 

which power output is calculated with the use of strain gages. To date, the validity of power 

output calculated by the Velocomp PowerPod power meter is unknown. Therefore, the aim of 
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this study was to determine the validity of the Velocomp PowerPod power meter during field 

cycling tests and training in comparison with the Verve Cycling InfoCrank power meter.  
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3.3. Methods 

3.3.1. Participants 

This study was separated into 2 studies. These include a first study in a controlled field 

test during which a wide range of power outputs was tested and a second study during typical 

training rides when velocity and power output were dynamic. In study 1, 12 recreational male 

road cyclists (age 35.0 ± 7.6 y, height 178.2 ± 5.5 cm, body mass 78.9 ± 8.7 kg) completed a 

power profile test created and validated by Quod and colleagues.165 At the time of the study, 

the participants were riding 5.1 ± 1.0 times and for 10.3 ± 3.9 hours per week and were classified 

as performance level 3 or higher, as per De Pauw et al.19 In study 2, 4 elite male road cyclists 

(age 19.1 ± 1.2 y, height 176.2 ± 1.0 cm, body mass 70.3 ± 2.8 kg), racing for a continental 

cycling team, completed a combined total of 13 training sessions (duration 202.03 ± 69.60 min 

and distance 95.12 ± 32.35 km) over a period of 5 weeks during the competitive season. At the 

time of the study, the participants were riding 6 to 7 times and 18 to 20 hours per week, covering 

over 500 km·wk−1. They had more than 5 years of cycling experience and were classified as 

performance level 5, as per De Pauw et al.19 In both these studies, the bicycles were equipped 

with both a Verve Cycling InfoCrank and a Velocomp PowerPod power meter. The Verve 

Cycling InfoCrank power meter has previously shown similar trueness (−1.7 ± 1.1%) and 

precision (0.6 ± 0.4%) to a mathematical model of treadmill cycling.162 Prior to data collection, 

all participants provided written informed consent in accordance with the Edith Cowan 

University (ECU) Human Research Ethics Committee and the principles outlined in the 

Declaration of Helsinki. 

 

3.3.2. Study 1 — Power Profile Test  

Participants completed the power profile test individually on a road bicycle, with the 

saddle height and setback adjusted to replicate the participants’ own bicycle. The bicycle was 



44 

 

equipped with a Verve Cycling InfoCrank power meter and a Velocomp PowerPod power 

meter. The Verve Cycling InfoCrank power meter contained 4 strain gages per crank arm.162 

Before data collection, the Velocomp PowerPod power meter was setup in the Isaac software 

(Velocomp LLC, Jupiter, FL) including the participant’s body mass, height, and the sum of 

body mass and bicycle mass; riding position (i.e. drops); tyre size (i.e. 700 × 23c), type (i.e. 

clincher), grade (i.e. utility), and pressure (i.e. 7 bars); device mount location (i.e. front mount); 

road type (i.e. rough asphalt); and calibration ride type (i.e. best accuracy). After the setup, the 

Velocomp PowerPod power meter was paired to an SRM speed sensor (Schoberer Rad 

Messtechnik, Jülich, Germany) followed by an “out-and-back calibration ride” of 

approximately 10 minutes as per manufacturer’s manual. Briefly, during the “out-and-back 

calibration ride,” power output was displayed on a Garmin Edge 820 (Garmin, Schaffhausen, 

Switzerland). Power increased from 0 to 50 W (as in 0 to 50%). When power output was at 50 

W, participants stopped for 5 seconds. Turned around and rode the same course but in the 

opposite direction during which power output increased from 51 to 100 W (as in 51 to 100%). 

The “out-and-back calibration ride” started and finished at the same location for every 

participant and was performed on the same open road (outdoor) as the power profile test. The 

calibration ride was followed by two 5-second sprints at approximately 70 and 80% of self-

reported maximal effort to select gear for the first effort of the power profile test. 

Three minutes following this procedure, participants began the power profile test165 on 

an open road (outdoor; elevation gain = 46 ± 8 m [Garmin Edge 820]). Briefly, all participants 

completed 7 maximal efforts, including 2 times 5 seconds followed by 15, 30, 60, 240, and 600 

seconds.165 All efforts were performed from a rolling start and at a self-selected gear. During 

recovery periods between each effort, participants rode at a freely chosen low intensity and 

were allowed to drink water ad libitum. 
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Throughout the power profile test, power output data of the Verve Cycling InfoCrank 

power meter was recorded by the Garmin Edge 820 head unit at 1 Hz. Data of the Velocomp 

PowerPod power meter was stored on the device itself at 1 Hz. Given the time delay required 

to calculate power output for the Velocomp PowerPod power meter, data were synchronised by 

starting each duration (i.e. 5, 15, 30, 60, 240, and 600 s) at the peak power output reached during 

that effort. Synchronising the data showed a delay in power output data of 2.45 ± 1.85 seconds 

of the Velocomp PowerPod power meter data compared with the Verve Cycling InfoCrank 

power meter data. Maximal mean power outputs for durations of 1, 5, 15, 30, 60, 240, and 600 

seconds were calculated for the complete power profile test. Data was analysed using the rolling 

resistance estimated by the Velocomp PowerPod power meter as well as using a rolling 

resistance observed in previous research (0.006)26 because rolling resistance estimated by the 

Velocomp PowerPod was higher than suggested in literature for rough road (0.011 ± 0.0 vs. 

0.006,26 respectively). 

 

3.3.3. Study 2 — Training Sessions 

The participants’ personal bicycles were equipped with a Verve Cycling InfoCrank and 

a Velocomp PowerPod power meter. Before their first training session, the Velocomp 

PowerPod power meter was setup in Isaac software as described in study 1, and the participants 

performed the “out-and-back calibration ride.” Riding position, tyre size, and road type were 

setup differently compared with study 1 (i.e. hoods, 700 × 25c, and good asphalt, respectively). 

These settings were kept consistent for all following training sessions. Power output data was 

analysed as per study 1, with the addition of the average power output per training session. 

Furthermore, as the rolling resistance estimated by the Velocomp PowerPod power meter was 

higher than suggested in literature for smooth road (0.005 ± 0.0 vs. 0.004,26 respectively), the 
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same analysis was performed using a rolling resistance of 0.004 as suggested previously for 

smooth road.26 

 

3.3.4. Statistical Analysis 

Two-tailed Pearson correlations were used to determine the strength of the linear 

relationship between the two power meters, whereby the strength was classified as 0.0 to 0.09 

(trivial), 0.10 to 0.29 (small), 0.30 to 0.49 (moderate), 0.50 to 0.69 (large), 0.70 to 0.89 (very 

large), 0.90 to 0.99 (near perfect), and 1.0 (perfect).166 Dependent variables for study 1 (i.e. 

power output per duration: 1, 5, 15, 30, 60, 240, and 600 s) and study 2 (i.e. power output per 

duration: 1, 5, 15, 30, 60, 240, 600 s, and average) were compared between the Verve Cycling 

InfoCrank and the Velocomp PowerPod power meters using a two-way analysis of variance 

(ANOVA). Furthermore, partial eta squared (η𝑝
2) was calculated. When a main effect of device 

(i.e. Verve Cycling InfoCrank vs. Velocomp PowerPod power meter) was found, an additional 

ANOVA was performed as a post hoc test. Bland–Altman plots and 95% limits of agreement 

(95% LoA)167,168 were applied to assess the agreement among the two power meters. The level 

of significance was set at P ≤ 0.05 for all tests. All statistical analyses were completed using 

SPSS Statistics software (IBM Inc, Chicago, IL).  
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3.4. Results  

3.4.1. Study 1 — Power Profile Test  

The Pearson correlation showed a significant near-perfect correlation between the two 

devices (r = 0.998; P < 0.001). Furthermore, a significant main effect of device on power output 

was observed (F1,22 = 18.982; P < 0.001; η𝑝
2  = 0.463; Figure 3.1A). Post hoc comparisons 

revealed that power output was significantly greater for the Velocomp PowerPod power meter 

compared with the Verve Cycling InfoCrank power meter for each duration (26.68 to 38.57%). 

The bias was −197.52 ± 137.51 W (95% LoA = 269.52 W; Figure 3.2A). 

When using a rolling resistance of 0.006, a significant perfect correlation between the 

two devices (r = 1.000; P < 0.001) was observed. Furthermore, no significant main effect of 

device on power output was observed (F1,22 = 0.00; P = 0.989; η𝑝
2  = 0.000; Figure 3.1B; −0.57 

to 0.24%). The bias was 0.50 ± 10.59 W (95% LoA = 20.76 W; Figure 3.2B). 

 

3.4.2. Study 2 — Training Sessions 

The Pearson correlation showed a significant near-perfect correlation between the two 

devices (r = 0.996; P < 0.001). Furthermore, a significant main effect of device on power output 

was observed (F1,24 = 6.819; P = 0.015; η𝑝
2  = 0.221; Figure 3.1C). Post hoc comparisons 

revealed that power output was significantly greater for the Velocomp PowerPod power meter 

compared with the Verve Cycling InfoCrank power meter for maximal mean power outputs at 

1, 5, 30, and 240 seconds and for the average power output (15.23 to 47.68%). The bias was 

−200.20 ± 250.21 W (95% LoA = 490.41 W; Figure 3.2C). 

When using a rolling resistance of 0.004, a significant near-perfect correlation between 

the two devices (r = .995; P < .001) was observed. Furthermore, a significant main effect of 

device on power output was observed (F1,24 = 4.496; P = 0.045; η𝑝
2  = 0.158; Figure 3.1D). Post 

hoc comparisons revealed that power output was significantly higher for the Velocomp 
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PowerPod power meter compared with the Verve Cycling InfoCrank power meter for the 

maximal mean power output at 1 second but not for the other durations. The bias was −139.03 

± 241.57 W (95% LoA = 473.48 W; Figure 3.2D). 

 

 

 

  

 

Figure 3.1 — Maximal mean power output per duration for both the Verve Cycling InfoCrank 

(solid line) and the Velocomp PowerPod power meters (dashed line) 

(A) Study 1 — power profile test (n = 12); (B) study 1 — power profile test with adjusted 

rolling resistance (n = 12); (C) study 2 — 13 training sessions (n = 4); (D) study 2 — 13 training 

sessions with adjusted rolling resistance (n = 4); * = P < 0.05. 
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Figure 3.2 — Bland–Altman plots of the difference in power output (in watts) between the 

Verve Cycling InfoCrank and the Velocomp PowerPod power meters for all data points  

(A) Study 1 — power profile test (n = 12); (B) study 1 — power profile test with adjusted 

rolling resistance (n = 12); (C) study 2 — 13 training sessions (n = 4); (D) study 2 — 13 training 

sessions with adjusted rolling resistance (n = 4); solid line = mean bias; dashed line = the 95% 

LoA; LoA = limits of agreement. 
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3.5. Discussion 

The aim of this study was to assess the validity of the Velocomp PowerPod power meter. 

Both the power profile test data and the training data showed nearly perfect to perfect 

correlations between the two power meters before and after adjusting rolling resistance (before: 

r = 0.998 and 0.996; after: r = 1.000 and 0.995, respectively). Using a rolling resistance 

previously reported in literature,26 power output was similar between the Verve Cycling 

InfoCrank and Velocomp PowerPod power meter in study 1 (P = 0.989), but not in study 2 (P 

= 0.045). Rolling resistance estimated by the Velocomp PowerPod was higher than what has 

been previously reported in literature,26 affecting power output readings. 

