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Abstract

The high penetration of renewable energy sources (RES), in particular, the rooftop

photovoltaic (PV) systems in power systems, causes rapid ramps in power generation

to supply load during peak-load periods. Residential and commercial buildings have

considerable potential for providing load flexibility by exploiting energy-efficient devices

like ground source heat pump (GSHP). The proper integration of PV systems with the

GSHP could reduce power demand from demand-side. This research provides a practical

attempt to integrate PV systems and GSHPs effectively into buildings and the grid. The

multi-directional approach in this work requires an optimal control strategy to reduce

energy cost and provide an opportunity for power trade-off or feed-in in the electricity

market. In this study, some optimal control models are developed to overcome both

the operational and technical constraints of demand-side management (DSM) and for

optimum integration of RES.

This research focuses on the development of an optimal real-time thermal energy

management system for smart homes to respond to DR for peak-load shifting. The

intention is to manage the operation of a GSHP to produce the desired amount of

thermal energy by controlling the volume and temperature of the stored water in the

thermal energy storage (TES) while optimising the operation of the heat distributors to

control indoor temperature.

This thesis proposes a new framework for optimal sizing design and real-time oper-

ation of energy storage systems in a residential building equipped with a PV system,

heat pump (HP), and thermal and electrical energy storage systems. The results of this

research demonstrate to rooftop PV system owners that investment in combined TSS

and battery can be more profitable as this system can minimise life cycle costs.

This thesis also presents an analysis of the potential impact of residential HP systems

into reserve capacity market. This research presents a business aggregate model for con-

trolling residential HPs (RHPs) of a group of houses that energy aggregators can utilise

to earn capacity credits. A control strategy is proposed based on a dynamic aggregate

RHPs coupled with TES model and predicting trading intervals capacity requirements

through forecasting demand and non-scheduled generation. RHPs coupled with TES

iii



are optimised to provide DSM reserve capacity. A rebound effect reduction method is

proposed that reduces the peak rebound RHPs power.
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ṁGHP Mass water flow rate of GSHP

(l/min).
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Chapter 1

Introduction and Topical

Overview

1.1 Background and Motivation

Environmental and economic considerations are the main motivations for moving

energy generation from fossil fuels towards renewable energy sources. However, there

are some issues to address for integrating new sources in deregulated power systems, such

as flexible loads and demand side management [5]. Recent developments in the field of

controllable devices such as heat pumps (HPs) and electricity market deregulation have

led to a renewed interest in energy efficiency and demand response [6]. DR is a change

in the power consumption patterns by energy consumers in response to price signals

over time or to price incentives [7]. The main goal of DR is to integrate the required

demand to the available energy resource without the need for new generation capacity

[8]. Based on the definition of DR and its aim, HP can be actively managed to match

the intermittent RES to the price of electricity efficiently.

There are two categories for DR programs as price-based (including time-of-use pric-

ing, real-time pricing, critical peak pricing) and incentive-based [9]. In the midst of the

pricing-based strategies, the RTP has considerable potential to address intermittent RE

integration issues [10]. However, the response of customers to these strategies are highly
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unpredictable, and will be largely dependent on customers’ perception of their gains

from these strategies. When they wish to benefit from participating in the price-based

program, they can manipulate the operation of their appliances so that they turn on

during off-peak periods [11]. Therefore, in order to hinder the adverse effect of this issue

on the success of the strategy, an efficient control method is needed.

Some challenges are now being faced in the power systems because of widespread

penetration of the intermittent RES. Electricity generation conventionally would follow

the load. In a system with large RES penetration, a management system is required that

can adjust the demand and/or the generation in response to the intermittency in energy

generation from wind and PV sources [12]. On the other hand, DSM has the highest

potential for changing the patterns of end-use energy consumption and reducing costs

over time. This can be accomplished through load shifting, predictive control strategies,

and flexible loads [13]. The best initiative to reduce the gap between supply and demand

is an optimal integration of controllable devices with RES. This is the main motivating

principle of this research in order to provide experimental solutions to achieve optimal

control, DSM and optimal integration of RES with HPs.

Furthermore, due to the fact that the generation of RES is highly variable and distri-

bution electricity networks face economic and technical challenges to keep power balance

in real-time and scheduled-time operations. Addressing this challenge often needs appli-

cation of additional demand-side flexibility in power systems mainly through ancillary

service provision of electricity end-users. Ancillary services are described as services that

are essential to support the management of power system security and reliability and

transmission of electric power from seller to purchaser in acceptable quality [14]. There

are two groups for this service; 1) first group contains scheduling, system control and dis-

patch, and reactive supply and voltage control, 2) second group includes regulation and

frequency response, energy imbalance, and reserve power. The need for more flexibility

in power systems has resulted in the application of DR programs to distributed energy

storage systems. The residential buildings have been stated as a possible resource for

demand-side flexibility. TES inherent in building structural materials can be accessible

through HVAC, including GSHPs which are coupled to electricity grids. Thereby, the
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ancillary service provision of the residential buildings may have significant potential to

improve power grid stability.

There are some significant issues that should be considered to design an effective en-

ergy management model to to optimally integrate RES with HP. These issues are power

demand prediction, forecast weather condition, and control and state variables. Accord-

ing to high consumption of energy in space heating/cooling and hot water in buildings,

GSHP could highly decrease energy consumption on the demand-side by implementing

an optimal control strategy. GSHP is a very high energy efficiency equipment that brings

appropriate flexibility for grid, in particular when combined with TESs. Furthermore,

GSHP is more efficient than air source heat pump which is used widely in buildings.

The main reason of this excel is consequence of extracting heat from the ground which

is an approximately constant temperature source, warmer than the air in cold seasons

and cooler in hot seasons [15].

The integration of RES such as wind, PV, fuel cell, micro-hydro and storage batteries

into buildings and small communities is encouraging for DSM. However, exploiting novel

technologies in power systems requires intelligent load management to meet increasing

demand and cost function. Subsequently, there is a vital need to develop an optimal

control strategy and integrate RES to realise net-zero energy buildings, cost-effective

billing and positive-energy buildings [16, 17]. The high level control strategy such as

MPC can effectively manage multi-variable dynamic constrained systems and optimi-

sation issue that minimises the cost function [3]. However, far too little attention has

been paid to integrate RES into GSHP. Therefore, lack of a proper optimal strategy to

optimum integration of RES and GSHP is the main motivation of this research.

More specifically, the main challenges of the proposed research can be stated as:

� Real-time scheduling for demand-side that needs accurate prediction (like prices,

weather condition and RES generation) and forecasting error reduction.

� The deployment of an appropriate modelling technique will be needed for achieving

optimum RES integration with GSHP coupled with thermal storage tanks, which

will benefit customers economically.
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� HPs should be controlled optimally on the distribution network to save energy

and increase the reserve power while maintaining system stability, control and

flexibility.

1.2 Aims

The main question that this research will address is how heat pumps can be managed

with optimal control strategies in buildings and in distribution grids. Thus, the following

aims are considered:

1. Design, analyse and implement an optimal strategy to shift peak-load. in buildings,

by controlling the power consumption of GSHP

2. Optimal operation of electrical and thermal energy storage systems in smart build-

ings according to the availability of RES generation.

3. Optimal sizing of electrical and thermal energy storage systems in smart buildings.

4. Predict the flexibility of HP pool in the distribution network to enhance reserve

capacity.

1.3 Thesis Contributions

The contributions of this thesis are about managing heat pumps by proposing optimal

control strategies in building and in distribution grid. The main contributions of this

thesis are as follows:

� This research develops an optimal real-time thermal energy management system

(TEMS) for smart buildings to respond to DRP by employing two thermal storage

systems (WST and BTM) for peak-load shifting while enhancing the efficiency and

maintaining the temperature within the thermal comfort zone. This research also

proposes a real-time DTS approach based on real-time pricing tariffs is developed

to enhance the efficiency of smart building by shifting up to 100% of HP loads

from peak-price hours.
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� This research presents a cost-effective approach to minimise the operation cost

for smart homes as well as to increase the PV self-consumption. A model of

an integrated home energy management system (IHEMS) consists of rooftop PV

system and HP coupled with thermal energy storage system is proposed.

� This research presents a new optimal BSS and TSS sizing (OBTS) solution for

thermal and electrical storage systems to minimise annual electricity costs of smart

buildings with rooftop PVs while minimising life cycle cost. Optimal BSS and TSS

charging and discharging are key elements of the proposed OBTS that is considered

in the optimal sizing. These elements have not been largely considered together by

other literature studies for optimal TSS and BSS sizing. Moreover, cost comparison

for different case studies is presented.

� This research develops a control scheme for real-time smart building energy man-

agement system (SBEMS) to increase PV self-consumption and reduce electricity

costs. The real-time charging and discharging of BSS and TSS are achieved by

using the proposed SBEMS based on RTP.

� This research presents a dynamic aggregate model of residential heat pumps cou-

pled with thermal energy storage systems for providing demand side management

reserve capacity.

1.4 Thesis Outline

This thesis is organised into nine chapters as follows:

� Chapter 1 introduces the research overview, including research significance and

motivation, aims of the thesis, and contributions of the thesis in the relevant fields.

This chapter also presents ideas on the research visions and expected outcomes in

terms of operation and sizing of electrical and thermal energy storage using various

approaches.

� Chapter 2 discusses the background and literature review of integrating HPs with

RES systems in the power grid and their impacts. This chapter presents all relevant

control strategies along with both their advantages and disadvantages. Research

gaps are identified and the research questions are proposed.
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� Chapter 3 focuses on a new building pre-cooling/preheating system using a real-

time dynamic temperature set-points strategy. The implementation of a new com-

prehensive control strategy based on DTS supports the full advantage of BTM

to make the system more flexible. The system includes a GSHP, a water storage

tank and two fan coil units (FCUs). The WST is used to store chilled/hot water

produced by the GSHP and deliver it when needed. The presence of the WST

allows the GSHP to efficiently operate whenever the electrical energy prices are

low. In this chapter, experimental verifications of the proposed TEMS to reduce

power consumption of the GSHP and FCU with load shifting is presented.

� Chapter 4 presents an approach to resolve the issues associated with variations

in rooftop PV power by minimising the peak demand of smart buildings. This

is done by integrating a HP-PV system model that consists of a rooftop PV and

a HP which is used as a controllable load. The implemented residential thermal

energy management strategy consists of a model predictive control to minimise

the operation cost of HP, and a real-time temperature boundary (RTB) strategy

based on real-time pricing tariff. Furthermore the occupants’ thermal comfort is

also taken into account while shifting the HP electricity load.

� Chapter 5 demonstrates a cost-effective approach to minimise the operation cost

for smart homes. A model of an integrated home energy management system is

proposed in this chapter. This system encompasses a rooftop PV system, bat-

tery and HP coupling with a thermal storage tank as controllable load. Colonial

competitive algorithm is employed to minimise the operation cost. The efficien-

cies of battery charging and discharging are considered as well as battery charging

method. HP with TST is considered to shift its load towards the low electricity

price periods or whenever PV production is available. Furthermore, the occupants’

thermal comfort is also considered while shifting HP electricity load. The IHEMS

model is implemented in Smart Energy Laboratory at Edith Cowan University to

verify the simulation results.

� Chapter 6 provides an effective sizing strategies for HPs coupled with TSS to re-

spond to DRP while minimising life cycle cost. The aims of this chapter are to

find the optimal sizes of TSS and BSS based on TOU tariff to increase PV self-

consumption. Then, after determining the optimal BSS and TSS sizes, developing
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a smart management strategy to decrease the electricity cost of residential build-

ings. The well-known heuristic PSO approach is applied for optimal thermal and

electrical storage component sizing. After determining optimal BSS and TSS sizes,

MPC is applied for real-time optimal operation of smart buildings.

� Chapter 7 proposes a new business energy aggregate model to provide DSM reserve

capacity. Artificial neural network is applied to forecast demand and wind and PV

power generation. The model predicts trading intervals capacity requirements in

each trading day. Then, the proposed control strategy minimises the RHPs power

consumption to reduce IRCR. Energy aggregators can use i) the proposed RHPs

coupled with TES aggregate model to provide DSM reserve capacity and conse-

quently earn capacity credits, ii) the changing temperature set-point strategy to

reduce IRCR. The proposed rebound effect reduction method is then implemented

to reduce peak rebound effect.

� Chapter 8 summarises the concluding remarks of all chapters and provides sugges-

tions for future research directions.
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Chapter 2

Background and Literature

Review

In this chapter, the literature on energy efficiency and DSM is reviewed. Renewable

energy has an enormous impact on decreasing greenhouse gas emissions. Therefore,

the Australian Government has established the Renewable Energy Target scheme to

achieve the aim of increasing renewable energy [18]. The Large-scale Renewable Energy

Target has been established to create a financial incentive for expanding renewable power

stations such as wind and solar farms, and hydroelectric power stations. Meanwhile, the

Small-scale Renewable Energy Scheme focuses on supply and demand side. The plan

is to make up the partial amount of energy coming from Small-scale Renewable Energy

Scheme. This scheme has been providing a financial incentive to install PV panels,

wind turbines, hydro systems, solar water heaters, and heat pumps. Therefore, the

major challenges would be optimal operational control and to manage energy feed-in in

order to keep the system stable. Additionally, the mentioned schemes and initiatives are

considered in the planning for integration of RES and flexible loads.

This chapter aims to provide a background on demand response programs and heat

pump applications. The integration of heat pumps are categorised into the building level

and the distribution network level. Related works for each HP application are reviewed

to identify the research gaps. This chapter begins with Section 2.1 which includes an

overview of microgrid and demand response programs. A discussion on HP technologies
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and applications with related works are then presented in Section 2.2. In Section 2.3,

the effect of thermal and electrical energy storage sizing in building level is investigated

and related works are reviewed. Based on the findings of different HP applications

in microgrid and identifying the existing gaps for improving the solutions, the author

presents the relevant research questions for this thesis in Section 2.4.