High validity is important in the use of power meters to monitor training and 

competition performance. When the rolling resistance was adjusted according to previous 

research,26 the difference in power measured with the Verve Cycling InfoCrank and Velocomp 

PowerPod in study 1 (−0.57 to 0.24%), but not during study 2 (8.94 to 33.14%), was comparable 

with differences previously observed between the SRM power meter and the PowerTap (−3.5 

to −0.5%164; Saris Cycling Group Inc., Madison, WI) and between Gamin Vector (3.0 to 

3.8%158; Garmin, Schaffhausen, Switzerland) and Garmin Vector 2 (2.9 to 7.4%157; Garmin, 

Schaffhausen, Switzerland). Without the adjusted rolling resistance, the difference in power 

measured with the Verve Cycling InfoCrank and Velocomp PowerPod was notably higher 

(study 1: 27 to 39% and study 2: 16 to 49%). These results indicate that a significant aspect of 

the difference in power output observed between devices in this study might be associated with 

the Velocomp PowerPod power meter estimations of rolling resistance. Martin et al.24 reported 

that rolling resistance accounted for 10 to 20% of total power output, and the proportion of 

rolling resistance power output to total power output decreased with increased speed. A change 

in rolling resistance from 0.0016 to 0.0066 could affect cycling velocity by up to 6%.24 The 

amount of force a cyclist has to produce to overcome rolling resistance is related to the 
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cumulative weight of the cyclist and the bicycle; tyre type, grade, and pressure; and road 

gradient and type.24 

The Velocomp PowerPod power meter calculates rolling resistance based upon the 

selected/entered tyre type, grade/quality, and pressure, and road type.169 Given that the 

classification of these variables is somewhat subjective (i.e. good asphalt vs. rough asphalt), it 

is not possible to determine the magnitude of error caused within the present study and should 

be an area of future research. The error in the estimation of rolling resistance (based upon 

assumed road and tire quality) is likely to have little influence on the reliability of power output 

measurements when these variables are consistent (i.e. using the same tyres or similar roads), 

and therefore, the Velocomp PowerPod power meter should be useful in monitoring changes in 

workload. However, this needs to be established in future research. In addition, caution should 

be taken when comparing power output data collected by different cyclists, on different road 

types, or using different bicycles and tyres. In the current study, no measurements of rolling 

resistance were made, which might be subject for future research. 

The significant difference in power output observed between the Velocomp PowerPod 

and Verve Cycling InfoCrank power meter in study 2 (Figure 3.1) may be due to the variability 

in road gradient and wind direction in study 2 compared with study 1. In addition, data in study 

2 were collected during participants’ regular training rides, including both individual and group 

rides. From the data files, it was not possible to determine the effect of drafting behind other 

cyclists or passing traffic. As the participants collected data during their regular training rides 

and the classification of the settings is subjective, it was not possible to measure road quality 

and tyre type for each individual training session and to change the Velocomp PowerPod power 

meter settings if needed. In addition, road type might change between good and rough asphalt 

within one training session in study 2. As it is not possible to change the settings during the 

training session, this limitation might give errors in calculating power output. Another 



52 

 

difference between study 1 and study 2 is the riding position. In study 1 this was somewhat 

controlled; all efforts were performed with the hands in the drops. However, other variables 

like seated and standing, head high or low, or elbows tucked or not were not controlled. These 

small changes in riding position are likely to affect CdA.30,123-125,170 The Velocomp PowerPod 

uses a constant CdA value for its power output calculations, which might result in errors 

because CdA has a dynamic nature and changes with riding position. 30,123-125,170 For example, 

changing from a seated position to a standing or forward standing position when riding 60 

km·h−1 can cost or save you 25 or 190 W, respectively (with cyclist + bicycle weight 80 kg, air 

density 1.175, gradient 0%, wind velocity parallel to the cyclist 0 m·s−1, and rolling resistance 

0.004).170 Hence, changing riding position has a major effect on CdA and therefore on power 

output. This could explain the higher variability in study 2 compared with study 1 because in 

study 2, riding position was in no way controlled and might have varied even more than in study 

1 (i.e. hands in the drops, hoods, or on top of the handlebars). The effect of these variables (i.e. 

road gradient, wind direction, drafting, passing traffic, road type, and riding position) on the 

validity of the Velocomp PowerPod needs further investigation. 

It appears from this study that the difference in power output between devices was 

greatest at higher power outputs (Figures 3.1 and 3.2). Similar findings were shown in studies 

comparing the Garmin Vector power meter with the SRM power meter.157,158 Nimmerichter et 

al.157 showed a higher typical error during sprint cycling when compared with submaximal trials 

and time trials in laboratory and field conditions (7.4 and 2.9%, respectively). Furthermore, 

Novak and Dascombe158 reported the greatest variance during 5-second efforts compared with 

longer durations up to 10 minutes. However, in contradiction with the current study, the 

difference in their study was not significant.  
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3.6. Practical Applications 

The Velocomp PowerPod power meter is easy to mount to different bicycles; when 

using a rolling resistance previously reported, the Velocomp PowerPod power meter was able 

to show highly valid measurements in a controlled field test, but not as much in a more dynamic 

situation. When setting up the Velocomp PowerPod power meter in the Isaac software, coaches 

and cyclists are assumed to have the knowledge about the effect of tyre type, grade, and 

pressure, and road type on rolling resistance and therefore on power output. Measuring these 

variables in real time rather than relying on estimations may drastically improve the accuracy 

of devices, such as the Velocomp PowerPod, and could be an avenue of future research. In 

addition, using the Velocomp PowerPod during dynamic high intensity, training sessions/races 

might lead to an overall overestimation of training load, as the Velocomp PowerPod 

overestimates power output at higher intensities. Regardless, the Velocomp PowerPod power 

meter is an interesting advancement in the measurement of power output during cycling, which 

may have many additional applications (i.e. estimating CdA).  
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3.7. Conclusion 

Accuracy of rolling resistance seems to be very important in determining power output 

using the Velocomp PowerPod power meter. When using a rolling resistance based on previous 

literature, the Velocomp PowerPod power meter showed high validity when compared with the 

Verve Cycling InfoCrank power meter in a controlled field test (study 1) but less so in a 

dynamic environment (study 2). 
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4. Reducing Aerodynamic Drag by Adopting a Novel Road Cycling 

Sprint Position 

4.1. Abstract 

Purpose: To assess the influence of seated, standing, and forward standing cycling 

sprint positions on CdA and the reproducibility of a field test of CdA calculated in these 

different positions. Methods: A total of 11 recreational male road cyclists rode 250 m in 2 

directions at around 25, 32, and 40 km·h−1 and in each of the 3 positions, resulting in a total of 

18 efforts per participant. Riding velocity, power output, wind direction and velocity, road 

gradient, temperature, relative humidity, and barometric pressure were measured and used to 

calculate CdA using regression analysis. Results: A main effect of position showed that the 

average CdA of the 2 days was lower for the forward standing position (0.295 ± 0.059) 

compared with both the seated (0.363 ± 0.071, P = 0.018) and standing positions (0.372 ± 0.077, 

P = 0.037). Seated and standing positions did not differ from each other. Although no significant 

difference was observed in CdA between the 2 test days, a poor between-days reliability was 

observed. Conclusion: A novel forward standing cycling sprint position resulted in 23% and 

26% reductions in CdA compared with a seated and standing position, respectively. This 

decrease in CdA could potentially result in an important increase in cycling sprint velocity of 

3.9–4.9 km·h−1, although these results should be interpreted with caution because poor 

reliability of CdA was observed between days. 

 

Keywords: CdA, aerodynamics, cyclist, sprinting, between-days reliability 
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4.2. Introduction 

The outcome of road cycling races is often decided by a sprint. Indeed, over half of the 

mass-start stages during the 3 grand tours (i.e. Giro d’Italia, Tour de France, and Vuelta a 

España), as well as several of the recent World Championships, were decided in either a head-

to-head, small group, or mass-sprint finish. To date, road cycling sprints have not been 

extensively examined.3,6,7,14,21 It appears that to be competitive in a sprint, male cyclists are 

required to produce high peak power outputs (e.g., 13.9–20.0 W·kg−1,4 989–1443 W3,7) over 

durations of approximately 9 to 17 seconds.3,7 However, studies have also shown that peak 

power output is not the only important factor to success.14 Indeed, a cyclist’s velocity is likely 

to be a much more important factor in the outcome of road cycling sprints. Cycling velocity is 

the result of power output, CdA, road characteristics, and environmental variables.27 Therefore, 

CdA plays an important role in cycling, but is often overlooked, particularly within the sprint. 

Depending on the equipment and position of a cyclist on the bicycle, aerodynamic resistance 

represents approximately 95% of the total resistive forces experienced when cycling at 65 

km·h−1.25 In addition, the external power required to overcome aerodynamic resistance is a third 

polynomial of the velocity,123 making it necessary to increase power output by 2% to increase 

a cycling velocity by 1% only, when riding at 65 km·h−1.27 Reducing CdA is therefore extremely 

important to road cycling performance and even more in sprint performance, as sprinting is 

likely to be the fastest activity in road cycling (with the exclusion of some descending). Given 

that the outcomes of road cycling sprints are often decided by very small margins, aerodynamics 

is meaningful to overall sprint performances. 

The CdA can be determined using a wind tunnel or mathematical modelling.27  

However, wind tunnel testing is relatively expensive and facilities are somewhat scarce. The 

research in CdA within road sprint cycling is limited, with the majority of the literature focusing 

on time trials and endurance cycling.30,123-126 In some of the very few studies to examine CdA 
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in sprinters, it was found that a seated position was more aerodynamic than a standing position. 

In particular, Martin et al.27 reported CdA values based on the cycling positions of 3 track 

sprinters. Sprinting while seated resulted in a CdA of 0.245, whereas a standing position 

resulted in a CdA of 0.304. In a different study, Martin et al.3 modelled the difference in CdA 

between 1 seated (0.288) and 1 standing sprint (0.360). However, comparing different positions 

was not the focus of these studies.3,27 From data published on aerodynamics in cycling, it is 

known that lowering the torso30,123,125,126 and head124,125 significantly reduced aerodynamics. 

Therefore, in this study, a novel cycling sprint position was assessed during which participants 

adopted a low and forward torso and head position (forward standing position). The aim of this 

study was to assess the influence of a seated, standing, and forward standing position on CdA 

and the reproducibility of a field test to calculate CdA in these different positions. 
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4.3. Methods 

4.3.1. Participants 

A total of 11 recreational male road cyclists (age 37.1 ± 6.1 y, height 178.7 ± 6.6 cm, 

and weight 78.9 ± 9.9 kg) volunteered to participate. The participants rode 5.2 ± 1.0 times and 

for 10.7 ± 4.0 hours per week and were classifiable as performance level 3 or higher, as per De 

Pauw et al.19 The participants completed a familiarisation session and 2 identical aerodynamic 

field tests24 separated by at least 2 days and a maximum of 7 days. Prior to data collection, the 

subjects provided written informed consent in accordance with the ECU Human Research 

Ethics Committee and the principles outlined in the Declaration of Helsinki. All participants 

were asked to avoid strenuous exercise and refrained from the consumption of caffeine 24 hours 

prior to testing. 

 

4.3.2. Experimental Design 

The familiarisation session started with a 10-minute warm-up at a freely chosen low 

intensity. Three minutes following the warm-up, participants performed one of the 250-m test 

sections of the aerodynamic field test (described below) in 3 different positions (i.e. seated, 

standing, and forward standing; Figure 1.1). During the familiarisation session, participants 

were assessed by a single investigator using video footage (described below) to determine 

whether they were capable of maintaining each position. When a participant was not able to 

ride in each position, he was excluded from the study. In total, 2 participants were excluded 

from the study. One of the participants was not able to hold the standing and forward standing 

positions longer than 5 seconds. The video analysis did not reveal a noticeable difference 

between the standing and the forward standing positions in the other participant.  

During the 2 aerodynamic field tests, participants performed the protocol described by 

Martin et al.24 in 3 different positions, 3 minutes after a 10-minute warm-up. Specifically, both 
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aerodynamic testing sessions were identical and involved participants riding 250 m in 2 

directions at 24 to 26, 31 to 33, and 39 to 41 km·h−1 and in each of the 3 positions, resulting in 

a total of 18 efforts per participant. All efforts were conducted in a randomised and 

counterbalanced order. Participants were asked to reach constant velocity before entering the 

250-m test section and to maintain constant velocity and the selected position within the 250-

m test section. A 100-m section of road was provided at the start and end of the 250-m test 

section to allow the participants to accelerate and decelerate. The participants were required to 

maintain the required velocity throughout the 250-m test section, which they could view on a 

Garmin Edge 820 head unit (Garmin, Schaffhausen, Switzerland) attached to the handlebars 

during the seated and standing positions and the front fork during the forward standing position. 

A recovery period of 4 minutes was given between each effort.  

Participants completed the familiarisation session and 2 aerodynamic field tests on a 

road bicycle, with the saddle height and setback adjusted to replicate the participant’s own 

bicycle. The participants wore their own helmet during the field tests. The bicycle was equipped 

with a Verve Cycling InfoCrank power meter (Verve Cycling, Perth, Australia) containing 4 

strain gauges per crank arm.162 All tests were completed on a quiet, straight, and flat road. A 

high-definition camera (Sony, Tokyo, Japan) was placed on the side of the road at the middle 

of the 250-m test section to film the participant’s sagittal plane at 25 Hz. A screenshot was 

taken when the cyclist was in the middle of the video footage and it was exported to Adobe 

Illustrator (Adobe Systems, San Jose, CA) afterward. In this software, the front wheel was 

standardised at 200 pt; then, the distances between the participant’s chest and the bottom of the 

front wheel (vertical) and between the participant’s shoulder and the front wheel hub 

(horizontal) were determined (Figure 4.1). A negative number for the horizontal distance meant 

the shoulder was positioned in front of the frontal hub. These data were used to ascertain if the 

participants were adopting the desired position. The distance of the 250-m test section was 
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measured with the Garmin head unit paired with the SRM speed sensor (Schoberer Rad 

Messtechnik, Jülich, Germany). The SRM speed sensor was used to measure cycling velocity 

at the beginning (initial) and end (final) of the 250-m test section. The average power output 

was measured by the Verve Cycling InfoCrank power meter. The gradient of the 250-m test 

section was measured with the Garmin head unit. Cycling velocity, average power output, and 

road gradient were recorded by the Garmin head unit at 1 Hz. Absolute wind velocity and 

direction were measured 2 times during every effort using a wireless weather station (Davis 

Instruments Corp, Hayward, CA). The turning plane of the anemometer cups was located at 

approximately the same height as the participant’s torso while positioned on the bicycle. A 

compass (Suunto, Vantaa, Finland) was used to indicate north on the weather station and to 

assess riding direction. Wind velocity parallel with the road was calculated using Equation 

(3.1)24 as follows: 

𝑉𝑎 =  𝑉𝑊 ∙ [𝐶𝑂𝑆(𝐷𝑊 − 𝐷𝐵)]        (Equation 3.1) 

in which 𝑉𝑎  is the wind velocity relative to the participant’s riding direction in m·s−1; 𝑉𝑊 is the 

absolute wind velocity in m·s−1; 𝐷𝑊 is the wind direction in degrees; and 𝐷𝐵 is the riding 

direction in degrees. Finally, measurements of temperature, relative humidity, and barometric 

pressure were recorded 4 times during the session with the weather station. The average of these 

4 measurements was used to calculate air density using Equation (3.2)171 as follows: 

𝜌 =  
𝑃𝑏∙𝑀𝑎

𝑅∙𝑇∙𝑍
∙ (1 + (𝜖 − 1)

𝑒′

𝑃𝑏
)        (Equation 3.2) 

in which 𝜌 is the air density; 𝑃𝑏 is the barometric pressure in pascals; 𝑀𝑎 is the apparent 

molecular weight of dry air; 𝑅 is the universal gas constant; 𝑇 is the temperature in degrees 

Kelvin; 𝑍 is the compressibility factor; 𝜖 is the ratio of the apparent molecular weight of dry air 

and the apparent molecular weight of vapor water; and 𝑒′ is the effective vapor pressure. 
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Based on calculations of Martin et al.,26 1 CdA value per position was calculated from 

6 trials (i.e. 2 directions at 24–26, 31–33, and 39–41 km·h−1). Briefly, a regression analysis was 

performed using the mathematical model in Equation (4.1) as follows: 

𝑃 ∙ 𝐸 −  
∆𝑃𝐸

∆𝑡
−  

∆𝐾𝐸

∆𝑡
= 𝐶𝑑𝐴 ∙ (

1

2
𝜌𝑉𝑎

2𝑉𝑔) +  𝜇 ∙ (𝑉𝑔𝐹𝑁)    (Equation 4.1) 

 

4.3.3. Statistical Analysis 

The vertical and horizontal distances found in the screenshots were analysed using a 

two-way ANOVA to identify differences between the standing and forward standing positions 

per day. Two-tailed paired sample t tests were used to compare environmental data (i.e. air 

density and wind velocity parallel to the riding direction) and cycling velocity variability (i.e. 

average standard deviation per day) between days. 

The CdA was compared between positions (i.e. seated, standing, and forward standing) 

and between days using a two-way ANOVA. Furthermore, η𝑝
2  was calculated. When a main 

effect of position was found, pairwise comparisons using Bonferroni’s corrections were 

performed. When an interaction effect of position and day was found, an additional ANOVA 

was performed to identify differences in position for each day. The level of significance was 

set at P ≤ 0.05 for all tests. All statistical analyses were completed using SPSS Statistics 

software (IBM Inc, Chicago, IL). 
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The intraday reliability was tested using the mean coefficient of variation (CV) and the 

intraclass correlation coefficient (ICC) for each position derived from log-transformed data.172 

A CV lower than 3.5% was regarded as high test–retest reliability.173,174 

  

 

Figure 4.1 — Video analysis overview  

(1) vertical; (2) horizontal; (A) shoulder point; (B) chest point; (C) front wheel hub; (D) bottom 

of the front wheel; (E) calibration distance (i.e. 200 pt). 
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4.4. Results 

Results of the video analysis showed a mean ± SD for vertical and horizontal distances 

(average of days) of 360.6 ± 13.1 and 26.2 ± 6.4 pt and 311.6 ± 14.06 and −2.7 ± 11.1 pt for 

standing and forward standing, respectively. The video analysis showed significant differences 

between the standing and forward standing position in both the vertical and the horizontal 

direction (F1,10 = 107.631; P = 0.001 and F1,10 = 109.106; P = 0.001, respectively). No 

differences were found between days in both the vertical as the horizontal direction (F1,10 = 

0.083; P = 0.779 and F1,10 = 0.775; P = 0.399, respectively). No differences in air density (t10 = 

0.295; P = 0.774), wind velocity parallel to the riding direction (t10 = −0.040; P = 0.969) and 

cycling velocity variability (t32 = −0.939; P = 0.355; 2 tailed) were found between days (Table 

4.1). 

Table 4.1 — Mean ± SD of variables used for CdA calculations 

 Seated  Standing  Forward standing 

𝜌            

day 1 1.176 ± 0.022  1.176 ± 0.022  1.176 ± 0.022 

day 2 1.174 ± 0.017  1.174 ± 0.017  1.174 ± 0.017 

𝑉𝑎 , m·s−1            

day 1 0.21 ± 0.51  -1.79 ± 0.44  -0.01 ± 0.65 

day 2 -0.23 ± 0.50  -0.14 ± 0.50  -0.07 ± 0.56 

𝑉𝑔  variability, km·h−1 

day 1 0.47 ± 0.06  0.60 ± 0.08  0.69 ± 0.17 

day 2 0.46 ± 0.10  0.65 ± 0.14  0.71 ± 0.20 

Abbreviations: SD = standard deviation; 𝑉𝑎  = wind velocity relative to the participant’s riding 

direction; 𝑉𝑔  = the ground-velocity variability of the participants; 𝜌 = air density. 

 

A significant main effect was observed for position on CdA (F2,20 = 9.234; P = 0.007; 

η𝑝
2  = 0.480; Figure 4.2). No main effect of day and interaction effect between position and day 

on CdA was observed (F1,10 = 3.939; P = 0.075; η𝑝
2  = 0.283). Pairwise comparisons revealed a 

lower CdA (average of days) for the forward standing position (0.295 ± 0.059) compared with 

both the seated (0.363 ± 0.071; P = 0.018) and standing positions (0.372 ± 0.077; P = 0.037). 

No differences in CdA were found between the seated and standing positions (P > 0.99). A 
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lower CdA was observed for the forward standing position compared with the standing 

positions on day 1 (P = 0.05) but not on day 2 (P = 0.051). CdA was lower for the forward 

standing position when compared with the seated position on day 2 (P = 0.034) but not on day 

1 (P = 0.122). Furthermore, no differences in CdA were observed between the seated and 

standing positions on both days (P > 0.99 and P > 0.99, respectively). 

The CV for the seated, standing, and forward standing positions were 16.0%, 9.1%, and 

15.6%, respectively. Large to very large ICC were found for the CdA between days in the seated 

(r = 0.530), standing (r = 0.840), and forward standing positions (r = 0.600). 

  

 

Figure 4.2 — CdA per sprinting position for days 1 and 2 

* = P ≤ 0.05; forward-standing day 1 vs. standing day 1. † = P < 0.05; forward-standing day 2 

vs. seated day 2. # = P < 0.05; forward standing vs. seated and standing (main effect). CdA = 

aerodynamic drag. 
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4.5. Discussion 

The aim of this study was to assess the influence of a seated, standing, and forward 

standing position on CdA and the reproducibility of a field test to calculate CdA in these 

different positions. This research demonstrated that a forward standing position resulted in a 

significantly lower CdA than a seated or standing position. No difference in CdA was observed 

between a seated and standing position. Although no significant difference was observed in 

CdA between the 2 test days, a poor between-day reliability was observed. 

Although several studies have examined CdA in road cycling,30,123-126 very few studies 

have focused on sprinting.3,27 To the best of our knowledge, this is the first study assessing CdA 

of a novel forward standing position. It was found that this position has a 23% and 26% lower 

CdA compared with a seated and standing position, respectively. Applying a mathematical 

model to our results and previously reported data, such as average power output during road 

cycling sprints (865–1140 W3,7), a cumulative weight of the bicycle and cyclist of 80 kg, road 

gradient of 0%, wind velocity parallel to the cyclist of 0 m·s−1, and the average air density found 

in this study (ρ = 1.175), an 23% to 26% improvement in CdA would result in an increase of 

cycling velocity of approximately 3.9 to 4.9 km·h−1.26 This could be a decisive improvement in 

velocity, given that road cycling races can be decided by very small margins. It is likely that 

the forward standing position improved CdA due to the lower torso and head position. These 

changes in body position were likely to affect both the Ap and the Cd. From data published on 

aerodynamics in cycling other than sprinting, it is known that lowering the torso30,123,125,126 and 

head124,125 significantly reduced CdA30,123-125 or Ap.
126 Cd is dominated by the turbulence 

associated with the cyclist’s position, shape, size, and surface roughness; as Ap changes, the 

flow over the cyclist will also change. In other words, decreasing Ap (due to changes in cycling 

position) does not directly result in a lower CdA. A weak correlation exists between measured 
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Cd and Ap, in which Ap only accounted for approximately 50% of the variation in CdA between 

different cycling positions.122 

In this study, no significant difference in CdA between the seated and standing positions 

was found. The slightly lower but nonsignificant group mean difference in CdA between the 

seated and standing positions in this study (∼2.5%) is lower than the differences found in other 

studies: 25%3 and 24%.27 Explanations for such discrepancies between studies could be due to 

differences in the characteristics of the cyclists. In this study, the average height and weight of 

the participants were 178.7 ± 6.6 cm and 78.9 ± 9.9 kg, respectively. Furthermore, the 

participants in this study were all amateur male road cyclists. In the study of Martin et al.,27 3 

world-class track sprint cyclists were tested (1 male sprint specialist: 183 cm, 96 kg; 1 male 

kilometre time trial specialist: 182 cm, 87 kg; and 1 female 500-m specialist: 165 cm, 68 kg). 

Differences between studies might also have arisen from the test location and environmental 

conditions (outdoor vs. indoors27) and sample sizes in this study (11 vs. 13 and 327). However, 

in this study, all trials for all 3 positions were performed in a randomised and counterbalanced 

order on a single day, and therefore it is unlikely that environmental conditions were responsible 

for the low difference observed between the seated and the standing position. Although no 

difference in CdA between the seated and the standing positions was observed, it has been 

previously shown that cyclists are able to generate greater power output in the standing position 

compared with the seated position.39,41 The combination of a similar CdA and the possibility to 

generate greater power output during a standing sprint will result in a higher cycling velocity 

than a seated sprint. To date, it is unknown if cyclists can produce a similar or different power 

output in the forward standing position compared with other more traditional positions and may 

be the subject of future studies. Indeed, although this position was more aerodynamic, it is 

plausible that changes in body position may influence the movement kinetics compromising or 

increasing effective pedal forces. 