2.1 Microgrid

Microgrid (MG) includes controllable loads, network control system, DERs, and

storage devices and is designed to provide reliable and stable power for the local energy

system in both connected-grid and islanded mode [19]. MG has various consumers such

as residential buildings, commercial buildings and industrial loads that are supplied

by local DER (PV panels, wind turbines and other generators) and energy storage

system. In a microgrid, it is essential to maintain the power supply-demand balance

for stability because the intermittent PVs and wind turbines are difficult to predict and

their generation may fluctuate drastically based on the availability of the primary sources

(e.g., solar and wind). Likewise, MG can provide better power balancing and enhance

operational efficiency by controlling flexible loads like HPs and EVs [20]. This control

usually comprises controller, communication system, energy management system, and

demand-side management system [21].

Nanogrid (NG) is the analogous of a smart grid [22, 23] which can be connected with

the rest of the grid or it can independently operate in islanded mode [22]. NG and MG

are not necessarily mutually exclusive and the connection of multiple NG can form an

MG. They both comprise of energy sources, not necessary but often, renewable energy

storage systems and some sort of load [24]. However, there are some distinctions between

NGs and MGs. They have different potential markets. A power structure of an NG can

be obtained at a relatively low cost compared to MGs [23]. Moreover, NGs structure

can be confined to a single home/small building , the technical objectives, hardware and

software often vary from that of MGs [25, 26].
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2.1.1 Energy management system

Energy management system is applied for data gathering, device control, and opti-

mises the operation of an MG to accomplish certain operational objectives (e.g., minimise

costs). It also operates power prediction from RESs, load forecasting and power planning

[27]. Due to the importance of EMS in power systems, many EMS studies [27–33] have

been investigated in the literature. Intermittency and variability of DER (e.g., PVs and

wind turbines) and uncertainty in controllable loads complicate the MG management,

which the EMS must be able to cope with. Moreover, since many devices managed by

the EMS are located on the demand side, they require certain level of autonomy and

local intelligence that the EMS must be able to provide.

Recently, EMS in microgrids is formulated as a real-time optimisation problem for

day-ahead scheduling. Most of these studies forecast the power of the RES, the de-

mand, and the market, which is practically difficult to achieve due to the intermittency

and variability of RES, uncertainty in flexible loads, and the randomness in real-time

pricing. Several models for MG optimisation have been proposed including heuristic

methods such as bee colony algorithms, particle swarm optimisation and game theory

[27, 30, 32]. Some approaches use stochastic programming to formulate EMS [33]. Monte

Carlo simulations are also applied to generate some scenarios for EMS as a determinis-

tic problem. Other studies [28, 29, 31] consider the energy management modeling and

experimental implementation of optimal scheduling in a MG. They consider the load

and the availability of power in short term and focus on how to efficiently solve the

optimisation problem in real-time according to weather forecasts. Most of these studies

implement MPC technique that has widely been identified as a control methodology for

industrial and process applications. In this technique, constraints can be formulated

which makes it highly popular for EMS.

2.1.2 Demand side management

Demand side management is a popular modification in terms of load management in

order to develop better efficiency and operations in the electrical energy system [6]. The

application of DSM methods has been applied to disturb the natural diversity of loads.

DSM has been used to redistribute the load to reschedule operation or take advantage of
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storage in the form of thermal, chemical or mechanical energy or intermediate products

to continue operating during the interruptions [11]. DSM can be divided into following

two groups: a) energy efficiency (EE), and b) demand response.

2.1.2.1 Energy efficiency

EE refers to methods and means for reducing the energy required in the provision

of products or services, especially compared to conventional or standard approaches.

There is an effective connection between EE and reducing energy demand which results

in downsizing more expensive system components such as generation and storage. Also,

EE helps to maintain reliability when encountering supply interruptions [34]. Often the

reducing energy consumption being provided by heating, cooling. Efficient HP systems

are an example of such an energy efficient technology: they require significantly less

energy and maintain expected standards.

2.1.2.2 Demand response

Demand response is an adapted demand which comes either as a result of price

responsiveness or to prevent any power system jeopardy [14]. DR offers the utility better

utilisation of assets particularly transmission circuits which without DR, are loaded

to capacity for a very short duration of the day, which is uneconomical considering

the capital cost [35]. DR shows potential in its techno-economical solutions to make

electricity demand more flexible which allows private customers to alter their demand

profiles to fit the needs of the energy supply. In the DR programs, electric utilities provide

some reward to their residential customers since they modify their energy consumption in

specific time period. Furthermore, utilities provide a signal to their customers (electricity

price) that are intended to steer the power consumption so as to get an aggregate demand

that better matches the needs of the power generation. DR can be grouped into two

categories, Price-based DR and Incentive-based DR [9].
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Price-based DR Price-based DR points to customers intentionally managing energy

consumption due to different prices [9]. Additionally, depending on the DR program, the

price signal can be deterministic or stochastic. Price-based DR can be grouped further

into a real-time DR program, critical peak pricing DR program, and TOU program. The

most straightforward out of all of them is TOU, where customers are usually presented

with two different price periods by utilities, specifically peak price and off peak price

periods. However, even very good TOU tariffs would not obtain the majority of the

efficiency benefit that would result in the use of actual real-time prices [36]. The objective

is to shift the maximum amount of consumption from peak to off peak periods to achieve

system efficiency, all the while giving customers financial benefits such as a reduced

energy payment. Exploiting smart meter and advanced ICT infrastructure, bidirectional

communication between customer and system operator is now achievable which allows

customers to participate in the real time DR program. As the name suggests, the real

time DR program includes power prices that reveal the actual situation of the electricity

market and power system and are sent to the customer to respond. Electricity consumers

are charged prices that typically rise and fall on an hourly basis and are broadcasted

either day-ahead or hours ahead before the actual delivery time [37].

Incentive-based DR Incentive-based DR programs provide an opportunity for cus-

tomers to gain financial rewards through changing (load increment/decrement) consump-

tion profiles. The goal of these programs is to control the energy consumption profile at

times of peak periods or critical events [9]. These programs can also be beneficial since

the DR from the customer can be anticipated beforehand and thus give more flexibility

to the operators in controlling the loads. However, customer preferences are violated in

doing so and once in a while, even privacy is not taken into consideration. Key incentive-

based DR programs include direct load control, emergency DR, interruptible rates, and

demand bidding or buyback.

2.1.2.3 DSM for the residential buildings

For a long time, loads from large-scale industries have operated as reserves used

for maintaining the power balance. However, the DSM is a natural opportunity in the
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residential sector to increase power system operational efficiency by developing smart

grid and effective ICT infrastructure [38]. Much research has focused on the potential

and activation of domestic DR [17, 38, 39]. Domestic appliances can be sorted into

critical appliances and flexible appliances. HPs, HVAC, electric water heater (EWH),

and electric vehicles are some major flexible appliances whereas lighting and television

are considered as critical appliances due to their operational characteristics. In terms

of the DR program, the focus of this study will be on HP. The significant reason for

choosing the HP for DR applications is because of their flexible energy consumption as

well as the large influence they have on the domestic daily load profile. The goal of

DR program is customer comfort which can be readily measured as compared to other

appliances. The HP system is direct electric space heating/cooling (or simply HVAC)

and HP integrated with thermal storage. These installations have great thermal storage

capacities like the hot water tank, and so they enable the shifting of energy demand

without changing the customer’s comfort level.

2.2 Heat Pump

The residential sector amounts to 30-40% of total energy consumption in the world

[8]. Hot water and space heating/cooling are responsible for the major amount of energy

consumption in the building sector. On the other hand, a well-known equipment such

as heat pump is mostly used for heating and cooling of residential buildings. HPs have

an important impression on the future electric system for various reasons. First of all

they are energy efficient in the production of thermal energy at domestic and commercial

level. Next, they reduce the dependency on fossil fuels for individual heating demands.

Heat pumps, with their thermal storage tanks, can store energy for a period of time and

use the energy gradually, enabling them to operate flexibly.

HP units are largely used for keeping water and indoor temperatures at desirable

level by take advantage of sources, like air, water, the ground and waste heat. Two

heat exchangers, including an evaporator and another a condenser, a compressor, and

an expansion device are the main components of a HP unit. The compressor pressurises

the refrigerant vapour which leads to a higher temperature. The compressed refrigerant

stream is condensed at high pressure which high temperature is achieved. The achieving
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heat is delivered to the heat sink. Depending on the source and sink temperatures,

additional energy is required for the compression process. A compressor that is driven

by an electric motor is utilised for compression in residential applications [13].

There are several types of HP that are classified by heat sources like ambient air,

water or ground. Air source heat pumps absorb the energy in the surrounding air and

delivers it through out a building. The power consumption of this type of heat pump

follows the inside temperature of the building where it is connected closely, since the

delivering mechanism is through the air which has a low time constant, when compared

to delivering the energy through a system of pipes in the floor. There is no means of

storing energy for longer periods of time in such a system. A better approach with

more flexibility is the air-water or ground-water type of heat pump system. The sink

and source temperatures affect the unit efficiency as an increased temperature difference

between sink and source results in a lower COP. Therefore, the COP changes throughout

the year. The utilisation of the ground as a heat source for HP leads to the higher COP

in comparison with air. Furthermore, air may cause frosting of the evaporator which

additional energy is required for defrosting [13].

There is no dispute that the ground source heat pump has a better year-round

efficiency than the air source heat pump. The ground stays warmer than the air in

the winter season which means that the efficiency of the heat pump will be better.

The ground source heat pump therefore has better characteristics in terms of flexible

consumption in the winter time than the air-source heat pump [40]. However, the ground

source heat pump system is more expensive to install than an air-source system due to

digging labour costs.

Many developments in HP technology have been done recently [5, 13], which has

resulted in enhancing COP. Several attempts have been made to improve the COP

and energy efficiency by presenting different models [41, 42]. However, there are some

challenges in system design and integration that should be revised.
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Figure 2.1: Heat pump shift load approach [35]

2.2.1 Building level integration

In residential buildings, the type of heat source and sink, heating distribution system,

and thermal storage system determines the type of HP system. Frequently, water is

utilised for radiator, floor heating system, and domestic hot water, whilst air is used in

ventilation and heat recovery applications.

The importance of HP for DSM is because of the type of storage. Water tank,

borehole thermal energy storage (BTES) and building thermal mass are thermal storages

which contribute to DSM application [43]. In fact, thermal storage makes DSM possible

by shifting thermal demand from high price to low price periods (Figure 2.1) [44].

Thermal storage is used as space heating/cooling and also for DHW. Reference [45]

uses hot water tank and building materials for provision of flexible DR with consideration

of thermal comfort. This shows the benefits of utilisation of these storage systems to

reduce substantial cost through decreasing thermal discomfort for dwelling occupants.

There is a possibility of using a BTES when a GSHP integrates with solar collector as

shown in [46]. It is important to note that the excess PV and wind electricity generation

can convert to heat and store the heat seasonally in BTES.
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Increasing the usage of RES, the reduction of cost and peak load shifting are the

major objectives of wind and PV integration with HP at building level. These aims

are achievable by exploiting HPs and make them respond to some signals like prices

or current RES generation. The integration of PV with HP in buildings is mainly for

increasing self-consumption. It is because of less attractive PV feed-in-tariffs and giving

the incentives to promote self-consumption. As a result, the most economic option for PV

generation is PV self-consumption where HPs can help to increase the self-consumption

rate [47, 48].

2.2.1.1 Related research

Several types of distributed energy resources and controllable loads have been con-

sidered as demand response providers including plug-in electric vehicles [49, 50], various

types of energy storage [51], residential electric water heaters [52], and domestic heat

pumps [53]. Among domestic loads, electric devices such as heat pumps and heating,

ventilating, and air conditioning systems have a significant potential to facilitate DRP

[2, 38, 39, 54].

Changing temperature set-point based on real-time pricing tariffs is a potential solu-

tion for the utilisation of BTM, although considering the thermal comfort of occupants

is an important constraint. The variable temperature set-point strategies presented

in [2],[55] change the temperature set-point when the electricity price is higher than

a threshold price which is determined based on consumers preferences. However, nei-

ther of these two strategies can considerably shift the HVAC loads. Furthermore, their

simulations are not verified by experimental results. Braun [56] presented an overview

of research related to the use of BTM for shifting and reducing peak cooling loads in

commercial buildings based on TOU tariff. Henze et al. [57] concentrated on the us-

age of both BTM and TES by presenting an optimal control based on common TOU

rate differentials. Kim [58] proposed a price-based DR strategy for an office building

to co-optimise energy costs of HVAC units and thermal discomfort levels of occupants.

In this context, day-ahead pre-cooling operation was scheduled in the early mornings to

reduce peak load demand in peak-load hours based on TOU tariffs. However, real-time

pre-cooling/pre-heating strategies are more effective than conventionally scheduled pre-

cooling operations. In this study, the proposed DTS is designed to shift up to 100% of
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HVAC loads from peak-load hours while taking advantage of a water storage tank. The

temperature set-point is changed based on RTP and maximum price of electricity.

Heat pumps coupled with TES systems are mainly used to achieve efficient space

heating and cooling, but in recent decades a more efficient technology, ground source

heat pumps, has not only made the system more efficient, but has also been recognised

as a promising technology for demand-side management [40, 59, 60]. Carvalho et al. [40]

proposed a TOU strategy using a GSHP as a flexible load combined with the building

thermal mass to reduce the operation costs on the customer side. The GSHP consumes

electrical power in off-peak hours to pre-heat a service building. The building pre-heat

method provides a 34% reduction in the electricity costs [40].

Additionally, it is more effective to develop a control strategy for heat pumps coupled

with TES to respond to DRP. A building thermal energy management system based on

DRP requires weather, occupancy disturbance, building thermal load, and energy price

predictions to improve the building energy efficiency, load shifting and reduce total

energy consumption. Among all proposed control methodologies for controlling indoor

temperature, the model predictive control approach can effectively predict the future

behaviour of the system to minimise energy consumption while considering thermal

comfort [60–67]. Mantovani et al. [61] mostly concentrated on the thermal comfort level

and energy efficiency optimisation in a commercial building using an MPC controller.