67 

 

The second aim of this study was to assess the reproducibility of a field test to calculate 

CdA in the seated, standing, and forward standing positions. This study showed poor reliability 

to measure CdA in these positions. Such variability between days can be due to technological, 

methodological, or biological variability.175 The technological variability within this study may 

have arisen from the equipment used (i.e. weather station, scale, stadiometer, power meter, 

speed sensor, and head unit). According to the manufacturer’s guideline, the weather station’s 

accuracy was 1 hPa, 3%, 0.5°C, 3°, and 1 m·s−1 for measuring barometric pressure, relative 

humidity, temperature, wind direction, and wind velocity, respectively. The Verve Cycling 

InfoCrank power meter showed similar mean deviation (trueness) to a mathematical model of 

treadmill cycling and CV (precision) compared with the golden standard: the SRM power meter 

(i.e. trueness = −1.7 ± 1.1 vs. −0.5% ± 2.4%; precision = 0.6 ± 0.4 vs. 0.8% ± 0.4%, 

respectively).162 These small measurement errors might have resulted in the variability found 

in this study. Furthermore, methodological variability in this study could have arisen from the 

environmental conditions and mathematical modelling. Within this study, tests were conducted 

outdoors, whereas previous studies utilising this model to calculate CdA have used the 

mathematic model and field test in velodromes.27 Regardless, no differences in environmental 

conditions between the 2 days were observed in this study. Furthermore, the mathematical 

model and field test have previously been validated.27 In this study, the greatest biological 

variability would likely have been the ability of the participant to either maintain the required 

position or an even velocity over the entire 250-m test section. Although both cycling velocity 

variability and the analysis of the screenshots from the videos did not show a difference between 

the 2 days, it is plausible that minor fluctuations in velocity and position occurred, which might 

have influenced the outcomes of this study. In addition, a single camera next to the 250-m test 

section might not have been sufficient to identify these small fluctuations. Regardless of this, 

this study was still able to identify differences between the forward standing and both the seated 
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and standing positions, highlighting the large effect that the forward standing position has on 

CdA. To reduce biological variability, only well-trained cyclists were recruited in this study. 

Furthermore, to ensure that the participants were able to maintain the required position over the 

test section, the participants performed 1 week of training and 1 familiarisation session. In this 

study, 2 participants were not able to maintain the requested positions and were excluded from 

this study after the familiarisation session. It is plausible that this familiarisation was not 

sufficient,176-178 and more practice is needed before adopting the forward standing position for 

performance. Future research should examine the influence of training on the consistency of 

adopting such abnormal sprint positions. Other factors that might have led to these exclusions 

are anthropometric characteristics, poor balance and coordination, or poor bike-handling skills. 

However, the anthropometric characteristics of the participants in this study suggest that 

cyclists within a wide range in height and weight are able to adopt and may benefit from the 

forward standing position. Further research is needed to identify the effect of additional 

familiarisation or training sessions, differences in anthropometric characteristics, balance and 

coordination, and bike-handling skills on the reliability of this field test to identify CdA in 

different positions. 
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4.6. Practical Applications 

Lowering the torso and head during a road cycling sprint results in a decrease in CdA 

by 23% and 26% when compared with traditional seated and standing positions. This decrease 

in CdA could result in an increase of cycling sprint velocity by approximately 3.9 to 4.9 km·h−1. 

Caution should be taken when testing the CdA of sprint positions in a field test. Future research 

should compare the power production between different positions (i.e. seated, standing, and 

forward standing). 
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4.7. Conclusion 

A novel forward-standing cycling sprint position resulted in 23% and 26% reductions 

in CdA compared with seated and standing positions, respectively. This decrease in CdA could 

result in an increase of approximately 3.9 to 4.9 km·h−1 in cycling sprint velocity. However, 

these results should be interpreted with caution because poor reliability of CdA was observed 

between days. Further research is required to determine factors influencing the poor reliability 

observed. It is plausible that more than 1 week of training and a single familiarisation session 

is required to ensure reliability of CdA in these sprint positions. 
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5. Power Output, Cadence, and Torque are Similar Between the Forward 

Standing and Traditional Sprint Cycling Positions 

5.1. Abstract 

Purpose: Compare power output, cadence, and torque in the seated, standing, and 

forward standing cycling sprint positions. Methods: On three separated occasions (i.e. one for 

each position) 11 recreational male road cyclists performed a 14 s sprint before and directly 

after a high-intensity lead-up. Power output, cadence, and torque were measured during each 

sprint. Results: No significant differences in peak and mean power output were observed 

between the forward standing (1125.5 ± 48.5 W and 896.0 ± 32.7 W, respectively) and either 

the seated or standing positions (1042.5 ± 46.8 W and 856.5 ± 29.4 W; 1175.4 ± 44.9 W and 

927.5 ± 28.9 W, respectively). Power output was higher in the standing, compared with the 

seated position. No difference was observed in cadence between positions. At the start of the 

sprint before the lead-up, peak torque was higher in the standing position vs. the forward 

standing position; and peak torque occurred later in the pedal revolution for both the forward 

standing and standing positions when compared with the seated position. At the start of the 

sprint after the lead-up, peak torque occurred later in the forward standing position when 

compared with both the seated and standing position. At the end of the sprint no difference in 

torque was found between the forward standing and standing position either before or after the 

lead-up. Conclusion: Sprinting in the forward standing sprint position does not impair power 

output, cadence, and torque when compared with the seated and standing sprint positions. 

 

Keywords: cyclist, sprinting, fatigue, performance, seated and standing position 
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5.2. Introduction 

The outcome of road cycling races is often decided by a sprint. A growing number of 

studies has examined factors important to successful road cycling sprinting.3,6,7,14,21,33,170 From 

current research it appears that to be competitive in a sprint, cyclists are required to produce 

high peak power outputs (e.g. male: 13.9-20.0 W·kg-1;7 989-1443 W3,7 and female: 10.8-16.2 

W·kg-1;22 716-1088 W22) over durations of approximately 9 to 17 s in males3,7 and 10 to 30 s 

in females.22 However, studies have also shown that peak power output is not the only important 

factor to success.14 A cyclist’s velocity is likely to be an important factor in the outcome of road 

cycling sprints. Cycling velocity is the result of power output, CdA, road characteristics, and 

environmental variables.27 CdA plays a very important role in cycling, but has been overlooked 

for years, particularly within the sprint. Over the past decade things have changed in both the 

field (e.g. cyclists started adopting an aerodynamic position and wearing aerodynamic clothing) 

and academia.33,170    

 In a recent study33 and Chapter 4170 it was found that adopting a lower and further 

forward position on the bicycle during a standing sprint (forward standing position) resulted in 

a 23-26% reduction in CdA compared with a seated and a standing sprint. Chapter 4170 showed 

that adopting the forward standing position might result in an increase of up to approximately 

1.4 m·s-1 (5 km·h-1) when cyclists are able to produce the same power output in each mentioned 

position. While the forward standing position was more aerodynamic33,170 it is plausible that 

changes in body position may influence the movement kinetics compromising effective pedal 

forces. From studies in endurance and uphill cycling it is known that the body position is 

different between a seated and a standing position due to a loss in saddle support and an increase 

in lateral sway.115 Compared with a seated position, in the standing position the centre of gravity 

is shifted further forward116 which increased the degrees of freedom due to an increase in hip 

angle.112 This altered muscle recruitment patterns, and it increased muscle activation in both 
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upper and lower body muscles.37,112,117,118 As a result of this, cyclists can produce higher power 

outputs in the standing position when compared with a seated position in both endurance/uphill 

cycling40,114,118 and sprinting.39,41 For example,  greater mean power output was observed during 

8 s sprints in a standing position, compared with a seated position in both recreational (966.7 

vs. 867.0 W, respectively) and elite cyclo-cross cyclists (1010.5 vs. 891.8 W, respectively).39 

Likewise, Reiser and colleagues41 showed that a standing position during a 30 s Wingate test 

resulted in a higher peak and mean power output compared with a seated position (19.4 and 

11.0 W·kg-1 vs. 17.9 and 10.4 W·kg-1, respectively). By adopting the forward standing position, 

the centre of gravity is shifted further forward and lower when compared with the standing 

position. Moving forward would result in a greater hip angle. However, lowering the torso by 

flexing the arms would most likely reduce this angle. Additionally, lowering the torso might 

negatively affect the lateral sway and therefore power output. Hence, it is hypothesised that 

cyclists can produce more power output in the forward standing position compared with the 

seated position but lower when compared with the standing position.  

 Cycling power output can be calculated from angular velocity (calculated from 

cadence), torque, and crank arm length.179 During road cycling races and training, crank arm 

length can be considered as a constant and it has therefore no effect on sprint 

performance.142,147,148,180-182 Two studies have shown a higher peak and mean cadence in the 

standing position when compared with the seated position during 841 (i.e. 4.7 and 5.0%, 

respectively) and 30 s39 sprints (recreational 3.9 and 5.5%, and elite 3.7 and 3.4, respectively). 

Until today it is unclear what the effect of cycling sprint position is on torque production and 

distribution. To the best of our knowledge only two studies have examined the effect on torque 

during seated versus standing endurance/uphill cycling.116,118 Both Chen and colleagues118 and 

Caldwell and colleagues116 showed higher torque values in the standing position compared with 

the seated position during 2 min trials at 50 rpm and 10 min trials at 80% of maximal oxygen 
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consumption. Additionally, Caldwell and colleagues116 showed that peak torque occurred later 

during the pedal revolution in the standing position when compared with the seated position. 

The forward standing position has shown to improve aerodynamics compared with both 

the seated and standing sprint position. However, to the best of our knowledge no study has yet 

examined the power output cyclists can produce within the forward standing position. 

Therefore, the aim of this study was to assess the influence of different road cycling sprint 

positions on power output, cadence, and torque. 
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5.3. Methods 

5.3.1. Participants 

Eleven recreational male road cyclists participated in this study (mean ± SD: age, 41 ± 

7 y; height, 176.5 ± 7.1 cm; weight, 83.1 ± 8.1 kg; V̇O2max, 54.5 ± 5.2 mL·kg-1·min-1; MAP, 

375 ± 12 W; maximal heart rate (HRmax), 172 ± 3.0 bpm). At the time of the study the 

participants were riding 5 ± 2 times per week and for 8 ± 2 hours per week and were classifiable 

as performance level 3 or higher, as per de Pauw and colleagues.19 Prior to data collection, the 

subjects provided written informed consent in accordance with the ECU Human Research 

Ethics Committee. All participants were asked to avoid strenuous exercise and refrained from 

the consumption of caffeine 24 hours prior to testing. 

 

5.3.2. Experimental Design 

The participants visited the laboratory on four separate occasions. During the first visit 

they completed an incremental cycling test followed by a familiarisation session. The 

participants were instructed to practice the three different sprint positions (Figure 1.1) for the 

following week during their own regular training rides. On three separate occasions the 

participants then performed three experimental trials (each of the three sprint positions) 

following an incremental high-intensity protocol as described by Menaspà and colleagues.21 

The three experimental trials were conducted in a randomised cross over fashion, separated by 

two days and completed in ten days. 

 

Incremental Cycling Test 

An incremental cycling test was performed at a self-selected cadence (>60 rpm) on a 

Velotron cycle ergometer (RacerMate Inc., Seattle, USA). The test started with a 6 min warm-

up at 70 W after which power output increased by 35 W each minute until exhaustion. The test 
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was terminated when the cadence dropped below 60 rpm. The participants had to remain seated 

during the full duration of the incremental cycling test. Heart rate was measured using a Polar 

heart rate monitor (Polar Electro, Kempele, Finland) at a frequency of 1 Hz. Gas exchange was 

measured every five seconds using a metabolic cart (Parvo Medics, Sandy, USA).183 The 

metabolic cart was calibrated as per manufacture’s guidelines before each test. V̇O2max was 

defined as the highest oxygen uptake recorded over a 30 s average. HRmax was determined as 

the highest heart rate during the test. Maximal aerobic power at V̇O2max (MAP) was calculated 

using Equation (5.1):12 

𝑃𝑃𝑂 =  𝑃𝑂𝑓𝑖𝑛𝑎𝑙 + 
𝑡

𝑇𝑖∗𝑃𝑂
       (Equation 5.1) 

in which 𝑃𝑂𝑓𝑖𝑛𝑎𝑙 is the power output of the last completed stage in W; 𝑡 is the time spent in the 

final (uncompleted) stage in s (< 60 s); 𝑇𝑖 is the time of the stage duration in s (i.e. 60 s); and 𝑃𝑂 

is the power output increment in W (i.e. 35 W). MAP was used to quantify intensity of the 

familiarisation and experimental sessions (described below). 

 

Familiarisation Session 

Fifteen minutes after completing the incremental cycling test, participants were 

familiarised with the incremental high-intensity protocol, as described by Menaspà and 

colleagues21 (outlined below). 