However, the authors do not take advantage of pre-heating/pre-cooling for electricity

cost reduction. The study by Yao et al. [63] proposed an innovative strategy to reduce

peak power demand via predictive thermal energy management using an MPC-based

controller. However, the authors considered a fixed temperature set-point and simulation

results were not verified by experimental tests. A bi-level MPC optimisation framework

for commercial buildings is proposed in [67] to integrate with a 33-node distribution

grid by controlling the HVAC load to minimise building operation cost and maximise

building allowable loads. However, this optimisation framework does not take advantage

of a WST for peak-load shifting.
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2.2.2 Distribution network level integration

Integration of HPs into a distribution grid will alter the way they are used at building

level. New control strategies will be required for HP integration. However, this level of

integration usually has issues with building. In grid integration, HPs provide ancillary

services (AS) to the grid that can be categorised in three groups: a) voltage regulation,

b) congestion management, and c) reserve power.

Voltage regulation: In LV grid, the most important problem is voltage violation. As

a result, any distributed control for the LV distribution network should be a solution for

this issue. To clarify this point, each consumer can adapt HP control for possible voltage

regulation for their own point of connection. The references [68, 69] use DIgSILENT

Power Factory to model HPs in the LV grid in order to calculate HP demand required

and simulate the electric network to study the effect on local voltage. The results indicate

that HPs can help coping with voltage violation.

Congestion management: Congestion may occur in transmission lines and trans-

formers and lead to differences in the locational marginal pricing systems. Also, in-

creasing the number of DERs and flexible loads which are integrated at the distribution

level can possibly result in congestions [70, 71]. In [71], an incentive-based DR program

for real-time congestion management is presented. This program is used to control the

consumption of the flexible loads, i.e. the EV and the HP consumption, considering the

imbalance issue and the costs of providing flexibility services.

Reserve power: In recent years, conventional fossil-fueled power plants are being

replaced by decentralised RES. Subsequently, the main providers of reserve power are

being changed from centralised conventional power plants to energy storage devices and

flexible loads. It means that reserve power is needed even further to balance electricity

generation and demand and to regulate frequency in the electric grid. HPs are currently

an attractive initiative [38]. In 2016, Young-Jin Kim et al. demonstrated that a variable

speed heat pump can be effectively utilised as distributed energy storage to lessen grid

frequency deviation and required frequency regulation reserve capacity while ensuring

19



Chapter 2. Background and Literature Review

the thermal comfort of occupants [72]. Reference [38] demonstrates that the direct

control approach can be exploited to provide reserve power and shows the success of

this approach in a field test with 54 different heat pumps while the occupants did not

experience any thermal discomfort.

2.2.3 Related works

Different methods have been implemented for integrating and controlling HPs in a

smart grid. Individually, the control of HP is for supplying thermal energy to meet the

thermal comfort of occupants. But this task will be extended when it integrates with

RES at building level and in the distribution network and operates under time variable

electricity prices. Most control approaches in this field try to achieve better results for

minimising operation cost and increasing energy efficiency of the system besides optimal

usage of maximum available renewable electricity generation.

The control of distributed flexible loads in distribution grids needs an aggregator

to access flexibility from HPs by participating in the electricity market [38]. There are

two different corresponding signals that can be described by direct load control and

indirect load control. When the distributed controllable loads are directly controlled by

broadcast links, it refers to direct control. When this control happens indirectly by a

one-way signal that can be broadcast by a virtual power plant or an aggregator is called

indirect control load [38].

Recent research focus on modern control methods that contributes to the develop-

ment of predictive, adaptive and optimal control techniques. These modern techniques

can achieve optimal results by handling constraints. For example, operating a HP is

related to some sort of external signals so that HP should be scheduled accordingly.

Hereupon, predictive methods such as MPC are the best initiatives to predict real-time

signals like weather, prices, PV and wind generation and handle future disturbances

like occupancy and constraints of the system [73]. Reference [61] develops an MPC

technique for controlling indoor temperature in a shopping center. Several extensions

based on economic optimisation and hybrid control considering external signals are in-

vestigated and include the variation of the supply water temperature, and minimising
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the cost of operation based on RES tracking. However, electricity price and ambient

temperature are not predicted by MPC.

Heat pumps are potential devices to provide flexibility to the power system beside

supplying thermal energy to residential buildings. The need for flexibility in the power

systems is becoming more and more important due to increased RES. To achieve more

flexibility, optimal HP integration strategy is required to avoid wasting cost and insta-

bility in power systems. Hence, a comprehensive review is needed to achieve optimal

integration.

References [74–76] developed an open-loop optimal control method for a grid-connected

RES system at building level to supply the power of a heat pump water heater and other

domestic loads based on TOU electricity tariff and energy cost minimisation. The case

study is done for different configurations in a hotel. Reference [74] presents an optimal

control strategy for a grid-connected PV system for a heat pump water heater that brings

cost saving during load shifting and with consideration of TOU tariff. But this strategy

is designed for a specific configuration which is not regular. To clarify this point, the

battery is only charged by the grid in off-peak. Due to this, excess RE generation cannot

be used for charging the battery. In [75] a diesel generator is added as a backup to the

model in [74]. Although the optimal control strategy utilised the diesel generator in the

peak TOU tariff to minimise energy cost, it results in increasing the initial investment

cost and CO2 emissions. Reference [76] proposed an optimal energy management strat-

egy for wind-PV-fuel cell hybrid system in order to minimise energy cost and maximise

fuel cell power output. The model indicated a daily optimal energy saving of 27.68% and

a cost saving of 33.8%. These reductions in energy and cost are achieved by the optimal

operation of the fuel cell as a backup and the required hot water temperature, taking into

account the TOU tariff. However, this study did not consider the initial investment cost

of electrolyzer and fuel cell that are still expensive and physical constraints for avoiding

equipment degradation.

As shown above, studies [74–76] have only been carried out in a small number of

areas. For example, indoor temperature and thermal comfort of occupants are not

considered as a building thermal mass. These works developed an open-loop optimal

control method to integrate heat pump water heater into RES hybrid systems. There
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is a need to implement the application of close-loop techniques like MPC to reduce

the uncertainties and future disturbances resulting from occupants, hot water demand,

ambient temperature, solar radiation and wind velocity variations. Additionally, it is

better to integrate more energy-efficient devices such as ground source heat pump into

RES system in this case. These studies considered TOU tariff for DR. There is an

enormous difference between even the best TOU design and RTP. It means that setting

TOU rates in advance and fixing them over the hours results in missing the majority of

the potential efficiency benefits of real-time energy pricing [36].

In [47], the authors have developed a rule-based strategy of energy flexibility in

a house with PV for cost-optimal and PV self-consumption optimisation. The flexible

sources in the system were a GSHP with an auxiliary electric resistance heater and TES,

a battery and controllable appliances. A case study of a Finnish low-energy house was

carried out to evaluate the impacts of the controls. As a result, electricity cost savings of

13–25%, along with 8–88% reduction in electricity exported to the grid while cost-optimal

control were achieved. The HP coupled with TES and a battery were demonstrated more

effective to provide flexibility than the controllable devices in the case study. However,

this study did not consider the effect of forecast error by a special predictive technique

like MPC which may provide a more flexible approach to system robustness. Moreover,

more efficient demand management by adding other energy sources like solar and wind

with a better control strategy could be fruitful to increase energy cost-savings.

A two-stage stochastic programming model was proposed and analysed in [45] to

manage thermal energy storage in the form of hot water storage and building mass at

residential level in order to reduce cost. Day-ahead DR optimisation was conducted

considering the high degree of uncertainties, including ambient temperature, electricity

and hot water consumption, occupant movement, and imbalance prices. The authors

developed a new expected thermal discomfort for more efficient utilisation of flexibility

and determination of consumption for lost comfort in DR contracts. The presented case

study, of a portfolio of 50 residential flats with 5 aggregation cases (various combined heat

and power and air source heat pumps) indicated a cost reduction while decreasing the

expected thermal discomfort. Although this study illustrated a significant cost reduction

by focusing on thermal energy storage and penalised thermal comfort, an optimal thermal

management with RES integration was not developed.
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2.3 Energy Storage System

The installed capacity of PVs has significantly increased in recent years. The PV

system is one of the top-ranked renewable resources in many countries including USA,

China, Japan, India, and Australia. In 2017, the global installed (on-grid and off-grid)

PV capacity reached 98 GW which was nearly one-third of the total 402 GW load [77].

However, the renewable energy buyback rate is expected to significantly drop in the

near future. This buyback price reduction is due to power system challenges, such as

frequency regulation, reverse power and voltage imbalance issues which are caused by

high PV penetration. A potential solution that may be beneficial for both end-users and

utilities is to increase PV self-consumption. This can be efficiently achieved using energy

storage systems and residential flexible loads such as heat pumps and electric vehicles

[39, 78]. Energy storage systems are frequently being applied to minimise various issues

of RES-penetrated power networks. A comprehensive review of various energy storage

systems is presented in [51].

Accordingly, residential customers can reduce their electricity costs by capitalising

their dispatched power. This can be done by i) optimising the capacities of renewable

energy resources and energy storage systems, ii) utilising HPs and heating, ventilation,

and air conditioning systems coupled with thermal energy storage systems and, iii) im-

plementing demand response programs to spread the HP load throughout the day based

on electricity price tariffs and the availability of RESs [79, 80]. In Australia, residential

end-users have moved to install rooftop PV systems to reduce electricity bills. However,

they still have to pay for electricity due to high electricity prices during peak-load hours

when PV production is not sufficient. A practical solution is to implement demand re-

sponse programs, flexible loads, and energy storage systems to take full advantage of PV

power production.

Electrochemical storage systems (e.g., Lead-acid and Li-ion batteries) have limita-

tions including short lifespan, limited number of cycles, and high initial cost that make

them unaffordable for most applications [81]. Comparatively, thermal storage systems

and pumped-hydro storage systems [82, 83] are eco-friendly options that can provide

more sustainable solutions. More importantly, TSSs make HVAC systems flexible with

suitable responses to time-varying electricity prices. Hence, a combination of TSSs and
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electrical storage systems could provide a more economical and eco-friendly solution

compared to utilisation of only electrical storage systems. Therefore, the motivation of

this study is to provide a low-cost solution to end-users with a low environmental impact

using TSSs and battery storage systems for energy management applications.

2.3.1 Related works

Many researchers have focused on finding optimal component sizes of RES and stor-

age systems for smart buildings. Some papers have applied flat electricity tariffs or

average load as input data to find optimal sizes of RESs and electrical energy storage

[84, 85]. Most publications rely on simple charging algorithms [86, 87]. Recent research

has considered optimal battery charging and discharging in their sizing strategies. How-

ever, the effect of flexible loads such as HPs and HVAC systems on RES and BSS sizes

as well as PV self-consumption have not been investigated.

Thermal energy storage such as building thermal mass and thermal storage tanks

are broadly identified as effective means of shifting loads from peak to off-peak hours in

buildings [45, 56, 57, 88–92]. End-users can gain additional cost-saving advantages from

TES by implementing DRP and spread the heat pump load throughout the day based

on time-varying electricity prices during peak and off-peak hours [88]. Shah et al. [90]

presented an optimal DR algorithm to reduce the electrical water heating costs based on

time-of-use tariff by taking advantage of TES while considering hot water consumption

for 24 hours. Good et al. [45] focused on a day-ahead optimisation to provide more

flexibility for the power system by utilising TES of hot water and building thermal mass

of 50 residential flats while determining the expected energy and discomfort costs.

In [93], a stochastic approach based on a Monte Carlo simulation (MCS) and particle

swarm optimisation was proposed for sizing a smart household energy system, taking into

account the demand uncertainty. A convex programming method for finding optimal

size and control of energy in smart homes, with PV generation and battery storage

has been introduced in [94]. This structure is employed for three different buildings

in California and Texas. The optimal size and control are investigated over several

time horizons, considering maximum power exportation to the grid, BSS cost, and load

demand patterns. In [95], the authors used a mixed integer non-linear programming
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method to perform optimal size and operation of the battery storage system for a smart

home. In [96], mixed-integer linear programming (MILP) was implemented to find the

optimal battery and PV sizes for a determined location considering both demand and

time-of-use tariff. Another MILP was also applied to optimally schedule the PV-battery

system, with the aim of reducing electricity bills. However, the effect of flexible loads

such as HPs and HVAC systems on RES and BSS sizes were not considered in the

aforementioned studies.

In [97], an MILP framework was applied to quantify the required battery capacity.

However, the solution depends on different DR-based load patterns. The sizing and

analysis of renewable energy and BSSs were introduced in [98]. A hybrid model was

proposed using MILP to maximise the use of renewable energy and reduce load demand

on the grid. Weather prediction was used to determine the optimal size of the wind

turbine as well as the thermal load and PV profiles for a residential building. The

aforementioned literature presents useful backgrounds; however, the effect of thermal

energy storage sizing on battery size in smart buildings has not been considered in these

publications.

The effects of different electricity pricing tariffs on PV and electrical energy storage

systems are investigated in [99]. In their work, the profitability and sizing of a PV sys-

tem with a battery are analysed from an economic perspective for residential buildings.

However, the effect of DRPs is not considered in the sizing of components. The au-

thors [100] have developed an MILP model for the optimal sizing and operation of HP

based building energy systems. Their analysis demonstrated that the size of the HP is

slightly affected by the scenario assumptions, while the optimal sizing of PV significantly

depends on load profiles. However, the effect of flexible HP coupled with TSS on the

dimension of BSS has not been considered. An MILP algorithm is introduced in [101].

This algorithm is presented to find the optimal size and operation of electric boiler and

thermal storage in combination with a PV system. A considerable storage size was only

obtained during the large fluctuation in electricity prices or by using the large PV size.

The authors [102] investigate the parameters that affect the optimal size of BSS for grid-

connected PV systems. The subject was to improve the self-consumption of PV systems

by determining the battery size based on electricity tariffs, and battery performance and

price. The battery size was largely affected by feed-in electricity price. Similarly, the

25



Chapter 2. Background and Literature Review

pricing structure is applied to find the optimal size of PV and BSS systems of a smart

house in [103].

Boeckl et al., [104] have presented a technical consideration sizing method to design

PV and battery systems for different households. This paper considers different house-

hold load profiles based on a behaviour model and life patterns of different end-users

in a stochastic method. However, considering DR is crucial to design a PV battery

system which has been ignored in aforementioned paper. Another work [105] presented

an analytical strategy for sizing battery storage based on minimising energy cost for a

battery storage owner. This paper developed a simple analytical method to size battery

for peak-load shaving. However, DRPs are already practical by developing smart me-

ters. Therefore, controlling HVAC systems as the devices that consume the most power

in residential buildings is important to consider for designing a battery. The sizing of

rooftop PV systems with HPs and BSS with the focus on changing economics and reg-

ulatory is evaluated in [106]. In [107], the authors presented an optimisation model to

investigate the effect of HPs on the size of a PV system with BSS. The results showed

that HPs as shiftable loads are required to avoid under-sizing of PV systems. However,

the effect of HPs coupled with TSS on BSS size has been ignored. An interesting re-

search on electrical and heating components sizing is presented in [108]. The authors

have applied forecast-based operation approaches for PV-battery and power-to-heat sys-

tems to improve economics of the house. The results show reduction in levelised costs

of electricity compared to a self-consumption maximising strategy. In [109], the authors

have investigated the effects of thermal and electrical loads, TSS, EV, and power sharing

among neighbours on PV system sizing for residential buildings. A genetic algorithm

is adapted to optimise: i) the quantity of PV capacity installed on each facade of the

building, and ii) the size of electric storage to increase PV self-consumption when the sys-

tem is profitable. An optimisation design strategy is provided in [110] for implementing

building-integrated PV with electricity storage in the early conceptual and preliminary

design process of a building. The method optimises the size and positions of the PV

panels and size of the BSS to enhance the net present value of the whole system during

the project lifetime. However, the effects of load management and thermal storage have

not been considered to attain high PV self-consumption rates. Furthermore, the impacts

of HP load management on the capacity design of TSS and BSS are not included in the

aforementioned studies.
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2.4 Research Questions

On the basis of the findings and challenges as identified through the above literature

survey, the present research is carried out by addressing following research questions

(RQs):

� RQ1: How to introduce a framework for GSHP load management considering

real-time electricity tariff and thermal comfort to increase energy efficiency and

peak-load shifting? How this framework allows the occupants to select system

operation to reduce the cost or achieve the best thermal preference? How the

optimisation results can be validated through the experimental tests?

� RQ2: How to develop an optimisation approach for scheduling the operation of

HP integrated with PV system to minimise the customer’s energy expenses and

increase PV self-consumption? How much PV self-consumption and electricity

costs can be improved when a battery added to HP-PV system?

� RQ3: How to develop an optimal sizing design of battery and thermal energy

storage to minimise annual electricity costs of smart buildings with rooftop PVs

while minimising life cycle cost? How much economic benefits can be achieved

through sizing of i) thermal energy storage, ii) battery, and iii) thermal energy

storage and battery for rooftop PV owners? How to develop a real-time smart

building energy management system based on real-time pricing tariff to reduce the

operation costs?

� RQ4: How to present a business energy aggregate model for residential HPs to allow

energy aggregators or retailers participate in reserve capacity market by providing

demand side management reserve capacity? How to establish a dynamic aggregate

model of residential heat pumps coupled with thermal energy storage systems and

proposing an optimisation control strategy based on the RHPs aggregate model?

How to reduce the rebound effect when changing the temperature set-point of

RHPs?
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Chapter 3

Optimal Real-Time Residential

Thermal Energy Management for

Peak-Load Shifting

This chapter addresses the research question RQ1 and proposes an optimal real-time

thermal energy management system (TEMS) for smart homes to respond to DRP for

peak-load shifting 1. The proposed TEMS combines two model predictive controllers

to manage two thermal energy storage systems, a water storage tank and the building

thermal mass, to schedule residential heat pump loads to off-peak periods. The inten-

tion is to manage the operation of a ground source heat pump to produce the desired

amount of thermal energy by controlling the volume and temperature of the stored water

in the WST while optimising the operation of the heat distributors to control indoor

temperature. The key contributions are the development of a new control strategy for

GSHPs coupled with WST based on building identification to minimise total energy

consumption and cost. This chapter also proposes a real-time indoor dynamic tempera-

ture set-point strategy based on real-time pricing tariffs for enhancing peak-load shifting

of heat pump loads with an acceptable variation in thermal comfort. Simulation and

1The presented chapter has been published as: A. Baniasadi, D. Habibi, O. Bass and M. A. S.
Masoum, “Optimal Real-Time Residential Thermal Energy Management for Peak-Load Shifting With
Experimental Verification,” in IEEE Transactions on Smart Grid, vol. 10, no. 5, pp. 5587-5599,
Sept. 2019. doi: 10.1109/TSG.2018.2887232
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experimental results demonstrate that the proposed TEMS has significant potential for

real-time peak-load shifting.

3.1 Introduction

The growing penetration of renewable energy resources in power systems increases the

risk of physical infrastructure damage to conventional generators. This infrastructure

damage arises because the intermittent nature of RES causes rapid ramps in power

generation to supply demand during peak-load hours. On the other hand, the growing

demand for power in buildings, during peak-load hours in particular, boosts the need

for load-shifting. Therefore, the need for flexibility is a crucial issue on the demand side.

Flexible loads and decentralised energy storage can support RES to maintain the balance

between demand and supply [39, 111, 112]. These elements also enable consumers to

participate in demand response programs in residential and commercial buildings [54].

This chapter focuses on a new building pre-cooling/pre-heating system using a real-

time dynamic temperature set-points strategy. The implementation of a new compre-

hensive control strategy based on DTS supports the full advantage of BTM to make

the system more flexible. The system includes a GSHP, a water storage tank and two

fan coil units. The WST is used to store chilled/hot water produced by the GSHP and

deliver it when needed. The presence of the WST allows the GSHP to efficiently operate

whenever the electrical energy prices are low.

The main contributions of this chapter are summarised as follows.

� An enhanced optimal real-time thermal energy management system for smart

buildings is developed to respond to DRP by employing two thermal storage sys-

tems (WST and BTM) for peak-load shifting while improving the efficiency and

keeping the temperature within a desirable thermal comfort zone.

� A real-time DTS strategy based on real-time pricing (RTP) tariffs is developed

to improve the efficiency of smart building by shifting up to 100% of HVAC loads

from peak-load hours. The proposed cost-aware DTS allows the occupants to select

system operation to reduce the cost or achieve the best thermal preference.
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� Experimental verification of the proposed TEMS is undertaken to reduce power

consumption of the GSHP and FCU with load shifting. In particular, the TEMS

responds more effectively to DRP compared with the controller presented in [2].

3.2 System Modelling and Identification

3.2.1 System description

Figure 3.1 shows the thermal energy system installed in the Smart Energy Laboratory

(SELAB) at Edith Cowan University (ECU), Joondalup, Western Australia. It consists

of a GSHP with an electrical ground circulation pump (Pump1), a WST, two electrical

circulation pumps (Pump2 and Pump3), and FCUs. The schematic of this system is

shown in Figure 3.2. The chilled/hot water is produced by the GSHP and stored in the

WST. The water is distributed to the laboratory building via the FCUs and the heat

exchanged water is then returned to the WST.

Figure 3.3 presents the two main control loops used to manage the building heat-

ing/cooling system. The proposed MPC of Section III is implemented by these two

control loops. The FCU loop controls the fan speed to control building temperature

while considering thermal comfort. The GSHP loop is responsible for controlling the

temperature and the volume of stored water in the WST based on electricity tariffs.

The GSHP loop helps to increase peak-load shifting while supplying enough chilled/hot

water for the thermal load.

The thermal system is monitored by LabVIEW software. The controllers are im-

plemented in the MATLAB environment. Data is transferred between MATLAB and

LabVIEW over a TCP/IP connection in order to modify the set-points.
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3.2.2 SELAB building thermal model

The SELAB building is modeled by the heat dynamic state-space model proposed in

[64] and [113]:

[
Ṫl
Ṫin

]
=

[
− 1
Rin·Cl

1
Rin·Cl

1
Rin·Cin

−( 1
Rio·Cin

+ 1
Ril·Cin

)

][
Tl
Tin

]
+

[
0
1
Cin

]
Qf +

[
0 0 0
1

Rio·Cin

λ
Cin

1
Cin

]ToSr
Ig

 (3.1)

It is assumed that Taf is fixed and the thermal energy rate that is delivered to the SELAB

by the FCU is given by Qf = ṁafcap(Taf −Tin). Therefore, the discrete control input is

denoted by U = ṁaf . If the state and disturbance vectors are denoted by X = [Tl Tin]ᵀ

and V = [To Sr Ig]
ᵀ, then the discrete-time state space model can be represented by

X(k + 1) = AX(k) +BU(k) +DV(k) (3.2)

where the matrices A,B and D are defined as

A =

[
A11 A12

A21 A22

]
, B =

[
0 B1

]ᵀ
, D =

[
0 0 0
D1 D2 D3

]
(3.3)

These matrices are identified using a nonlinear regression algorithm [113] by measuring

Tin(k), To(k), Sr(k), Ig(k), and Qf (k). According to the conservation of energy, the

heat transfer in the FCU is defined as Qf1(k) = ṁfcp(Tf (k)− Tfr(k)) which is equal to

Qf (k). Therefore, by measuring ṁf , Tf (k) and Tfr(k), then Qf (k) can be calculated.

The SELAB building thermal model is identified and validated via two tests:

� Test I - The HVAC system is activated and the indoor temperature is measured.

Figure 3.7 shows the Tf (k) and Tfr(k) measurements. Note that ṁf is constant

and equal to 10 l/min. Therefore, Qf (k) is calculated as an input for this test. In

addition, Figure 3.5 presents the measurements of ambient temperature and solar

irradiation as the data set for the identification of the thermal model of SELAB

building. In this test, a low pass filter (LPF) is implemented to reduce the noise

associated with the temperature sensor. Note the fine agreements of modelled and
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Table 3.1: Parameters of identified SELAB building model.

A11 = 0.9641 A12 = 0.0205 B1 = 0.3966 D1 = 5.212 · 10 −2

A21 = 0.1362 A22 = 0.9028 D2 = 2.656 · 10 −3 D3 = 4.474 · 10 −4

measured daily indoor temperatures shown in Figure 3.6. The root mean square

error (RMSE) of the model is 0.284◦C and the coefficient of variation of RMSE

(CV(RMSE)) index is 2.52%. CV(RMSE) determines the accuracy of a model by

considering offsetting measured and simulated data errors [114]. ASHRAE Guide

14 [114] considers a building model calibrated if the hourly CV(RMSE) values are

under 30%. Table 6.3 presents the identified building model parameters based on

Test I results.

� Test II - The HVAC system is off (Qf = 0). Figure 3.8a shows the measured solar

irradiation and ambient temperature for 7 days. The validation result is presented

in Figure 3.8b. The RMSE of the model is 0.288◦C and CV(RMSE) index is 3.57%.

3.2.3 Ground source heat pump model

GSHPs utilise the relatively constant ground temperature to warm the system’s cir-

culating liquid in winter, and cool it in summer for space heating and cooling, and

domestic hot water applications [53]. The installed GSHP at the SELAB building ma-

nipulates three boreholes to exploit a higher quality source of heat as shown in Figures

3.1-3.2. Pump 1 circulates water through tubes in the boreholes. The GSHP is directly

connected to the WST. The GSHP only operates in on and off modes.

The performance of the GSHP is heavily dependent on the temperature difference

(∆T ) between the source side and the load side of the GSHP. ∆T is the difference

between the temperature of the water returned (from the boreholes) Tb,out (monitored

by LabVIEW) and the GSHP output water temperature TGHP . The heating/cooling

capacity can then be obtained based on the flow rates and temperatures on the source

side and the load side. Therefore, the coefficient of performance (COP) is expressed by

[53]:

COP =
QGHP
WGHP

(3.4)

32



Figure 3.1: Thermal energy system installed in the Smart Energy Laboratory (SELAB)
at Edith Cowan University (ECU), Western Australia.

An ideal borehole heat exchanger is considered and hence, QGHP is determined based

on the compressor power consumption while utilising the heat taken (given) from (to)

the ground (Qex). In this chapter, it is assumed that the GSHP operates in the cooling

mode and hence, when the GSHP is running, it generates chilled water at a determined

mass flow rate. Therefore, according to the conservation of energy for the cooling mode

|QGHP |+WGHP = |Qex| (3.5)
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Figure 3.2: Schematic of the thermal energy system.
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Figure 3.4: FCU inlet and outlet water temperature

Qex = ṁexcp(Tb,out − Tb,in) (3.6)
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Figure 3.5: Ambient temperature and solar irradiation data set for Test I
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0 10 20
Time (h)

5

10

15

20

T
em

pe
ra

tu
re

 (
o C

)

FCU inlet water (Tf)

FCU outlet water (Tfr)

Figure 3.7: FCU inlet and outlet water temperature

3.2.4 Water storage tank model

The installed WST is modelled based on the stratified two-layer tank separated by a

thermocline layer that is developed in [65, 115] and is validated with the collected data

from SELAB. The WST is used for both heating and cooling modes. Nonetheless, the

WST is modelled in cooling mode for making it easy to explain. Hence, in the following

section, the attention is on the height and temperature of stored chilled water at the
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Figure 3.8: Test II results- validation of SELAB building model.

bottom of the WST. In cooling mode, the circulation water map is: return water from

FCU at the top at the temperature Tw and chilled water produced by GSHP at the

bottom at the temperature Tc. As the WST is connected to the closed-loop system, the

volume of stored water mt is always constant and equal to the sum of the volume of

return water mw and chilled water mc

mt = mc +mw, mc = ρπD2hc/4 (3.7)

where hc is the height of the stored chilled water, D is the diameter of the WST and ρ

is the density of the chilled water.