 

Experimental Sessions 

During each of the three experimental sessions, participants completed a 10 min warm-

up at 50% of MAP, followed by 3 min of rest (30% of MAP). Participants then performed a 

maximal 14 s sprint (PRE) in one of three sprint positions (i.e. seated, standing, and forward 

standing; Figure 1.1). The 14 s sprint was used to replicate the sprint duration observed in 

professional male road cycling sprints.3,6 The participants were asked to perform the 14 s sprint 
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maximally, as if sprinting for a road race victory. Following the sprint, the participants then 

performed 10 min of incremental high-intensity cycling (lead-up) immediately followed by a 

final 14 s sprint in the same position (POST). The intensity of the 10 min lead-up effort was 

progressively increased (during familiarisation: 0 until 5th min: 50% of MAP; 6th until 9th min: 

65% of MAP; 10th min: 80% of MAP; and during experimental sessions: 0 until 5th min: 55% 

of MAP; 6th until 9th min: 70% of MAP; 10th min: 90% of MAP) to simulate the demands 

observed in the final 10 min of road races ending in a sprint.6  

All experimental sessions were performed on an SRM ergometer (Schoberer Rad 

Messtechnik, Jülich, Germany) with the saddle height and setback adjusted to replicate the 

participants own bicycle. During the sprints, the ergometer was set to the ‘open ended’ setting 

and at gear 13 of the Rohloff gearing system and to the ‘hyperbolic’ setting during the lead-up. 

The ergometer was equipped with a multi length scientific SRM crank set power meter 

incorporating eight strain gauges (Schoberer Rad Messtechnik, Jülich, Germany).163 Crank arm 

length was the same for each experimental session (i.e. 172.5 mm), since crank arm length can 

affect power output.142,147,148,180-182  

Throughout the sprints an SRM power meter (Schoberer Rad Messtechnik, Jülich, 

Germany) measured torque at 200 Hz and calculated cadence once per pedal revolution. This 

data was then converted to power output by a PowerControl IV head unit (Schoberer Rad 

Messtechnik, Jülich, Germany) and send to SRMWin software (Schoberer Rad Messtechnik, 

Jülich, Germany). The SRMWin software recorded power output and cadence at 2 Hz. The zero 

offset of the SRM ergometer was checked before each test session as per manufacturer 

guidelines.163 For all sprints peak and mean power output were calculated. Peak power output 

was calculated as the highest power for one complete revolution and mean power output was 

calculated as the average power output for the complete 14 s.  
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During the sprints torque and crank angle were measured with an SRM Torque Analysis 

System (Schoberer Rad Messtechnik, Jülich, Germany) and sampled per crank revolution at 

200 Hz. The SRM Torque Analysis software exports data as a frequency signal. This frequency 

was converted in Excel (Microsoft Corporation, Redmond, USA) to torque data based on the 

SRM power meter calibration (slope) and the zero offset (Equation 5.2): 

𝑇𝑜𝑟𝑞𝑢𝑒 =  
𝑓 − Z𝑒𝑟𝑜 𝑜𝑓𝑓𝑠𝑒𝑡

𝑆𝑙𝑜𝑝𝑒
       (Equation 5.2) 

in which Torque is in Nm, 𝑓 is the exported frequency, zero offset is the zero offset value 

determined before every session, and slope is the calibration factor of the SRM power meter 

(i.e. 30.1). After this, torque data was converted using linear interpolation to synchronise the 

number of samples for each pedal revolution. All torque data was then averaged over five 

completed pedal revolutions starting at the 3rd pedal revolution after the start of the sprint 

(STARTTorque) and the last five completed pedal revolutions of the sprint (ENDTorque). Peak and 

mean torque were defined as the highest and the average toque during the averaged five pedal 

revolutions (Figure 5.1). Furthermore, torque at a crank angle of 0, 45, 90, 135, and 180 were 

calculated. Additionally, crank angle at peak torque was determined for each sprint.  

A high definition camera (Sony, Tokyo, Japan) was placed to film the participant’s left 

sagittal plane at 25 Hz. Screenshots were taken at approximately 3 (STARTVideo) and 11 s 

(ENDVideo) after the start of sprint when the left pedal was at bottom dead centre. The 

screenshots were exported to Adobe Illustrator (Adobe Systems, San Jose, USA). In this 

software, the height of the horizontal saddle adjusting stem of the SRM ergometer was 

standardized at 20 pt (Figure 5.2). After which the distance was determined between the 

participant’s chest and the top of the SRM logo (vertical) and between the participant’s shoulder 

and the corner in the ergometer’s frame (horizontal). This data was determined for three full 

pedal revolutions of the PRE and POST sprints.  
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After each sprint, rating of effort was given by the participants on a Category Ratio scale 

by answering the question: ‘How much did you give?’184 Directly after each session, participants 

were asked to rate the intensity of the sessions using the 6-20 rate of perceived exertion scale 

(RPE).185 The participants were familiarized with these scales during the familiarisation 

session.  

 

5.3.3. Statistical Analysis 

Based on previous reported power output data39 it was calculated that a minimum of 9 

individuals was required with alpha level at 0.05 to achieve statistical power of 0.8 (GPOWER, 

Bonn, Germany). The vertical and horizontal distances found in the screenshots were analysed 

using multiple two-way ANOVA to identify differences between the standing and forward 

standing position at the STARTVideo and ENDVideo of the sprint, and between PRE and POST. 

Peak and mean power output, peak and mean cadence, and rating of effort were compared 

between sprint positions (i.e. seated, standing, and forward standing) and between PRE and 

POST sprints using multiple two-way ANOVAs. When a main effect of position was found, 

pairwise comparisons using Bonferroni’s corrections were performed. Additional one-way 

ANOVAs were performed to identify differences in position between sprints. Peak and mean 

torque; torque at a crank angle of 0, 45, 90, 135, and 180; and crank angle at peak torque were 

compared between sprint positions (i.e. seated, standing, and forward standing) and at the 

STARTTorque and ENDTorque of the sprint, and between PRE and POST using multiple two-way 

ANOVAs. When a significant main or interaction effect was found, additional one-way 

ANOVAs were performed to identify differences in position per start and end of the sprint or 

between sprints and paired sample t tests to identify differences between STARTTorque and 

ENDTorque or PRE and POST per position. RPE was compared between experimental sessions 

(i.e. seated, standing, and forward standing) using a one-way ANOVA. The level of significance 
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was set at P ≤ 0.05 for all tests. η𝑝
2  effect sizes were reported when appropriate. The magnitudes 

of these effect sizes were classified as trivial (0–0.19), small (0.20–0.49), moderate (0.50–0.79) 

and large (0.80 and greater) using the scale advocated by Cohen.186 All statistical analyses were 

completed using SPSS (IMB SPSS Inc. Statistics, Chicago, USA). 

  

 

Figure 5.1 — Peak and mean torque, and crank angle at peak torque calculations. 
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Figure 5.2 — Video analysis overview  

(1) vertical; (2) horizontal; (A) shoulder; (B) chest; (C) top of SRM logo; (D) corner in the 

ergometer’s frame; (E) calibration distance (i.e. 20 pt). 
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5.4. Results 

The video analysis showed that the torso was lower, and the shoulder was further 

forward in the forward standing position compared with the standing position at the STARTVideo 

and ENDVideo of the sprint and during the PRE and POST sprint (P < 0.001). Furthermore, at 

PRE a main effect was observed in vertical position for STARTVideo vs. ENDVideo (P = 0.025). 

Pairwise comparisons showed that the torso was further up at STARTVideo when compared with 

ENDVideo during a standing sprint. No other differences in both vertical and horizontal direction 

were found between STARTVideo and ENDVideo, and PRE and POST. 

Significant main effects were observed in peak (F2,20 = 11.338; P = 0.001; η𝑝
2  = 0.53) 

and mean power output (F2,20 = 6.007; P = 0.009; η𝑝
2  = 0.375) between sprint position (Figure 

5.3). Pairwise comparisons showed that the participants produced a higher peak and mean 

power output (average PRE and POST) in a standing position, when compared with the seated 

position. The peak and mean power output in the forward standing position was not 

significantly different from either the seated or standing position. No significant main effect 

was observed in peak and mean cadence, and rate of effort between positions (F2,20 = 2.287; P 

= 0.127; η𝑝
2  = 0.186, F2,20 = 0.525; P = 0.600; η𝑝

2  = 0.050, and F2,20 = 0.317; P = 0.732; η𝑝
2  = 

0.031, respectively). Higher peak and mean power output, and higher peak and mean cadences 

were observed during PRE when compared with POST (F1,10 = 71.227; P < 0.001; η𝑝
2  = 0.877, 

F1,10 = 25.250; P = 0.001; η𝑝
2  = 0.716, F1,10 = 104.982; P < 0.001; η𝑝

2  = 0.913, and F1,10 = 33.936; 

P < 0.001; η𝑝
2  = 0.772, respectively). 

At STARTTorque a main effect was found for peak and mean torque; torque at a crank 

angle of 0, 45, 90, 135, and 180; and crank angle at peak torque between positions (P ≤ 0.05) 

(Table 5.1). Furthermore, a main effect was found for mean torque; and torque at a crank angle 

of 0, 45, 90, 135, and 180 between PRE and POST (P ≤ 0.05). An interaction effect was found 

for peak torque; and torque at a crank angle of 45 and 135 between positions and between PRE 
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and POST (P ≤ 0.05). At ENDTorque a main effect was found for torque at a crank angle of 0, 

45, 90, and 180 between positions (P ≤ 0.05). Furthermore, a main effect was found for peak 

and mean torque; and torque at a crank angle of 90 and 135 between PRE and POST (P ≤ 

0.05). An interaction effect was found for peak and mean torque; and torque at a crank angle of 

0, 90, 135, and 180 between positions and between PRE and POST (P ≤ 0.05). 

During PRE a main effect was observed for peak torque; torque at a crank angle of 0, 

45, 90, 135, and 180; and crank angle at peak torque between positions (P ≤ 0.05). 

Furthermore, a main effect was observed for peak and mean torque; torque at a crank angle of 

0, 45, 90, 135, and 180; and crank angle at peak torque between STARTTorque and ENDTorque 

(P ≤ 0.05). An interaction effect was observed for peak and mean torque; torque at a crank angle 

of 0, 45, 135, and 180; and crank angle at peak torque between positions and between 

STARTTorque and ENDTorque (P ≤ 0.05). During POST a main effect was observed for peak and 

mean torque; and torque at a crank angle of 0, 45, 135, and 180 between positions (P ≤ 0.05). 

Furthermore, a main effect was found for peak and mean torque; and torque at a crank angle of 

90 and 135 between STARTTorque and ENDTorque (P ≤ 0.05). An interaction effect was found 

for peak and mean torque; and torque at a crank angle of 0, 45, 135, and 180 between positions 

and between STARTTorque and ENDTorque (P ≤ 0.05). 

Rating of effort was significant higher during POST when compared with PRE (F1,10 = 

23.502; P = 0.001; η𝑝
2  = 0.702) but was not different between positions (F2,20 = 0.385; P = 

0.691; η𝑝
2  = 0.079). No significant difference was found for RPE (F2,20 = 0.595; P = 0.561; η𝑝

2  

= 0.056). 
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Figure 5.3 — Power output, cadence, and rating of effort differences between sprint positions 

before and after 10 min lead-up  

(A) Peak power output (W); (B) mean power output (W); (C) peak cadence (rpm); (D) mean 

cadence (rpm); (E) rating of effort; * = P ≤ 0.05 vs. standing; † = P ≤ 0.05 vs. forward standing. 



85 

 

 

  

Table 5.1 — Torque differences between sprint positions at STARTTorque and ENDTorque during PRE and POST (Mean ± SD) 
 

PRE STARTTorque  ENDTorque 
 Seated Standing Forward standing η𝑝

2   Seated Standing Forward standing η𝑝
2  

PT (Nm) 119.7 ± 16.3 133.9 ± 20.9† 124.6 ± 18.4* 0.348  63.5 ± 8.8¥ 62.9 ± 12.0¥ 59.8 ± 7.3¥ 0.087 

MT (Nm) 79.2 ± 10.5 86.39 ± 14.2 81.0 ± 13.2 0.248  44.4 ± 5.3¥ 40.3 ± 8.7¥ 39.8 ± 6.5¥ 0.220 

T at 0° (Nm) 40.2 ± 8.9*† 56.0 ± 14.8 61.4 ± 17.5 0.696  39.2 ± 8.3 42.1 ± 7.5¥ 43.7 ± 10.0¥ 0.210 

T at 45° (Nm) 65.2 ± 17.3*† 45.0 ± 11.3† 38.0 ± 8.6* 0.771  24.7 ± 7.6*¥ 15.5 ± 9.2¥ 17.6 ± 7.7¥ 0.391 

T at 90° (Nm) 115.1 ± 17.3† 115.2 ± 19.7† 102.4 ± 18.3* 0.343  54.7 ± 10.5*†¥ 43.8 ± 14.4¥ 41.5 ± 10.2¥ 0.472 

T at 135° (Nm) 97.9 ± 14.6*† 127.6 ± 21.0 121.1 ± 17.9 0.640  60.5 ± 7.5¥ 60.4 ± 13.2¥ 58.5 ± 6.9¥ 0.027 

T at 180° (Nm) 39.6 ± 9.0*† 56.0 ± 17.3† 61.7 ± 18.6* 0.734  36.0 ± 8.0¥ 42.1 ± 10.3¥ 39.6 ± 10.4¥ 0.347 

Crank angle at PT (°) 104.0 ± 11.0*† 120.6 ± 9.6 125.0 ± 7.7 0.849  128.0 ± 18.6¥ 136.4 ± 22.0¥ 127.0 ± 8.3 0.135 

                      

POST   STARTTorque   ENDTorque  

 Seated Standing Forward standing η𝑝
2   Seated Standing Forward standing η𝑝

2  

PT (Nm) 105.6 ± 15.8*$ 124.9 ± 16.8$ 122.5 ± 19.0 0.453  67.9 ± 8.7¥ 76.0 ± 14.0¥$ 74.9 ± 11.5¥$ 0.252 
MT (Nm) 67.6 ± 10.3*$ 77.2 ± 9.8$ 75.3 ± 12.6 0.420  45.0 ± 4.4¥ 47.9 ± 6.3¥$ 47.5 ± 6.5¥$ 0.130 

T at 0° (Nm) 32.2 ± 7.8*†$ 48.4 ± 12.1†$ 54.8 ± 13.8* 0.850  33.6 ± 6.7*†$ 46.0 ± 6.7$ 46.7 ± 9.9¥ 0.650 

T at 45° (Nm) 51.9 ± 14.5*†$ 37.2 ± 10.1†$ 32.8 ± 8.3* 0.751  23.7 ± 8.2¥ 16.0 ± 7.2¥ 17.0 ± 5.5¥ 0.383 

T at 90° (Nm) 101.4 ± 14.8$ 100.5 ± 16.6$ 92.0 ± 19.5 0.246  59.9 ± 8.9¥$ 56.0 ± 12.6¥$ 54.6 ± 10.0¥$ 0.143 

T at 135° (Nm) 85.6 ± 16.2*†$ 120.6 ± 15.5 120.2 ± 18.5 0.761  63.0 ± 8.8†¥ 74.6 ± 14.2¥$ 73.7 ± 11.9¥$ 0.415 

T at 180° (Nm) 31.6 ± 8.1*†$ 49.9 ± 13.7†$ 56.5 ± 15.9* 0.876  32.0 ± 6.2*†$ 43.8 ± 7.9 45.0 ± 10.2¥$ 0.714 

Crank angle at PT (°) 103.7 ± 9.0*† 124.1 ± 8.4† 128.5 ± 8.4* 0.904  117.2 ± 14.4 126.8 ± 8.6 117.2 ± 39.6 0.043 

                      

PT = peak torque; MT = mean torque; T = torque. 

* = p ≤ 0.05 vs. Standing; † = p ≤ 0.05 vs. Forward standing; ¥ = p ≤ 0.05 vs. STARTTorque; $ = p ≤ 0.05 vs. PRE; η𝑝
2  = partial eta squared. 
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5.5. Discussion 

The aim of this study was to compare power output, cadence, and torque between 

different road cycling sprint positions. To the best of our knowledge, this is the first study 

assessing the power output, cadence, and torque in the forward standing position. No significant 

differences in power output were found in the current study between the forward standing and 

either the seated or standing position. Additionally, this study showed that cyclists can produce 

a higher peak and mean power output in a standing position when compared with the seated 

position. Higher peak and mean power outputs were observed during the 14 s sprints before the 

10 min lead-up (PRE) compared with the sprint after the lead-up (POST). Furthermore, no 

difference was observed in peak and mean cadence between sprint positions. Peak torque was 

higher in the standing position, when compared with the forward standing position at start of 

the sprint (START) during PRE. At START during POST both peak and mean torque were 

higher in the standing position compared with a seated position. No other differences were 

found in peak and mean torque between positions at both START and end of the sprint (END). 

It was observed that the torque distribution during the pedal revolution differed between all 

three positions, when compared between positions at START (e.g. Figure 5.4). At END the 

seated position still showed differences in torque distribution when compared with both the 

standing and forward standing position. However, no differences between the standing and 

forward standing position were observed in torque distribution. Additionally, peak torque was 

reached later during the pedal revolution for both the standing and the forward standing position 

when compared with the seated position. No other differences in crank angle at peak torque 

were observed between positions. 

 Applying a mathematical model to our power output results and using previously 

reported data, a cumulative weight of the bicycle and cyclist of 80 kg; road gradient of 0%; 

wind velocity parallel to the cyclist of 0 m·s-1; average air density (𝜌 = 1.175);170 a CdA of 
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0.363, 0.372, and 0.295170 and a power output of 597-1035, 747-1135, and 671-1149 W for 

seated, standing and forward standing position, respectively, would result in an increase of 

cycling velocity of approximately 1.6-1.8 (5.6-6.5 km·h-1) and 0.6-1.4 m·s-1 (2.1-5.1 km·h-1) in 

the forward standing position compared with the seated and standing position, respectively.26 

This could be a decisive improvement in velocity given that road cycling races can be decided 

by very small margins.  

 It was hypothesised that cyclists would be able to produce higher power outputs in the 

forward standing position when compared with the seated position. Indeed, this study and 

previous research39,41 have shown that cyclists are able to produce higher power outputs in a 

standing position when compared with a seated position. The lack of statistical difference in 

power output between the forward standing and the seated positions observed in this study is 

likely to be due to the low and forward torso position in the forward standing position. The low 

and further forward position could have limited the transfer of power across the hip (a reason 

why more power output is produced in the standing position when compared with the seated 

position119) and increased muscle activation in the upper body due to the shift of weight further 

forward and therefore lowered power output. How the forward standing position affects joint 

specific kinetics and kinematics, and muscle activation was not analysed in the current study 

and could be a subject for future research. An alternative explanation could be that the 

participants in the current study were less experienced in this new forward sprint position, when 

compared with the seated and standing position, and therefore not able to produce maximal 

power output during the sprint in the forward standing position. To ensure that the participants 

were able to maintain the required position during the 14 s sprint the participants performed, 

one week of training (unsupervised) and one familiarisation session. Yet it is still plausible that 

this familiarisation was not sufficient to learn how to sprint and produce maximal power output 

in this position,176-178 and that more practice is needed. Future research should examine the 
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influence of training on the consistency of adopting such non-regular sprint positions. Other 

factors which might affect sprint performance in the forward standing position are 

anthropometric characteristics, poor balance and coordination, poor cycling handling skills, or 

bicycle setup. Regardless, the anthropometric characteristics of the participants in the current 

study suggests that cyclists within a wide range in height and weight are able to adopt the 

forward standing position. However, since the experimental sessions were performed on a 

heavy SRM ergometer the sprints performed in the current study were not limited by the 

participant’s balance and/or bicycle handling skills. It is plausible that the relatively new 

forward standing position requires more balance and cycling handling skills than the regular 

standing position because of the change in centre of gravity and new motor skill and may be an 

avenue of future research. Changing bicycle setup to optimise sprint performance in the forward 

standing position might negatively influence cycling efficiency and therefore overall cycling 

performance.  

The current study showed that cyclists can produce a higher peak and mean power 

output in a standing position when compared with the seated position. This is in line with 

previous studies.39,41 Bertucci and colleagues39 found that greater mean power output was 

produced during 8 s sprints in a standing position, compared with a seated position in both 

recreational (966.7 vs. 867.0 W, respectively) and elite cyclo-cross cyclists (1010.5 vs. 891.8 

W, respectively). Furthermore, Reiser and colleagues41 showed that a standing position during 

a 30 s Wingate test resulted in a higher peak and mean power output compared with a seated 

position in 12 recreational cyclists (19.4 and 11.0 W·kg-1 vs. 17.9 and 10.4 W·kg-1, 

respectively). Changing from a seated to a standing position alters recruitment patterns, and it 

increases muscle activation in both upper and lower body muscles.37,112,117,118 For example, Li 

and colleagues112 showed an increase in EMG magnitude of the rectus femoris, gluteus 

maximus, and the tibialis anterior in the standing position. Furthermore, the gluteus maximus, 
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rectus femoris, and vastus lateralis were longer activated during the pedal stroke. Additionally, 

Duc and colleagues37 found higher  intensities and durations in muscle activity of the gluteus 

maximus, vastus medialis, rectus femoris, biceps femoris, and biceps brachii in the standing 

position while semimembranosus activity showed a slight decrease. These studies have been 

conducted in endurance and uphill cycling.  

To the best of the authors’ knowledge this is the first study to analyse the effect of sprint 

position on torque and torque distribution. A previous study has examined the effect on torque 

during seated versus standing endurance/uphill cycling.118 At the start of the 14 s sprint 

(START) after the 10 min lead-up (POST) both peak and mean torque were higher in the 

standing position compared with a seated position. This can be explained by the higher 

magnitude and longer muscle activation37,112,117,118 or the further forward centre of gravity 

providing leverage over the crank arm in the standing position.187 The latter would suggest that 

the torque in the forward standing position would be even higher. However, in the current study 

the opposite was found. Peak torque was higher in the standing position when compared with 

the forward standing position during at START before the 10 min lead-up (PRE). This could 

be an indication that the participants were not completely accustomed to the new forward 

standing position and more training in this position is needed. No other differences were found 

in peak and mean torque between position. Hence, when a cyclist is fatigued (i.e. end of the 

sprint (END)) they produced similar torque in each position.   

It was observed that the torque distribution during the pedal revolution at START 

differed between all three positions (e.g. Figure 5.4). For example, peak torque was reached 

later during the pedal revolution for both the standing and the forward standing position when 

compared with the seated position. The earlier peak torque during the seated position compared 

with the standing and forward standing position is likely due to a greater contribution from hip 

and knee extensors and flexors. Indeed, previous studies in endurance/uphill cycling have 
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shown that the rectus femoris, gluteus maximus, vastus lateralis and medialis and biceps 

femoris shown higher EMG magnitude.37,112 The results in the current study also showed a 

higher torque at the beginning but lower at the end of the pedal stroke in the standing position 

compared with the forward standing position at START. This could be explained by the forward 

shift in the forward standing position which resulted in a later torque production. At END the 

seated position still showed differences in torque distribution during the pedal revolution when 

compared with both the standing and forward standing position, but no more differences were 

found between the standing and forward standing position. An explanation could be the lower 

torso at END when compared with START as shown in the video during the standing sprint. 

However, there was still a significant difference in vertical position between the standing and 

forward standing position at END.  

Peak and mean cadence did not change with cycling sprint position in the current study 

(i.e. 1.9 and 1.0%, respectively.). This is in contradiction with the studies of Reiser and 

colleagues41 (i.e. 4.7 and 5.0%, respectively) and Bertucci and colleagues39 (recreational 3.9 

and 5.5%, and elite 3.7 and 3.4, respectively). In both these studies resistance applied to the 

bicycle/ergometer was based on the cyclist’s body mass. In the current study the resistance was 

set to gear 13 on the Rohloff gearing system of the SRM ergometer. This might have limited 

the cyclist’s ability to optimise their cadence and therefore their maximal power output. Future 

research could examine optimal cadence and maximal power output over a range of different 

resistances in the studied positions. 

Despite a higher rate of effort during POST a lower peak and mean power output was 

observed when compared with PRE. This indicates that the 10 min lead-up induced fatigue 

during the POST sprint which can also be seen in the lower cadence during POST. This is 

inconsistent with the finding of Menaspà and colleagues21 who observed no differences in 12 s 

sprint performance before vs. after a 10 min lead-up. An explanation for this inconsistency 
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could be the level of cyclists. In the current study the cyclists were classifiable as level 3 or 

higher as per De Pauw and colleagues19 while Menaspà and colleagues21 tested professional 

cyclists in level 5. In the study of Etxebarria and colleagues71, well-trained cyclists performed 

a 30 s sprint before and after 1 h of cycling. A slight decrease in peak and mean power output, 

and peak cadence (0.5±6.4, 0.3±5.4, and 0.1±10.7%, respectively) was observed after 1 h of 

cycling at a constant power output. Additionally, the study showed a higher decrease in peak 

and mean power output, and peak cadence (5.6±7.3, 6.1±8.6, and 4.1±10.8, respectively) after 

1 h of cycling with variable power outputs.71 What the effect on sprint performance is of the 

full length of a cycling race (up to ~7 hours) is unclear. 