Note that the mass water flow rates for both sides of the thermal system (for the

GSHP (ṁGHP ) and for the FCU (ṁf )) are constant and ṁGHP > ṁf . Therefore, the

chilled water is stored in the WST when the GSHP is on; otherwise, the WST discharges.

The dynamics of the system can be described by the change in the volume (mc) and
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temperature of the chilled water layer (Tc) in the stratified WST. Therefore, the WST

model based on the heat and mass flow balance concept is expressed by the following

first order non-linear differential equation:

dQc
dt

(mc,Tc) = Qinc −Qoutc = ṁGHP cpTGHP − ṁfcpTf (3.8)

dmc

dt
= ṁGHP − ṁf (3.9)

The WST is charged since the GSHP is operating. It is because of constant rates of

mass water flow and ṁGHP > ṁf . In addition, the model is simplified by neglecting the

losses to the surrounding environment, hence, it can be assumed Tf = TGHP . Therefore,

the heat flow Equation (3.8) can be rewritten as

dQc
dt

(mc,Tc) =
dmc

dt
· Tc +mc ·

dTc
dt

= (ṁGHP − ṁf )TGHP (3.10)

The derivative of temperature and the derivative of height of the bottom layer water at

each time step can be expressed as

dTc
dt

=
(ṁGHP − ṁf )(TGHP − Tc)

mc
(3.11)

dhc
dt

=
4(ṁGHP − ṁf )

ρπD2
(3.12)

When the GSHP is off (ṁGHP = 0), the WST is discharged. Hence, the inlet water

temperature of FCU is equal to the temperature at the bottom layer of the WST Tf = Tc.

3.2.5 Fan coil units model

The installed FCU at the SELAB building is modelled using the data-driven effective-

ness ε-NTU method which is presented in [116] and is developed in [61]. In this method,

the return air temperature from the heat exchanger (Taf ) is ideally equal to the inlet

water temperature of the heat exchanger (Tf ). The equation of an ideal infinite-length

FCU assuming ṁfcp > ṁafcap is:

Qf,ideal = ṁafcap(Tf − Tin) (3.13)
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Therefore, the FCU can be practically modelled as follows:

Qf = ε(C,NTU) ·Qf,ideal (3.14)

C =
ṁfcp
ṁafcap

, NTU =
UA

ṁafcap
(3.15)

where UA and ε are heat transfer coefficient and effectiveness, respectively. UA is a

function of air flow rate ṁaf and water flow rate ṁf . ṁf is considered constant to avoid

solving complex equations.

On the other hand, the FCU-MPC requires a steady-state fan model to obtain the

fan power. A third-order polynomial regression equation can approximate the electric

power of the fans. Since the electric power of the FCU is a function of the total supplied

air mass flow rate, the fan power model can be given by

Pf = α3ṁ
3
af + α2ṁ

2
af + α1ṁaf + α0 (3.16)

where α0, α1, α2, α3 are fan model parameters that are identified by measuring Pf while

changing the fan speed. The parameters are given as follows: α0 = 26.506, α1 = 244.757,

α2 = −101.974, and α3 = 37.659.

3.3 Formulation of Proposed TEMS Based on System Iden-

tification

The system model is used to formulate and implement the proposed TEMS that

includes MPCs based on a new DTS strategy for FCU and GSHP coupled with WST.

The flowchart of the proposed TEMS is shown in Figure 3.9.

3.3.1 Proposed dynamic temperature set-point based on RTP

Variable indoor temperature set-point Td enables the DRP to effectively utilise the

building pre-cooling/pre-heating. Since DTS will also affect the GSHP control, the

optimal DTS should be determined prior to the GSHP control. To shift FCU load

while maintaining indoor temperature within thermal comfort limits, an hourly model
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Figure 3.9: Flowchart diagram for the implementation of the proposed optimal real-time
thermal energy management system for smart homes to respond to DRP for peak-load
shifting.

is designed for both cooling and heating modes based on dynamic electricity pricing as

follows:
T (i)− T sp
T sp − T sp

=
Z(i)− Zmin

Zmax − Zmin
(3.17)

δ(i) = β(
T (i)− Tsp
Tsp − T sp

) ∀i = 1, 2, . . . , 24 (3.18)

The indoor temperature is normalised based on RTP tariff and upper and lower bound-

aries of Tsp in Equation (3.17). The temperature difference from Tsp (δ(i)) is determined

in Equation (3.18) and β is an impact coefficient which changes the intensity of DTS. β

is considered to reflect customer’s preference in reducing the cost or choosing more de-

sirable thermal comfort. The DTS responds to the price fluctuation and remains indoor

temperature at the comfort zone at both cooling and heating modes.

Td in the cooling mode is given by

Td(i) =


Tsp − δmax, if δ(i) < 0.75δmax

and δ(i+ 1) > 0.75δmax

Tsp + δ(i), otherwise.

(3.19)

Td in the heating mode is given by

Td(i) =


Tsp + δmax, if δ(i) < 0.75δmax

and δ(i+ 1) > 0.75δmax

Tsp − δ(i), otherwise.

(3.20)
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Figure 3.10: Temperature set-points for different β values in discrete step of 0.5 ◦C.

T sp ≤ Td ≤ T sp (3.21)

0 ≤ β ≤ Tsp − T sp (3.22)

where δmax corresponds to the condition Td = T sp. δ > 0.75δmax indicates the peak-

load hours based on RTP. β can be changed based on Equation (3.22). For example,

lower β increases thermal comfort while higher β results in more energy saving. Figure

3.10 shows the indoor temperature set-points for 24 hours with discrete steps of 0.5 ◦C

generated by the proposed DTS strategy based on the RTP tariff of Figure 3.11, for

cooling mode. Note that, the DTSs are established between 7 am and 10 pm. Figure

3.10 shows that the proposed DTS pre-cools the building during low price periods (7

am-11 am) and before the peak price hours (3 pm-4 pm) (BTM charging mode) and

DTS increases the temperature set-point during high price periods and peak-load hours

(BTM discharging mode).

The impacts of various β will be examined on energy consumption and peak-load

shifting by establishing a lower indoor temperature set-point during low-price tariff pe-

riods. During higher price periods, the building pre-cooling can supply space cooling

and the FCU will be off. As a result, the GSHP will be off and the GSHP and FCU

loads will be shifted by taking advantage of the building pre-cooling without violating

the thermal comfort limits.
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Figure 3.11: Hourly electricity price profile from AEMO [1].

3.4 Objective function

Two optimal controllers are required to find the optimal thermal energy system

operation. One optimal control is to switch the GSHP on/off based on DRP to minimize

the GSHP power consumption while producing sufficient chilled water. Another optimal

control is applied to control the fan speed to minimise electrical and thermal energy

consumption while keeping the indoor temperature within a desirable comfort range.

The objective function of GSHP optimisation is to minimise electricity costs of GSHP

subject to WST constraints. In this study, the objective function of GSHP optimization

can be expressed as follows:

min
∑
i

Cd (3.23)

subject to

Tminc ≤ Tc ≤ Tmaxc (3.24)

mmin
c ≤ mc ≤ mmax

c (3.25)

where Cd is the electricity cost. The volume and temperature of stored chilled water

are limited based on the water capacity of WST and the requested temperature range

by FCU, respectively. The objective function of FCU optimisation is to optimise the

operation of FCU to minimise electrical energy consumption and minimise the devia-

tion of indoor temperature from temperature set-points subject to indoor temperature
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constraints. The objective function is:

min
∑
i

Pf +
∑
i

Tin − Td (3.26)

subject to

Tminin ≤ Tin ≤ Tmaxin , (3.27)

T sp ≤ Td ≤ T sp (3.28)

3.5 MPC scheme with proposed DTS

The MPC uses the system model to predict the future evolution of the plant to

generate the control action on receding control strategy [65, 66]. Two MPC controllers

are established in this chapter.

GSHP-MPC The goal of this controller is to switch the GSHP on/off in order to shift

GSHP power consumption based on DRP while producing sufficient chilled water. For

this purpose, a cost function is designed for the MPC of GSHP based on RTP tariffs.

The objective function of the GSHP-MPC is a trade-off between minimising the total

electricity cost and producing enough chilled water subject to dynamic constraints:

min
u1k

k+N−1∑
j=k

(Z(j|k)(ψ(j|k)) (3.29)

subject to

x1(j + 1|k) = f1(x1(j|k), u1(j|k), d1(j|k)), (3.30)

∀j = k, k + 1, . . . , k +N − 1

y1(j|k) = g1(x1(j|k), u1(j|k), d1(j|k)), (3.31)

∀j = k, k + 1, . . . , k +N

where N is the prediction horizon, k is an arbitrary starting point in the vector. Z is the

electricity tariff at time step j, ψ is the binary decision variable u1 = {ψ} while state
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variable is x1 = {mc, Tc} and disturbance is d1 = {ṁf}. ψ is defined by

ψ(j) =

{
1, if the GSHP is on

0, otherwise.
(3.32)

The GSHP dynamic Equations (3.4)-(3.6) and the WST dynamic Equations (3.7)-(3.11)

are the main dynamics of the GSHP system while Equation (3.30) relates to the WST

dynamic and Equation (3.31) includes the GSHP dynamic.

FCU-MPC The objective of this controller is to control the fan speed to minimise

electrical and thermal energy consumption while keeping the indoor temperature within

a desirable comfort range. The objective function of FCU-MPC is a trade-off between

minimising total energy consumption and minimising the deviation of indoor tempera-

ture from the temperature set-point subject to dynamic constraints:

min
u2,k

k+N−1∑
j=k

(Pf (j|k)) +
k+N−1∑
j=k

(Tin(j|k)− Td(j|k)) (3.33)

subject to

x2(j + 1|k) = f2(x2(j|k), u2(j|k), d2(j|k)), (3.34)

∀j = k, k + 1, . . . , k +N − 1

y2(j|k) = g2(x2(j|k), u2(j|k), d2(j|k)), (3.35)

∀j = k, k + 1, . . . , k +N

where decision variable u2 = {ṁaf}, state variable x2 = {Tin}, and disturbances

d2 = {To, Sr, Phl}. The building dynamic Equations (3.1)-(3.3) and the FCU dynamic

Equations (3.13)-(3.16) are the main dynamics of the FCU-MPC while Equation (3.34)

corresponds to the building dynamic and Equation (3.35) relates to the FCU dynamic.

3.6 Simulation and Experimental Setup

3.6.1 Simulation setup

The model-based optimisation problem is solved over a finite horizon. The non-linear

equations and the non-convex terms due to bilinear system dynamics as well as the binary
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and integer decision variables result in the formation of a non-convex mixed-integer non-

linear programming (MINLP) problem. The non-convex MINLP is transformed into

a linear model to obtain the global optimal solutions. The non-linear equations are

approximated by linearising system dynamics at the operating points using piecewise

linear equations, which result in a mixed-linear programming problem. In this chapter,

the SCIP solver is implemented to solve the MILP MPC problem. The horizon prediction

is N = 24 hours and the control sampling time is 10 minutes. The control horizon is equal

to the prediction horizon. The control horizon decreases as the time step k increases.

The purpose of reducing the control horizon toward the end of the day is the reduction

of the computational time and complexity. Each day at the first time step (k = 1),

the MPC utilises the present mc, Tc and Tin values; as well as the predicted ambient

temperature, solar irradiation and the electricity price. The current values are used

for feedback by resetting the MPC state. Note that the MPC has previously captured

all the values of the previous day’s variables related to the building and WST models

as the initial values. Therefore, the MPC obtains the optimal combination of control

variables’ set points corresponding to the lowest energy consumption while maintaining

indoor temperature in thermal comfort zones along the time-varying control horizon.

All simulations are performed using MATLAB and run on an Intel Core i5-3470M CPU

at 3.20 GHz computer with an 8 GB RAM. The amount of time needed to compute

the optimal solutions was between 3.5 seconds and 54 seconds. The computational time

decreases when the control horizon reduces as the day progresses.

3.6.2 Experimental Setup

Simulations and experimental verifications are performed for the thermal energy

system installed at the SELAB (Figures 3.1-3.2). The system consists of a water to

water GSHP (7.1 kW of cooling capacity and 10.3 kW of heating capacity) with 3×65 m

vertical boreholes, a 1000 liter stainless steel WST (insulated with 100 mm of insulation

layer), circulation pumps and FCUs.

A control scheme is designed and modelled for the SELAB thermal energy system

that will shift GSHP load based on DRP and minimise the electrical and thermal energy

consumptions without violating any zone temperature limits. In order to demonstrate
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Figure 3.12: The internal heat loads for SELAB associated with 4 occupants.

Table 3.2: Variables and operating constraints used for the simulations and experimental
verifications.

Variables Tin [T sp, T sp] ṁGHP ṁf mc Tc
Unit ◦C ◦C l/min l/min m3 ◦C
Constraints [21, 25] [21.5, 24.5] 30 10 [0.1, 1] [5, 8]

the model and the proposed controller, the RTP profile is considered which is based

on the wholesale electricity price from the Australian energy market operator (AEMO)

website [1]. The hourly RTP for a typical day in January 2018 is shown in Figure 3.11.

Tests are also run considering an internal heat load profile for the SELAB building.

Figure 3.12 shows the internal heat loads associated with 4 occupants.

The experiments at SELAB are performed with the operating constraints of Table

3.2. The WST is set to mc = 0.1 m3 at Tc = 7 ◦C in the first time step. The volume of

stored chilled water is calculated by measuring the difference between the inlet and outlet

water flow rates of the WST. The temperature of the stored chilled water is measured

using temperature sensors S1, S2, and S3 installed in the WST. The indoor temperature

set-point is considered Tsp = 23 ◦C.