  

 

 

 

  

 

Figure 5.4 — Example of torque distribution for each sprint position 
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5.6. Practical Applications 

Sprinting in the forward standing sprint position has previously shown its aerodynamic 

benefits when compared with more regular seated and standing sprint positions.33,170 This 

research has shown that it does not impair power output, cadence, and torque when compared 

with the seated and standing sprint positions. This combination of equal power output 

production and aerodynamic benefits can result in an improvement of cycling velocity by 1.6-

1.8 (5.6-6.5 km·h-1) and 0.6-1.4 m·s-1 (2.1-5.1 km·h-1) when compared with the seated and 

standing sprint position, respectively. This improvement in cycling velocity can be the 

difference between winning and losing a cycling race especially since most sprints are won by 

very small margins. How the results from this laboratory-based study transfers to actual road 

sprints stays unclear. 
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5.7. Conclusion 

In conclusion, this study showed that power output, cadence, and torque are not 

impaired when sprinting in the forward standing sprint position when compared with the seated 

and standing sprint positions. 
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6. The Combination of Video and External Focused Verbal Instructions, 

and Positive Feedback does not Enhance the Training Induced 

Improvement in Forward Standing Sprint Performance 

 

6.1. Abstract 

Purpose: Determine if the provision of visual and external focused verbal instructions, 

and positive feedback would enhance the training effects of two weeks forward standing sprint 

training. Methods: Prior to and after 6 sprint training sessions 28 recreational male road cyclists 

performed a 14 s cycling sprint before and directly after a high-intensity lead-up. Power output, 

cadence, torque, and kinematics (sub-group of 16 participants only) were recorded during each 

sprint. The participants were separated into 2 groups. During the training sessions, one group 

received visual and external focused verbal instructions, and positive feedback, while the other 

group received neutral verbal instructions and feedback. Results: Peak and mean power output, 

and peak torque were significantly greater post-training, when compared with baseline in both 

groups. The combination of the three coaching techniques did not further enhance performance. 

Knee and hip range of motion were higher during post-training when compared with baseline 

in the sub-group. Conclusion: The combination of visual and external focused verbal 

instructions, and positive feedback did not enhance the training effects of two weeks forward 

standing sprint training. 

 

Keywords: cycling, external focus, motor learning, positive feedback, verbal instruction, visual 

instruction 

  



Chapter 6 is not available in this version of the thesis. 
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7. General Discussion 

7.1. Summary and Practical Implications 

Road cycling races are physically demanding events during which sprint ability is a key 

determinant of success. Indeed, most professional races finish in a head-to-head, small group, 

or bunch sprint. Despite the importance of sprinting in road cycling, scientific literature is 

limited to a few studies describing the physical and physiological demands of a road cycling 

sprint and the lead-up phase.2,3,6,7,14,21 Therefore, this PhD thesis focused on improving sprint 

performance in road cycling through improving our understanding of cycling aerodynamics, 

physiology, and coaching techniques. A total of four applied research studies were conducted 

and presented in Chapters 3 to 6. The main findings of this thesis were that: i) when using a 

rolling resistance previously reported in literature,26 the Velocomp PowerPod power meter is a 

valid device to measure power output during a controlled field test but invalid during more 

dynamic training sessions; ii) sprinting in the novel forward standing position results in an 

improvement of CdA by 23% and 26%, when compared with a seated and standing position, 

respectively; iii) sprinting in the forward standing sprint position did not impair power output, 

cadence, and torque, when compared with the seated and standing sprint positions; iv) sprinting 

in the forward standing position might result in an improvement of cycling velocity by 

approximately 5 km·h-1, when compared with more traditional sprint positions; v) the 

combination of visual and external focused verbal instructions, and positive feedback does not 

enhance the training induced improvement in forward standing sprint performance after a two-

week training programme.  

The purpose of Chapter 3 was to determine the validity of the Velocomp PowerPod 

power meter during field cycling tests (study 1) and training (study 2) in comparison with the 

Verve Cycling InfoCrank power meter. Rolling resistance estimated by the Velocomp 

PowerPod was higher than what has been previously reported in literature,26 resulting in an 
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overestimation of power output. Therefore, adjustments were made to the rolling resistance in 

the Isaac software to examine if the power output measured by the Velocomp PowerPod was 

comparable to the Verve Cycling InfoCrank power meter. Both study 1 and 2 showed high 

correlations between the two power meters before and after adjusting rolling resistance. 

Additionally, when applying a rolling resistance previously reported in literature,26 power 

output was similar between the Verve Cycling InfoCrank and Velocomp PowerPod power 

meter in study 1 (−0.57 to 0.24%) but not in study 2 (8.94 to 33.14%). This difference between 

study 1 and 2 could have arisen from a higher variability in drafting, passing traffic, riding 

position, road gradient and type, and wind direction in study 2 when compared with study 1. 

Additionally, using the Velocomp PowerPod power meter during dynamic high intensity, 

training sessions/races might lead to an overall overestimation of training load, as it 

overestimates power output at higher intensities. The Velocomp PowerPod power meter was 

one of the first available devices to calculate power output from opposing resistances (i.e. 

acceleration, air resistance, friction, and road gradient) and is an interesting advancement in the 

measurement of power output during cycling, which may have some additional applications 

like estimating CdA. Indeed, when the Velocomp PowerPod power meter is paired with a direct 

force power meter (e.g. SRM or Verve Cycling InfoCrank) it can estimate CdA. It is for this 

reason that we planned to use this device for the aerodynamic measurements in Chapter 4. 

However, according to the developers of the Velocomp PowerPod power meter the device 

needs at least 8 min of data to give accurate CdA values. Since we tested the Velocomp 

Powerpod power meter for its validity, the company has launched updated versions of the 

device and the newly developed AeroPod that have yet to be tested for their validity to measure 

power output and CdA, respectively. Given the results of Chapter 3 and that updates for the 

Velocomp PowerPod did not exist at the time of data collection of this thesis, the Velocomp 

PowerPod power meter was not used for the CdA measurements in Chapter 4. 
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Chapters 4 and 5 examined the effect of three different road cycling sprint positions on 

overall sprint performance. The main purpose of Chapter 4 was to determine the influence of 

seated, standing, and forward standing sprint positions on CdA. It was found that sprinting in 

the forward standing position results in a 23% and 26% lower CdA, when compared with a 

seated and standing position, respectively. The CdA was calculated from six submaximal 

efforts (i.e. approximately 25, 32, and 40 km·h−1 in two directions) and it is still unknown what 

the CdA would be during a maximal sprint. Measuring aerodynamics during a cycling 

movement is complex and even more so during a maximal effort. This is a limitation in all 

aerodynamic research within cycling. The effect of the three sprint positions on power output, 

cadence, and torque was assessed in Chapter 5. In this Chapter it was found that power output, 

cadence, and torque were similar between the three sprint positions. The results of Chapters 4 

and 5 were used in a mathematical model26 to calculate the potential cycling velocity in each of 

the three sprint positions. The results of similar power output found in Chapter 5 and the 

beneficial aerodynamic effect  found in Chapter 4 were calculated to result in an improvement 

of cycling velocity in the forward standing position of up to approximately 6.5 and 5.0 km·h-1, 

when compared with the seated and standing sprint position, respectively. Throughout the 

average duration of a typical road cycling sprint (i.e. 14 s) this would result in a gain up to 

approximately 25 and 20 m, when compared with the seated and standing sprint position, 

respectively. Since cycling velocity is a critical variable in overall outcome of a cycling sprint 

these results are clearly important in improving success of road cycling sprinters. 

A secondary aim of Chapter 4 was to determine the reproducibility of a field test to 

calculate CdA in the three different positions. No significant difference in CdA was observed 

between the two test days; however, a poor between-day reliability was observed. The poor 

between-day reliability might have arisen from technological (i.e. used equipment), 

methodological (i.e. environmental conditions and mathematical model), or biological 
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variability (i.e. the cyclists ability to keep the position or velocity for 250 m).175 It is most likely 

that the poor between-day reliability has arisen from biological variability since valid and 

reliable equipment was used; there were no differences in environmental conditions observed; 

and the mathematical model has previously been shown to be a valid method to calculate CdA.27 

To reduce biological variability, the participants in Chapter 4 performed one week of 

unsupervised training and one familiarisation session. However, two participants were excluded 

from this research following familiarisation as they were not able to maintain the requested 

positions. Also, in Chapter 5 the participants completed one week of unsupervised training and 

one familiarisation session to learn how to sprint in the three different positions. This chapter 

adds to the body of literature38,40 indicating that cyclists can produce greater power output in 

the standing than the seated position. However, interestingly no difference in power output was 

observed between the seated and forward standing positions. It is plausible that the 

familiarisation was not sufficient to learn how to sprint and produce maximal power output in 

the forward standing position,176-178 and might be the reason why no differences in power output 

were observed between the forward standing and seated position. More practice may be needed 

before adopting the forward standing position for performance.  

Chapter 6 examined if visual and verbal external focus instructions, in combination with 

positive feedback, could enhance forward standing sprint performance, when compared with 

neutral verbal instructions and feedback. The combination of the three coaching techniques did 

not improve forward standing sprint performance, neither did it alter kinematics. However, a 

significant body of the literature has shown that when analysed individually these coaching 

techniques are well known to improve performance, coordination, rate of learning, self-

confidence, perception of competence, and self-efficacy.41-46,187-191,193,194,203-207 This may be 

because, to the best of our knowledge, this was the first study to combine visual and external 

focused instructions, and positive feedback which might have interacted differently, when 
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compared with research analysing these variables individually. Importantly, these variables 

were combined in an attempt to maximise any potential beneficial effects and best replicate real 

world coaching practices, which are not restricted to one form of instruction/feedback. 

Furthermore, we are unaware of other research analysing these three coaching techniques in a 

longitudinal study rather than a cross-sectional design. It is plausible that the acute benefits of 

instructions and feedback on performance observed in prior literature41-46,187-191,193,194,203-207 are 

overshadowed by the training induced changes that both groups experienced in this study. 

Importantly, regardless of instructions and feedback, in this study an improvement in peak 

(~4%) and mean power output (~3%), and peak torque (~5%) was observed following training, 

indicating the intervention may improve sprint performance in the newly adopted forward 

standing sprint position. However, it should be noted that given the study design, we did not 

have a control group that performed no sprint training and so such results should be interpreted 

with caution. However, the improvement in performance is in line with previous short-term 

sprint training studies which have shown improvements in sprint power output.210-212 

Implementing such a short-term training programme before major events/goals during a cycling 

season could potentially result in more wins.  
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7.2. Directions for Future Research 

This thesis outlines some potential new areas of research. Chapter 3 examined the 

validity of the Velocomp PowerPod. To correctly setup the device, coaches and cyclists are 

assumed to have the knowledge about the effect of tyre type, grade, and pressure, and road type 

on rolling resistance and therefore on power output. Measuring these variables in real time 

rather than relying on estimations may drastically improve the accuracy of devices, such as the 

Velocomp PowerPod, and could be an avenue of future research. The Velocomp PowerPod 

power meter may have some additional applications next to estimating power output (i.e. 

estimating CdA). Furthermore, Velocomp has further developed the PowerPod and released 

upgraded versions and a new device to measure CdA, the AeroPod. The validity and reliability 

of these applications, upgraded versions, and the new device have yet to be studied. In Chapter 

4 the effect of three different sprint positions on CdA was analysed. Further research is needed 

to identify the effect of differences in anthropometric characteristics, balance and coordination, 

and bike-handling skills on the reliability of the field test to identify CdA in different positions. 