The temperature set-points determined by the proposed DTS strategy (equation

3.19) based on given lower and upper temperature bounds 21.5 ◦C and 24.5 ◦C, respec-

tively (Table 3.2, column 3).

3.7 Simulation and Experimental Verification

This section presents and compares detailed simulation and experimental results

for the SELAB thermal energy system (Figures 3.1-3.2). Four cases are considered
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and tested including the conventional thermostatic control (Case I), MPC with fixed

electricity pricing (Case II), MPC with dynamic demand response controller (DDRC) of

Ref. [2] (Case III), and the proposed MPC with DTS based on RTP tariffs (Case IV).

Experimental results of Cases II-IV validate the simulation results. The weather data

are collected by the weather station at SELAB. These tests are conducted under the

same conditions on days with similar ambient temperature and solar radiation profiles.

The simulation results of Cases I-IV and the measurements are used to investigate the

performance, capabilities and advantages of the proposed MPC.

3.7.1 Case I: Base case with conventional thermostatic control

Figure 3.13 shows the results for thermostatic control (own device control). It is a

hysteresis controller that switches the FCU off when the indoor temperature is lower

than 22.5 ◦C and activates it when the indoor temperature reaches 23.5 ◦C. This is the

conventional thermal energy system used in most buildings. In this figure, the top plot

shows the on/off signal for the GSHP, the middle plot is the corresponding daily indoor

temperature control, and the bottom plot is the air flow rate required to keep the room

temperature at the desired set-point of 23 ◦C.

3.7.2 Case II: MPC with fixed electricity pricing

Figure 3.14 shows the results for indoor temperature control with MPC under fixed

electricity price. The first and second plots (from the top) show the GSHP on/off signal

to control the WST temperature and the stored chilled water volume. The next plot

shows the controlled indoor temperature within the thermal comfort zone of 21 ◦C and

25 ◦C. The last plot depicts the manipulated air flow to the building so that the FCU

system can maintain the indoor temperature in the thermal comfort zone. Note that

the designed controllers for this case study are able to operate the WST more efficiently.

In particular, the MPC controller provides over 8.2% reduction in power consumption

compared with the thermostatic controller of Case I. In addition, this test shows over

11.46% reduction in thermal discomfort.
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Figure 3.13: Case I (Base Case with Thermostatic Control)- Performances of the GSHP
and the FCU.

3.7.3 Case III: MPC with the DDRC

Peak-load shifting is analysed based on the proposed MPC strategy of Reference.

[2] (that uses a dynamic demand response controller). The DDRC strategy changes

the temperature set-point when the electricity price is higher than the threshold price.

Otherwise, the temperature set-point is maintained at its initial value that was set by the

customer. Additionally, the threshold price is determined by customer’s preference. The

results are presented in Figure 3.15. The first and second plots show the performance

of GSHP-MPC. Note that the GSHP load is shifted based on RTP and the WST is

filled with chilled water at the low-price tariff. The third and fourth plots demonstrate

FCU-MPC performance. In this case, the DDRC of Reference [2] resulted in a 27.36%

improvement in peak-load shifting in Case I, and a 10.26% improvement in Case II.

3.7.4 Case IV: Proposed MPC with DTS based on RTP tariffs

The aim of this experiment is to analyse the MPC controllers with DTS. In this test,

the proposed DTS is applied for β = 1 to pre-cool the building before the peak-load
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Figure 3.14: Case II (MPC with Fixed Electricity Pricing)- Operation of GSHP coupled
with WST and FCU.

hours to reduce energy costs and shift the GSHP and FCU loads. The set-point can be

changed between 22◦C and 24◦C for β = 1. Figure 3.16 shows the MPC results with

β = 1. The proposed MPC strategy for β = 1 reduces the total power consumption to

7.18 kWh. In this case, the electricity consumption by the GSHP and FCU is reduced

by 13.3%. In addition, this strategy is an effective way to shift the HVAC load from a

high electricity price period while the indoor temperature is perfectly controlled. Results

show reductions of 85% and 79% in peak-hours power consumption in compared to Cases

I and III, respectively.
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Figure 3.15: Case III (DDRC Strategy of Reference [2])- Operation of GSHP coupled with
WST and FCU.

3.7.5 Experimental Verification of Cases II-IV

To verify the precision and performance of the proposed MPC with DTS, it is applied

and implemented on the thermal energy system at the SELAB (Figures 3.1-3.2 and

Section IV). Figures 3.17-3.19 demonstrate the experimental measurements that confirm

the simulation results of Cases II-IV. In Figures 3.17-3.18, according to the first plot,

the chilled water is supplied by GSHP whenever Pump1 is on. The water flow rate is

30 l/min and the temperature of the supply chilled water is between 5 and 8 ◦C. The

second plot shows the return water temperature from the FCU. As a result of having

desirable chilled water for the FCU, the return water temperature is in the range of
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Figure 3.16: Case IV (Proposed MPC with DTS Strategy (β = 1) and RTP Tariffs)-
Operation of GSHP coupled with WST and FCU.

8-13 ◦C. The total power consumption of the HVAC system is shown in the last plot of

Figures 3.17-3.18.

Figure 3.19 confirms that the GSHP supplies chilled water to the WST (first plot) and

the WST stores enough chilled water to supply the FCU (second plot) at the requested

temperature range of 5-8 ◦C. After circulating chilled water through FCU, the returned

water from FCU is in the expected range of 8-13 ◦C that is shown in the third plot.
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Figure 3.17: Experimental verification of Case II- Measured waveforms for operation of
GSHP coupled with WST and FCU.
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Figure 3.18: Experimental verification of Case III- Measured waveforms for operation of
GSHP coupled with WST and FCU.

The last plot of Figure 3.19 shows the total power consumption of the HVAC system.

The energy consumptions of GSHP and FCU during peak-load hours (16:00-19:00) are

zero and 0.264 kWh, respectively. The difference between the power consumption of the

experimental result and the simulation result is because the ground circulation pump is

run about 75 seconds earlier than GSHP.
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Figure 3.19: Experimental verification of Case IV- Measured waveforms for operation of
GSHP coupled with WST and FCU.

3.8 Sensitivity Analysis and Discussions

Simulation and field measurement results including total energy consumption, cost

saving, peak-load shifting, and indoor temperature deviation are summarised and com-

pared in Table 3.3. It is of significant note that the proposed controller takes effective

advantage of WST coupled with GSHP in terms of reducing the overall energy cost and

shifting energy consumption from peak-load hours. The proposed TEMS with MPC

controllers based on DTS (Case IV) enables the demand-side to efficiently respond to

the DRP while allowing the end-user to take advantage of RTP. Detailed sensitivity anal-

yses are also performed to illustrate the impacts of β on power consumption, peak-load
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shifting, and indoor temperature. Table 3.4 and Figure 3.20 demonstrate the sensitivity

of the proposed MPC to the intensity of DTS by changing the value of β from 0 to

1.5. Figure 3.20a shows changes of power consumption of GSHP and FCU for different

β values. Interestingly, by increasing β, the power consumption will be reduced during

peak-hours (4-7 pm) and the cost will be consequently decreased. However, the variation

of indoor temperature will be increased but still within the comfort zone as shown in

Figure 3.20b. Based on the detailed simulations, field measurements, and sensitivity

analysis of Figures 3.13-3.20 and Tables 3.3-3.4, it can be observed that

� The proposed TEMS reduces the total energy cost by 25.31% as compared to

12.43% and 17.65% for Cases II and III, respectively (Table 3.3, column 5).

� The proposed TEMS has effectively shifted 85.15% of HVAC load from the peak-

load hours as compared to only 19.05% and 27.36% for Cases II and III, respectively

(Table 3.3, column 7).

� Increasing β will significantly shift HVAC loads from peak-load hours. For example,

the peak-load shifting can be increased to over 88.23% with β = 1.5 (Figure 3.20a,

Table 3.4).

� Increasing β will also reduce the total power consumption and cost by 20.16% and

30.74%, respectively (Figure 3.20a, Table 3.4, column 5).

� Decreasing β will decrease the deviation of indoor temperature from the set-point

temperature. For example, with β = 0 (when the discomfort level is a concern of

consumers) the energy consumption and cost increase during peak hours while the

indoor temperature slightly varies around the designated temperature set-point

(Figure 3.20b and Table 3.4, column 2). Note that for this scenario, the proposed

TEMS will offer 47.46% improvement in temperature deviation compared to Case

I (Table 3.4, column 2).

3.9 Conclusions

This chapter has advocated for the implementation of optimal real-time thermal

energy management strategies for smart buildings with GSHP, WST and FCUs. This
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Table 3.4: Sensitivity of proposed MPC to the intensity of DTS. Note that β values of 0,
1 and 1.5 correspond to best thermal comfort, best trade-off and low cost, respectively.

β = 0 β = 0.5 β = 1 β = 1.5

Power consumption (kWh) 7.637 7.26 7.18 6.601

Electrical energy cost ($) 2.948 2.664 2.51 2.295

Power consumption
in peak hours (kWh)

0.929 0.61 0.253 0.205

Accumulated
temp. deviation (◦C)

6.12 8.42 11.42 15.78

decreases the total power consumption of the GSHP and FCUs by shifting their loads

based on DRP while providing adequate thermal comfort levels. This is done by com-

bining two online closed-loop MPCs to manage two thermal energy storage systems, a

water storage tank (WST) and the building thermal mass. The main advantages and

contributions of the proposed MPC with DTS based on RTP tariffs compared to the

existing technologies based on thermostatic control and the MPC with DDRC of Ref.

[2] are:

� The proposed MPC with DTS can significantly reduce the total energy cost and

overall cost by shifting up to 100% of HVAC (GSHP and FCUs) loads based on

DRP depending on weather conditions while maintaining the indoor temperature

within a desirable comfort range.

� The proposed MPC with DTS allows the end-user to take more advantage of RTP

by increasing the DTS intensity coefficient. Large values of β will significantly

shift HVAC loads from high price periods and consequently reduce the cost while

the indoor temperature is still within the thermal comfort zone.

Furthermore, the proposed TEMS and simulation results are verified by experimental

tests.

HVAC systems in residential buildings will be further studied in the coming chapters

as a possible solution to improve the interaction of microgrid with the smart grid. This

will be done by optimal sizing of electrical and thermal energy storage systems, and

smart scheduling of heat pumps operation.
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Figure 3.20: Simulation results of sensitivity of DTS

The first research question (RQ1) has been completely addressed in this chapter. In

this study, a GSHP is evaluated as a responsive load in a building. An optimal real-
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time thermal energy management is proposed and applied in HVAC system to minimise

total energy consumption while reducing the indoor deviation from the temperature set-

points. The proposed DTS enables the DRP to effectively take advantage of building

thermal energy mass. The DTS strategy also allows occupants to choose options for

electricity cost reduction or the best thermal comfort by setting β.
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Chapter 4

PV Self-Consumption

Enhancement with Optimal

Residential Thermal Energy

Management

In smart residential buildings, variations in rooftop PV power causes a mismatch be-

tween generation and load demand. This chapter deals with shifting heat pumps loads

to either lower electricity price period or whenever PV generation is available1. The

proposed strategy is used for managing heat pump operation based on real-time pric-

ing tariff to minimise the operation cost of a smart building, by controlling the room

temperature. A real-time temperature boundaries is employed to increase the PV self-

consumption. Simulation results demonstrate the cost benefits and effectiveness of the

proposed thermal energy management strategy.

4.1 Introduction

In power system, the massive deployment of rooftop PV systems in the residential

networks and commercial buildings has led to the rapid growth of PV power penetration.

1The presented chapter has been published as: A. Baniasadi, D. Habibi, W. Al-Saedi, and M. A. S.
Masoum, “PV Self-Consumption Enhancement with Optimal Residential Thermal Energy Management,”
2019 9th International Conference on Power and Energy Systems (ICPES), Perth, Australia
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The integration of PV generation can offer environmental and economic benefits, in

addition to introduce significant challenges for grid operations. On the other hand,

buildings can consume about 40% of the total generated electricity [117]. HVAC system

is one of the major energy consumers in residential buildings. HVAC systems can largely

increase the demand in peak-load periods [118]. Therefore, thermal energy management

in residential buildings can be utilised to increase the use of PV generation and thus

decrease the peak demand, by exporting PV generation to the utility. HVAC systems

also have a substantial potential to facilitate demand response program. Therefore, an

optimal energy management strategy is largely required to enhance the utilisation of

PVs. This strategy can be used for heat pumps as the heating/cooling suppliers to meet

the space heating/cooling requirements.

Many researchers have presented various strategies to minimise the peak demand

for residential buildings with the integrations of rooftop PVs. Ref. [74] focused on

HP water heaters to reduce energy cost based on TOU tariff, by presenting an optimal

scheduling model. Ref. [119] presented an optimal model to minimise energy and water

consumption. The authors controlled an HP water heater and an instant heater which

are integrated with a wind turbine, PV system, and diesel generator. However, space

heating/cooling was not considered in both papers. In [90], an optimal DR methodol-

ogy presented to decrease the electrical water heating costs based on TOU tariff. The

authors considered the advantage of thermal energy storage by assuming the hot water

consumption for one day. Reference [45] developed a day-ahead optimisation of TES

based on DR. The aim was to utilise TES for hot water and thermal mass of 50 residen-

tial buildings, by considering the expected energy and discomfort costs. A scheduling

approach for an energy system with a battery was proposed in [120]. This approach

is employed to control the demand response for HVAC systems. The authors in [121]

introduced a cost-optimal schedule method. A Mixed Integer Linear Programming op-

timisation technique is used for the better utilisation of solar energy in buildings. The

demand caused by heating and partial thermal storage was investigated in [122]. An

optimal thermal storage energy was determined by predicting the heat demand of the

building.

To take advantage of the pre-cooling and pre-heating energies, a potential approach

is applied to adopt temperature set-point based on real-time pricing tariffs. In [2] and
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[55], authors proposed two variable temperature set-point strategies for changing the

set-point temperature, when the electricity price is higher than a threshold price which

is determined based on consumers preferences. However, neither of these two strategies

can considerably shift the HVAC loads. A price based DR strategy for an office building

to optimise energy costs of HVAC units and thermal discomfort levels of occupants is

proposed in [58]. The TOU tariffs are used to generate day-ahead pre-cooling schedules

for early morning hours to reduce the peak load demand. However, the real-time pre-

cooling/pre-heating strategies are proven to be more effective than the conventionally

scheduled pre-cooling operations. Therefore, in this study, the proposed RTB is designed

to shift up to 100% of HVAC loads from peak-load hours while taking advantage of a

TES. It is more effective to develop a control strategy for heat pumps coupled with TES

to respond to DRP.

Among all proposed control methodologies for controlling indoor temperature, the

model predictive control approach can effectively predict the future behaviour of the

system to minimise energy consumption while considering thermal comfort [55, 61, 64,

65]. In [55], authors proposed a practical cost and energy efficient MPC method for

HVAC load under real-time day-ahead electricity pricing tariff. A state-space model was

developed to model the impact of inputs (outside temperature, HVAC operation, etc.)

on the output (inside building temperature) at each control interval. Based on RTP

tariff, around 8% reduction in overall energy consumption and 13% cost savings are

achieved by this MPC controller. An MPC controller to optimise the thermal comfort

level and energy efficiency in a commercial building is applied in [61]. However, the

authors do not take advantage of pre-heating/pre-cooling for electricity cost reduction

and PV self-consumption promotion.

Many researchers have investigated different approaches to promote PV self-consumption

in residential buildings. Ref. [123] considered the cost optimal mix of the various comple-

mentary technologies such as batteries, electric vehicles, HPs and thermal energy storage

to reduce the exporting PV power into the grid. In [124], a rule-based algorithm is em-

ployed to decrease energy exchanges with the aims of maximising PV self-consumption

and considering both building and domestic hot water heating. The work in [125] con-

sidered an MPC multi-objective optimising energy management concept for a hybrid

energy storage system. The model consists of PV system, battery, and combined heat
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pump/heat storage device. The aim was to minimise the operation costs and increasing

the PV self-consumption while ensuring user thermal comfort. However, the authors

did not consider the variable temperature set-points based on RTP to increase PV self-

consumption.

This chapter presents an approach to resolve the issues associated with variations

in rooftop PV power, by minimising the peak demand of smart buildings. The aim is

achieved by integrating the operation of HP-PV system which consists of rooftop PV

and HP system. The latter is used as a controllable load. The implemented residential

thermal energy management strategy consists of a model predictive control to minimise

the operation cost of HP, and a real-time temperature boundary (RTB) strategy based

on real-time pricing tariff. Furthermore, the occupants’ thermal comfort is taken, into

account while shifting the HP electricity load. The main contributions can be described

as follows:

� A real-time heat pump control strategy is developed to increase the PV self-

consumption and minimise the electricity bill.

� Real-time temperature boundaries is proposed to shift the load based on real-time

pricing tariff.

4.2 System Model

4.2.1 Modelling of building thermal load

For a constructed building with given materials, design and equipment, the most

important parameters that can impact the cooling/heating load are the ambient tem-

perature, humidity, and solar radiation. Therefore, these parameters are considered

as the input parameters of the building cooling/heating load prediction model. The

impacts of delay of air temperature and solar radiation intensity’s on the dynamic cool-

ing/heating load are also considered in this chapter. The recorded values are used as

input parameters to the model.
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4.2.2 Modelling of thermal energy storage (TES)

In this chapter, TES model is adapted for heating and cooling modes which is based

on a stratified two-layer tank separated by thermocline layer. TES is used in the cooling

mode to simplify the description of the model. This is achieved by placing the return

water from the radiator at temperature (Tw), at the top of TES, while the chilled water

produced by the HP at temperature THP are directed to the bottom of TES. The volume

of the stored water (m) in TES is always constant and equal to the sum of the volumes

of return water (mw) and chilled water (mc) which is m = mw+mc. Therefore, the SOC

of TES model based on the heat and mass flow balance can be described as follows:

SOCTESi = SOCTESi−1 +
∑
i

ṁHP − ṁr

m
× 100 (4.1)

where ṁr is the mass water flow rate through the radiator, and ṁHP is the mass water

flow rate of HP. The cooling energy stored in the TES can be calculated as follows:

QTES = mccp(Tw − THP ) (4.2)

4.2.3 PV model

The PV power generation is calculated based on ambient temperature (To) and the

solar irradiation data (Is) [126, 127].

PPV = IsAPVNPV ηPV (1− 0.005(To − 25)) (4.3)

where APV is the area of PV module and NPV is the number of PV module. ηPV is the

efficiency of PV system, which is dependent on To and Is.

4.3 Problem Formulation

4.3.1 Real-time temperature boundary (RTB) based on RTP

Real-time indoor temperature boundary χ(t) enables the DR to efficiently take ad-

vantage of the building pre-cooling and pre-heating. Most of the heat distributors such
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Figure 4.1: Residential air-conditioning system with and without a storage tank.

as radiators and fan coil units can regulate the room temperature by thermostats [128].

The on/off state of a relay can be determined by the hysteresis control rule as follow

[128]:

χ(t+ 1) =


0 if Tin(t) ≤ T in + U

1 if Tin(t) ≥ T in + U

χ(t) otherwise,

(4.4)

where the continuous state (Tin) is the building temperature and the discrete state (χ)

is the state of the relay, which switches the heat distributor on or off according to the

hysteresis control rule. The set-point offset (U) is a control signal which is determined

by the proposed RTB strategy based on DR signal as follows:

U =


−1.5 if PPV ≥ 0

0 if NRTP (t) ≤ 0.5

(NRTP − 0.5)× 2 Umax otherwise,

(4.5)

where Umax represents the maximum set-point offset which can be determined by cus-

tomers or based on thermal comfort zone. NRTP represents the normalised real-time

price.
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4.4 Objective Function

The objective here is to switch the HP on/off in order to shift HP power consumption

based on DRP while producing sufficient chilled/hot water. For this purpose, the cost

function is designed for the MPC of HP based on RTP tariffs and the availability of PV

power. The stored chilled/hot water in TES should be produced and consumed on the

same day to prevent the thermal losses. In this chapter, the objective function can be

expressed as follows:

min
∑
i

Cel (4.6)

subject to

TminHP ≤ THP ≤ TmaxHP (4.7)

SOCminTES ≤ SOCTES ≤ SOCmaxTES , (4.8)

where Cel is the electricity cost. The temperature of chilled/hot water are restricted into

the indoor temperature range which is determined by Section 4.3.1. The SOC of TES

is limited to the capacity of storage tank.

4.5 Model predictive control-based for HP

MPC is adopted to use the system model to predict the future evolution of the plant,

thus generate the control action on receding control strategy [65, 66]. Therefore, MPC

is implemented to predict a thermal demand based on weather condition and building

thermal model. The objective function is formulated for the trade-off between minimising

the total electricity cost and producing enough chilled/hot water as subject to dynamic

constraints which are given by:

min
uk

k+N−1∑
j=k

(NRTP (j|k)(HP (j|k)) (4.9)

where N is the prediction horizon, NRTP is the normalised electricity tariff at time

step j, HP is the binary decision variable u = {HP} while state variable is x =
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Figure 4.2: Schematic control structure of the HP-PV MPC.

{SOCTES , THP }, and d is disturbance. Thus, HP is defined by

HP (j) =

{
1, if the AC is on

0, otherwise.
(4.10)

The overall schematic of the control structure of HP-PV MPC is shown in detail in

Figure 4.2. The plant model is described in detail in Section 4.2. The horizon prediction

is N = 24 hours, and the control sampling time is set to 5 minutes. Figure 4.3 shows

the proposed HP-PV MPC structure.

4.6 Simulation Results

In this chapter, the thermal system consists of 1000 litre storage tank, and water

source HP with 7.1 kW cooling capacity (1.92 kW power consumption) and 10.3 kW

heating capacity. The electrical system encompasses of 18 series mono-crystalline PV

modules each with rating 285 W, which produce 5.1 kWp.
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Figure 4.3: Flowchart of proposed HP-PV MPC.

In this section, the system operation is demonstrated in detail for two typical days

in summer and winter. Figure 4.1 shows the water source HP system for a residential

building. This system can directly supply the thermal demand, while the load can be

also supplied by the thermal storage tank. The thermal demand is calculated based on

weather condition and thermal building model [79]. The proposed strategy changes the

RTB based on the forecasted PV generation and RTP to minimise the price by shifting

the AC load. Figure 4.4 shows the wholesale electricity market in Western Australia [1]

and solar irradiation for a typical day in summer. Figure 4.5 depicts the AC operation

without the water storage tank. The AC load is shifted by RTB strategy. MPC is also

implemented to operate HP online based on RTP to control the state of charge of the

storage tank. This section shows the system operation for a typical day in summer and

winter. The simulations are carried out for the following three scenarios.

4.6.1 Residential air-conditioning system without storage tank

Typical air-conditioning system operates based on thermostat control. Figure 4.5

shows the temperature control and AC power consumption for a day in summer. The
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Figure 4.4: Normalised wholesale electricity market (blue bars) and solar irradiation (red
line) for a day in summer.
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Figure 4.5: AC operation and indoor temperature for a day in summer.

temperature set-points are 22 oC-24 oC. The AC is run during peak-price to keep the

indoor temperature within determined set-points.

4.6.2 Residential air-conditioning system with RTB

In this section, RTB is implemented in typical air-conditioning system to reduce

AC power from peak-load hours and consequently it helps to reduce the electricity bill.
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Figure 4.6: Proposed RTB: AC operation and indoor temperature for a day in summer.

Meanwhile, the indoor temperature is kept within thermal comfort zone. Figure 4.6

shows the temperature control and AC power consumption for a day in summer with

the implementation of RTB. The maximum temperature offset (Umax) is set to 4.5 ◦C.

4.6.3 Residential air-conditioning system with storage tank and RTB

Houses with PV system require storage systems to reduce the electricity bill. The

battery storage system is not cost-effective, whereas adding thermal energy storage to

typical AC system can help to reduce a significant AC load from peak-load hours. How-

ever, adding TES to AC system requires an accurate controller to prevent wasting ther-

mal energy. In this section, MPC controller is applied to store enough chilled water

in TES. Thus, it can supply thermal load during peak-load period based on predicting

weather condition. Figure 4.7 shows AC power consumption coupled with TES for the

same day in Section 4.6.2 for the implementation of RTB. It can be seen that all AC load

has shifted in PV power generation period. Figure 4.8 shows the percentage of stored

chilled water in TES. To minimise the thermal losses, TES is charged in midday, when

PV power is sufficient to run AC. TES is then discharged to supply thermal load during

high electricity price period.
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Figure 4.7: AC operation coupled with TES for a day in summer.
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Figure 4.8: Percentage of thermal energy storage in TES.

4.7 Discussions

Simulation results representing by electrical energy cost, peak-load shifting, and av-

erage indoor temperature are summarised in Table 7.1. It is worth mentioning that by

taking full advantage of TES, proposed controller has successfully reduced the overall

energy cost and shifted the energy consumption from the peak-load hours. The pro-

posed RTB with MPC controller based on RTP has enabled the end-users to efficiently

increase the PV power self-consumption. According to the results shown in Table 4.1,

the contributions of this work can be summarised as follows:

� The proposed RTB has reduced the total energy cost by 55%. The RTB reduced

the HP load from peak-price period. This is achieved by taking advantage of
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Table 4.1: Comparison of results (Figs. 4.5-4.8) with the percentage of improvement.

Cases
Electrical
energy cost

Power consump-
tion
in peak hours

Increased PV
self-consumption

Average
temperature

Results

$ %∗ kWh %∗ kWh ◦C

AC without TES (Base case) 1.91 - 1.75 - - 23.08 Fig. 4.5

AC with RTB and without TES 0.86 55 0.87 50 3.12 22.92 Fig. 4.6

AC with RTB and TES 0 100 0 100 4.4 22.92 Figs. 4.7,4.8

∗ Percentage of improvement with respect to base case.

building pre-cooling during PV power generation. However, only the proposed

RTB has reduced the electricity cost by 55%.

� The MPC has effectively shifted 100% of HVAC load from the peak-load hours. In

addition, TES has supplied the thermal load during peak-load period, and TES is

totally discharged, as shown in Figure 4.8. The proposed method has successfully

minimised thermal losses by charging and discharging TES in same day. The

thermal energy may not be required for the next day.

4.8 Conclusion

In this chapter, the first part of RQ2 has been addressed. A thermal energy man-

agement strategy has been proposed to address the issue of the variations in rooftop PV

power. This issue can cause a mismatch between generation and load demand in smart

residential buildings. A real-time temperature boundary strategy based on real-time

pricing tariff, is used to shift the heat pump load, thus minimises the operation cost of a

smart building and reduces the export energy to the utility. Simulations are performed

for residential air-conditioning systems without storage tank, with RTB, and with both

storage tank and RTB. The proposed RTB with MPC controller based on RTP has in-

creased the PV self-consumption by 4.4 kWh. It has also decreased the total energy cost

by 55%. The RTB has effectively reduced the HP load from peak-price period.
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Chapter 5

A Cost-effective Thermal and

Electrical Energy Storage

Management Strategy for Smart

Buildings

This chapter presents an optimal energy management strategy for a model that en-

compasses heat pump coupled with thermal storage tank, rooftop PV modules, battery

energy storage system, and electrical and thermal loads1. An integrated home energy

management system with an optimal operation schedule is proposed to manage differ-

ent resources based on time-of-use pricing tariff. This strategy is proposed to minimise

the operation cost of a smart building, thus reduce the mismatch between generation

and load. Extensive simulation results show the cost benefits and effectiveness of the

proposed combined thermal and electrical energy management strategy.