In Chapter 5 we observed similar power output, torque, and cadence between the three analysed 

sprint positions during laboratory-based sprints. The effect of sprint position on power output, 

torque, and cadence during field-based sprints is still unknown and could be subject for future 

research. Improvements in performance after a short-term training programme were found in 

Chapter 6, however no control group was implemented. Furthermore, the research outlined in 

this thesis did not focus on the underlying mechanisms (i.e. metabolic, perceptual, or 

neuromuscular perturbations) that are responsible for improvements in performance and is an 

important area for future research.   
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7.3. Conclusion 

This thesis has shown the benefits of sprinting in the novel forward standing sprint 

position when compared with more traditional sprint positions. This thesis also examined the 

validity of one of the first opposing force power meters. This thesis concludes the following: 

i) The Velocomp PowerPod power meter is a valid device to measure power output during 

a controlled field test but invalid during more dynamic training sessions (correction of 

rolling resistance is necessary). 

ii) The forward standing sprint position is 23% and 26% more aerodynamic than the seated 

and standing sprint positions, respectively.  

iii) Power output, cadence, and torque are not impaired while sprinting in the forward 

standing sprint position when compared with the seated and standing sprint positions.  

iv) The combination of an improvement in aerodynamics and similar power output, when 

compared with more traditional sprint positions might lead to an improvement of 

cycling velocity by approximately 5 km·h-1.  

v) The combination of visual and external focused verbal instructions, and positive 

feedback does not enhance the training induced improvement in forward standing sprint 

performance after a two-week training programme. 
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9. Appendices 

9.1. Appendix 1 — Science & Cycling 2019 Conference Presentation 

 

The Combination of Visual and External Focused Instructions, and Positive Feedback did 

not Enhance Training-Induced Improvements in Forward Standing Sprint Performance 

Paul F.J. Merkes, Paolo Menaspà, Israel Halperin, Lynne A. Munro, and Chris R. Abbiss 

 

9.1.1. Introduction 

Peak velocity is likely to be an important factor in the outcome of road cycling sprints. 

Cycling velocity is dependent on the balance of power output and resistive forces including, 

CdA, gravity, rolling resistance and mechanical inefficiencies.27 With air resistance known to 

present the greatest resistive force, the trade-off between power output and CdA is a critical 

aspect of cycling. Chapter 4170 and Blocken et al.33 have shown that adopting a forward standing 

cycling sprint position (Figure 1.1C) reduces CdA by approximately 23-26 % when compared 

with a seated and standing position. This reduction in CdA can result in an increase of up to 5 

km·h-1 in sprint cycling velocity.170 However, the impact of the forward standing position on 

the ability to generate power output is currently unclear. Yet, research from our group observed 

poor intra-day reliability in measurements of CdA, possible due to the cyclist’s inability to 

consistently maintain the required position.170 

In the process of learning a new motor skill the instructions and feedback an athlete 

receives from his/her coach are of high importance. When analysed individually visual 

instructions, instructions stimulating an external focus of attention, and positive feedback are 

well known to improve performance, coordination, rate of learning, self-confidence, perception 

of competence, and self-efficacy.42-45,205 Additionally, combining visual and external focused 

verbal instructions with feedback has been shown to have a positive effect on learning.47  
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Appropriate instruction and feedback may, therefore, benefit the cyclist’s ability to maintain 

effective sprinting position and enhance power output during the unaccustomed forward 

standing sprint position. Therefore, the purpose of this study was to determine if the provision 

of visual and external focused instructions, and positive feedback would enhance the training 

effects of short-term (6 sessions) forward standing sprint training sessions, when compared with 

neutral verbal instructions and feedback.   

 

9.1.2. Methods 

Twelve trained amateur male cyclists (mean ± SD: age, 44 ± 9 y; height, 180.8 ± 5.7 

cm; weight, 90.5 ± 8.4 kg; V̇O2max, 50.4 ± 5.8 mL·kg-1·min-1; MAP, 386 ± 27 W; HRmax, 173 

± 9 bpm, performance level 3 or higher19) were divided into two equally matched groups based 

on height and MAP. Both groups performed 2 weeks of sprint training (6 sessions) in the 

forward standing sprint position including 2-3 sets of 2-4 repetitions of maximal effort sprints 

ranging 5-20 s. One group received visual (once at the start of each session) and external 

focused verbal instructions (30 s before each sprint) as well as positive feedback (after each 

completed set) about their cycling sprint position (intervention group). The other group only 

received a neutral verbal instructions and feedback (control group). Prior to (baseline) and 

following training (post-training) both groups performed a high-intensity sprint performance 

protocol. The sprint protocol has been described elsewhere,21 and includes 14 s sprints 

performed both prior to (non-fatigued) and following (fatigued) a 10 min lead-up, from which 

peak and mean power output and cadence were measured. 

 

9.1.3. Results 

No effect of training group on performance was found. An increase in mean power 

output was observed during the non-fatigued sprint during post-training when compared with 
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baseline (P = 0.047; η𝑝
2  = 0.580). Pairwise comparisons revealed an increase in mean power 

output in the control group (1012 ± 128 vs. 1095 ± 121 W) but not in the experimental group 

(1042 ± 157 vs. 1064 ± 227 W; Figure 9.1). No differences were observed in cadence. 

 

 

9.1.4. Discussion 

The combination of visual and external focused instruction, and positive feedback 

within this study did not improve forward standing sprint performance. While some studies in 

elite athletes did not found a difference in performance after external vs. internal focused 

instructions204 and positive vs. neutral and negative feedback,194 most studies however, did 

show an improvement in performance among amateur athletes with visual and external focused 

 

Figure 9.1 — Power output and cadence expressed in percentages versus baseline 

(A) Peak power output (W); (B) mean power output (W); (C) peak cadence (rpm); (D) mean 

cadence (rpm); NF = non-fatigued; F = fatigued; * = P ≤ 0.05 baseline vs. post-training 
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instructions, and positive feedback.42-45,205 It is plausible that the combination of visual and 

external focused instructions, and positive feedback might have interacted differently, when 

compared with research analysing these variables individually. Additionally, in most motor 

learning studies the participants complete a novel task in which they have little to no experience. 

While the forward standing position is a novel task for most cyclists, the participants in the 

current study were familiar with sprinting in a regular standing position. It is also possible that 

the duration of this pilot study was not long enough to induce sufficient learning of the motor 

task. More training sessions may be required to allow for the combined interventions to lead to 

a meaningful learning effect compared with the control group. 

This pilot study showed an improvement in mean power output during 14 s non-fatigued 

sprints is possible after only 2 weeks of sprint training in the forward standing position. 

However, no other improvements in power output or cadence were observed. The 2-week 

training period might not have been long enough to improve these variables. Furthermore, total 

training volume and overall content of the training week was not monitored during this study 

and could have impacted sprint performance. Figure 9.1 shows a significant amount of 

variability between the cyclists. While some cyclists improved after 2 weeks of training (up to 

21.5%) others showed a decrease in performance (up to -14.8%). Greater performance 

inconsistency is also observed in amateurs when compared with elite athletes.217 Although 

power output and cadence were unaffected, it may be that other metrics may be more 

discriminatory, for example CdA and biomechanical variables. This presents opportunity for 

future research. The results might also be underpowered by the small number of participants 

and a power analysis should be conducted prior to future study. 
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Figure 9.2 — Certificate of presentation Science & Cycling conference  
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9.2. Appendix 2 — The Conversation Publication 

 

Your Riding Position Can Give You an Advantage in a Road Cycling Sprint 

Link to the publication 

 

Many professional road cycling events are hundreds of kilometres long, but the final placings 

are often decided by what happens in the last few seconds of any race stage. New research 

shows that a rider can gain up to an extra 5kph advantage in those final sprint seconds, and it 

all depends on how they position themselves on their bicycle. That can be enough to make the 

difference between winning or losing a race.  

 

9.2.1. Race to the Finish 

If you’ve ever watched a professional road cycling event, either live or on television, 

you know they can go on for several days or even weeks. But more than half of the stages during 

the Santos Tour Down Under and the Tour de France, as well as some of the recent World 

Championships, were won in either a head-to-head, small group, or mass sprint finish. The 

average speed during professional road cycling sprints is 63.9kph (53.7-69.1kph) sustained for 

between 9 and 17 seconds for men,7 and 53.8kph (41.6-64kph) for 10-30 seconds for women.2 

During the sprint, men produce peak power outputs between 13.9 and 20.0 Watts per kilogram 

(989-1,443 Watts), and women 10.8-16.2 Watts per kilogram (716-1,088 Watts). But peak 

power output is not the only important factor to win the sprint, with tactics playing a significant 

role.14 Our new research, published this month in the International Journal of Sports Physiology 

and Performance,170 shows that adopting a forward standing position during a sprint could give 

riders a speed boost of up to 5kph. 

 

https://theconversation.com/your-riding-position-can-give-you-an-advantage-in-a-road-cycling-sprint-106539
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9.2.2. The Drag on a Cyclist 

Cycling speed is affected by several factors, including power output, CdA, road 

characteristics, and environmental variables. During the sprint, roughly 95% of the total 

resistive forces working against the rider is caused by aerodynamic resistance. Therefore, it is 

important to reduce aerodynamic drag in road cycling, particularly during the sprint which is 

the fastest activity on the bicycle (with the exclusion of some downhill riding during a race). 

Given that the outcomes of road cycling sprints are often decided by very small margins – in 

one race stage down to just 0.0003 seconds32 – the aerodynamics are meaningful to overall 

sprint performances. Studies on flow dynamics in cycling have shown that lowering the head 

and torso significantly reduces wind resistance.125 That is why several cyclists have, over the 

past few years, begun to adopt a forward standing cycling sprint position. This novel sprint 

position has already shown to be successful at the highest level of professional cycling, in events 

such as the Giro d’Italia and Vuelta a España and in Australia’s biggest road cycling race, the 

Santos Tour Down Under. 

 

9.2.3. Body Position to the Test 

To better understand why this forward standing position may give riders an advantage, 

we compared it with the more traditional seated and standing sprint positions. During the study, 

participants rode 250 metres in two directions at 25kph, 32kph and 40kph and in each of the 

three positions, resulting in a total of 18 efforts per participant. During these efforts we 

measured cycling velocity, power output, road gradient, wind velocity and direction, 

temperature, humidity, and barometric pressure. We then used these variables, together with 

the weight of the cyclist and bicycle, and constants for rolling resistance and the efficiency of 

the drive system, in a mathematical model to calculate the aerodynamic drag. This model has 

previously been shown to give valid measurements compared with a wind tunnel.27 
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9.2.4. The Results are in 

We found the forward standing cycling sprint position resulted in a 23-26% reduction 

in aerodynamic drag compared with a seated and standing position, respectively. This decrease 

in drag could potentially result in an important increase in cycling sprint velocity of 3.9-4.9kph. 

Throughout the average duration of a typical road cycling sprint (about 14 seconds) this would 

result in a gain of 15-19 metres, which is why it could mean the difference between winning 

and losing a race. While this novel position was more aerodynamic, it is plausible that changes 

in body position may influence a rider’s movement kinetics, and therefore increasing or 

decreasing power output. This is currently under investigation in this PhD project. But cyclists 

who want to improve their sprint performance might want to start practising the forward 

standing position. It takes time to learn how to sprint in that position, but you could gain those 

aerodynamic benefits, and potentially win more races. 
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9.3. Appendix 3 — Other Media 

9.3.1. Interview  

An interview with Matt de Neef from CyclingTips.com: Why everyone should be sprinting like 

Caleb Ewan. 

Link to the interview 

 

9.3.2.  Podcast  

A podcast with Jeremiah Peiffer from Science from the Source: Episode#12: Position, 

aerodynamics and sprint speed - Paul Merkes PhDc. 

Link to the podcast 

 

9.3.3. Radio Interview  

A radio interview with Patrick Lodiers and Roelof de Vries from De Proloog on NPO Radio 1 

(Dutch national radio station). 

Link to the radio interview (Dutch only) 

 

9.3.4. Other Mentions 

CyclingTips.com    Link 1 Link 2 

Global Cycling Network podcast Link from minute 16:10 

PEZCyclingNews.com  Link 

SBS.com.au    Link 

https://cyclingtips.com/2019/03/why-everyone-should-be-sprinting-like-caleb-ewan/
https://www.spreaker.com/user/10579494/paulm?autoplay=1
https://www.nporadio1.nl/de-proloog/onderwerpen/507207-proloog-2-dinsdag-9-juli
https://www.nporadio1.nl/de-proloog/onderwerpen/507207-proloog-2-dinsdag-9-juli
https://cyclingtips.com/2019/09/caleb-ewans-sprint-position-is-the-best-so-why-isnt-everyone-using-it/
https://cyclingtips.com/2019/10/confirmed-power-output-isnt-compromised-in-a-super-low-sprint-position/
https://www.youtube.com/watch?v=a02rNl9RIRU&t=971s
https://www.pezcyclingnews.com/toolbox/cycling-sprinting-aerodynamics-how-low-can-you-go-cycle-training-cavendish-ewan/
https://www.sbs.com.au/cyclingcentral/article/2018/11/20/your-riding-position-can-give-you-advantage-road-cycling-sprint-0
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