1The presented chapter has been published as: A. Baniasadi, D. Habibi, W. Al-Saedi and M. A.
S. Masoum, “A Cost-effective Thermal and Electrical Energy Storage Management Strategy for Smart
Buildings,” 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), Bucharest,
Romania, 2019, pp. 1-5. doi: 10.1109/ISGTEurope.2019.8905537
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5.1 Introduction

In recent years, the penetration of rooftop PV systems has been increasing in residen-

tial networks and commercial buildings. In 2017, small-scale PV systems participated

in 20.3% of Australia’s clean energy generation. These systems produced 3.4% of the

country’s total electricity [129]. However, the payback of renewable energy in some

countries is insignificant. Load management is an important objective, which can help

increase the penetration of renewable energy resources. This objective can be mainly

achieved by considering the demand response on flexible loads such as heat pumps and

electric vehicles [130], in particular when the customers are able to manage their usage

manually or via an automatic system [39]. In fact, in most buildings, more than 40% of

the power is consumed for space heating and cooling [118]. Therefore, an optimal energy

management strategy is largely required for best utilisation of RESs. This strategy can

be used for HPs as heating/cooling suppliers to meet the space heating/cooling, when it

is possible. Thus, a significant cost-saving can be achieved while reducing stress on the

grid during peak-load hours [79].

Many researchers have presented various strategies to minimise the energy cost of

residential buildings with the integration of rooftop PVs and battery storage systems.

The authors in [74] focused on HP water heaters to reduce energy cost based on TOU

tariff, by utilising an optimal scheduling model. In [119], the authors presented an

optimal model to minimise both energy and water consumption. The authors controlled

an HP water heater and an instant heater which are integrated with a wind turbine, PV

and diesel generator. However, space heating/cooling was not considered in both papers.

In [88], end-users can earn additional cost-saving advantages from the thermal energy

storage system. This cost-saving is achieved by implementing demand response programs

(DRPs) and shift the heat pump load from peak-demand hours to off-peak periods. Ref

[90] introduced an optimal demand response strategy to decrease the electricity cost of

water heating based on TOU tariff. The authors considered the advantage of TES by

assuming the consumption of hot water for a day. Ref [131] presented a a smart control

strategy for an optimal integration of PV system, electrical HP and thermal energy

storage to reduce electricity cost. However, considering an electrical storage is crucial

to obtain maximum benefits from the rooftop PV system. A scheduling approach for

an energy system with a battery was proposed in [120]. This approach is employed to
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control HVAC systems regarding DRP. The authors in [121] introduced a cost-optimal

schedule method. A mixed-integer linear programming optimisation technique is used

for the better utilisation of solar energy in buildings. The demand caused by heating and

partial thermal storage was investigated in [122]. An optimal thermal storage energy

was determined by predicting the heat demand of the building.

This chapter presents a cost-effective approach to minimise the operation cost for

smart homes. A model of an integrated home energy management system (IHEMS) is

proposed in this work. This system encompasses rooftop PV system, battery and HP

coupling with a thermal storage tank (TST) as a controllable load. Colonial competitive

algorithm (CCA) is employed to minimise the operation cost. The efficiencies of battery

charging and discharging are considered as well as battery charging method. HP coupled

with the TST is considered to shift its load towards the low electricity price periods or

whenever PV production is available. Furthermore, the occupants’ thermal comfort is

also taken into account while shifting HP electricity load. The IHEMS model is imple-

mented in Smart Energy laboratory at Edith Cowan University to verify the simulation

results.

5.2 Integrated Home Energy Management System Model

As shown in Figure 5.1, the proposed IHEMS model consists of a thermal energy

system which includes an HP coupled with a TST, and an electrical energy system,

including a battery, rooftop PV and electrical loads. The PV system is modelled in

Section 4.2.3. Battery system and thermal energy system are modelled in Sections 5.2.1

and 5.2.2, respectively.

5.2.1 Battery model

The battery power in kW can be calculated as follows:

Pbatt,i = Pg,i + PPV,i − PHP,i − Phl,i (5.1)

where Pg is the purchased power from grid, PPV is the PV power output, PHP is the

HP load, and Phl is the total households’ load except HP load (PHP ). The efficiency
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Figure 5.1: Schematic of the residential energy management system.

of the calculated charging (ηch) and discharging (ηdch) battery can be considered in the

battery energy storage (Ah) equations as follows:

Ebatt,i = Ebatt,i−1 + Pchbatt,iηch − (
Pdchbatt,i
ηdch

) (5.2)

Pchbatt,i = F (SOCbatti ) (5.3)

where Equation 5.3 represents the charging pattern which is a function of the battery

state of charge (SOC), as a limitation for the charge power (Pchbatt). In this chapter,

this function is determined by experimental data, and the battery SOC can be expressed

as follows:

SOCbatti =
Ebatt,i
Ebatt,max

× 100 (5.4)

where Ebatt,max is the total stored energy in kWh. Taking into account the SOC limita-

tion (SOCbattmin < SOCbatti < SOCbattmax).

5.2.2 Thermal energy system model

SELAB building is modelled by the heat dynamic state-space model in Section 3.2.2.

The performance efficiency of the HP is represented by Equation 3.4.
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The model of thermal-stratified two-layer tank is presented in [115]. Hot and cold

water is separated by thermocline layer. In this chapter, TST is introduced in cooling

mode to simplify the description of the model. In cooling mode, return water from heat

distributor (HD) at temperature (Tw) is placed in the top of TST, while the chilled water

produced by HP at temperature THP is stored in the bottom of TST. TST is connected

to the closed-loop system. The total water (m) in TST is equal to the sum of the volume

of return water (mw) and chilled water (mc), which is m = mw +mc. The SOC of TST

model based on the heat and mass flow balance can be expressed as follows:

SOCTSTi = SOCTSTi−1 +
∑
i

ṁHP − ṁd

m
× 100 (5.5)

where ṁd is the mass water flow rate through the HD, and ṁHP is the mass water flow

rate of HP. In this work, constant rates of mass water flow are considered. The cooling

energy stored in TST can be calculated as follows:

QTST = mccp(Tw − THP ) (5.6)

Most of heat distributors are used to regulate the room temperature by using ther-

mostats. The on-off state of the relay can be determined by the hysteresis control rule

as follow:

χ(t+ 1) =


0 if Tin(t) ≤ T in
1 if Tin(t) ≥ T in
χ(t) otherwise,

(5.7)

where the continuous state (Tin) is the building temperature, and the discrete state (χ)

is the state of the relay, which switches the heat distributor on or off according to the

hysteresis control rule.

5.3 IHEMS Formulation

The proposed CC algorithm is applied to manage the thermal and electrical energy

systems. The aim is to minimise the operation cost while controlling the building tem-

perature with an acceptable variation in thermal comfort. IHEMS is also employed to

control the battery charging/discharging, in order to enhance the integration of the PV

system with loads.
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Figure 5.2: Normalised TOU electricity tariff.

5.3.1 Objective function

The objective function is a criterion which is used to evaluate the solution of CC

algorithm. This evaluation is based on the minimum operation cost, which is calculated

by the following expression:

min

(∑
i

Cg,i +
∑
i

Cbatt,i

)
(5.8)

where

Cg,i = NPi · C · Pg,i · t (5.9)

Cbatt,i =

{
CbattomPbatt,i · t if Pbatt,i ≥ 0

−CbattomPbatt,i · t if Pbatt,i < 0
(5.10)

where Cg is the total cost of grid power, Cbatt is the total cost of battery, and Cbattom is the

cost of battery operation and maintenance (cent/kWh). C is the peak TOU electricity

price (cent/kWh), and NP is the normalised TOU tariff, as is shown in Figure 5.2 [132].

Prices are normalised based on the maximum electricity price in peak-hours.

5.3.2 Energy balance constraints

The model is proposed to supply the electrical and thermal demands without vi-

olating the thermal comfort. Therefore, the electrical energy balance can be written

as:

Pg,i + PPV,i − Pbatt,i − PHP,i − Phl,i = 0 (5.11)
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Figure 5.3: A Country (population) of variables for CCA.

where Pbatt,i is negative in discharging mode and positive in charging mode. The con-

straint of thermal energy balance can be expressed as follows:

QHP,i +QTST,i −Qhd,i = 0 (5.12)

where QTST,i is positive in discharging mode and negative in charging mode.

5.3.3 Colonial Competitive Algorithm (CCA)

CCA is an evolutionary optimisation algorithm, which is inspired by imperialistic

competition [133]. Similar to other evolutionary algorithms, CCA should be initialised

to start the search process. Each individual in the first generation of CCA is called

Country. According to the cost function, the algorithm countries can be classified into

two groups: Imperialist for low cost or more power of countries, and Colonies for vice

versa. Imperialist dominates Colonies based on their countries power, thus generates an

empire. The Country dimensions are determined by the number of decision variables.

In this chapter, PHP and Pbatt are two decision variables based on Equations 5.8-5.10,

in each time step i. The time step is 0.5 hour, and IHEMS is implemented for 24

hours with two variables. Therefore, the dimension of the optimisation problem is 96

(N = 24×2×2). Figure 5.3 shows Country with the decision variables of the optimisation

problem.Figure 5.4 shows the proposed IHEMS structure.

5.4 Simulation and Experimental Results

In this chapter, SELAB building is used as smart residential building. Figure 5.5

shows SELAB building, which is used to implement and test the proposed IHEMS. The

thermal system consists of 1000 litre stainless steel TST with 100 mm insulation layer,

and water source HP with 7.1 kW cooling capacity (1.92 kW power consumption) and

10.3 kW heating capacity. The electrical system consists of 12 series mono-crystalline PV
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Figure 5.4: Flowchart of proposed IHEMS structure.

modules each with the rate of 285 W , which produce 3.4 kWp, 6 series poly-crystalline

PV modules each with the rate of 250 W, which deliver 1.5 kWp, and 4×12V series lead-

acid battery modules MP12200 GEL CELL with nominal voltage 48V and total capacity

of 4.8 kWh. All home appliances, except the HP, are modelled as uncontrollable loads.

The thermal demand of the SELAB building is calculated based on weather condition.

Figures 5.6 and 5.7 show the building temperature control results including ambient

temperature, solar irradiation, building temperature and heat distribution signal for a

typical hot day in summer and a typical cold day in winter, respectively. Note that the

building temperature are kept in thermal comfort zone (22 - 24 ◦C). The simulation

results have described the system performance for a typical day in summer and winter.

The simulations are carried out for the following two scenarios.

� Scenario I: HP is considered as an uncontrollable load. Thus, the proposed IHEMS

is used to minimise the utility bill by controlling the amount of buying/selling

electricity from/to the grid.

� Scenario II: IHEMS is applied to the entire system which consists of HP coupling

with TST as controllable load and battery storage. The building temperature is
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Figure 5.5: SELAB at Edith Cowan University, Western Australia.
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Figure 5.6: Building temperature control result of one day in summer.

maintained within a desirable temperature range. In this case, IHEMS is imple-

mented to control the HP consumption to maximise the utilisation of PV pro-

duction, and minimise the electricity bill by buying the grid power in off-peak

periods.
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Figure 5.7: Building temperature control result of one day in winter.

Figures 5.8 and 5.9 show the results of scenario I for a typical day in summer and a

typical day in winter, respectively. IHEMS has targeted the grid power and battery

charging and discharging. In scenario I, the algorithm is used to import the grid power

in low price tariff periods to charge the battery. However, the surplus PV output power is

used to charge the battery by following charging pattern. The charging rate is decreased,

while the SOC is increased. As shown in Figure 5.9, due to uncontrollable HP load and

insufficient PV output power, the algorithm has responded to purchase power from the

grid during peak-price tariff, thus avoid deep battery discharge.

In scenario II, the proposed algorithm has shifted the HVAC load based on TOU

tariff, SOC of TST, and battery SOC. Figures 5.10 and 5.11 show the HP control results

for a day in summer and winter, respectively. In summer, HP has produced chilled

water to supply the thermal load and stored in TST. According to SOC of TST, HP is

worked in midday, when PV power is available to increase the SOC of TST (see Figures

5.10-5.11). The thermal demand is then supplied by TST during peak-load hours. The

majority of the thermal demand is in midday and evening, as shown in Figure 5.6.

In winter, HP has delivered hot water to meet heat demand in midnight directly, and

charged TST in early morning. Then TST supplies the thermal demand in high price

period in evening. Figures 5.12 and 5.13 depict the IHEMS results of scenario II for a

day in summer and winter, respectively.
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Figure 5.8: IHEMS results of day in summer without DR program on HP (scenario I).

5.5 Results Discussion

Figures 5.8-5.9 and 5.12-5.13 show the results of the system performance of a day in

summer and winter for both scenarios (I and II). In scenario II, the proposed IHEMS

has reduced the daily energy cost by 44.2% for the day in summer and 18.3% for the day

in winter, in comparison to scenario I. Meanwhile, it has effectively reduced 2.3 kWh of

the importing power from the grid in the summer day, and 0.3 kWh in the winter day.

Table 5.1 summarises the annual results for both scenarios I and II, in case of importing

power from the grid and exporting power to the grid as well as the electricity bill based

on TOU tariff.

5.6 Conclusion

An IHEMS has been proposed and tested for economic operation of smart buildings

and homes. This system consists an HP coupled with a TST, battery storage and a

rooftop PV system. The aim of using HP is to minimise operation costs and maximise
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Figure 5.9: IHEMS results of day in winter without DR program on HP (scenario I).
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Figure 5.10: HP signal and TST SOC for day in summer.

Table 5.1: Annual results for scenarios I and II with the percentage of improvement
(reduction) respect to scenario I.

Scenario I Scenario II %

Electrical energy cost ($) 1159.5 718.2 38.05

Importing power from grid (kWh) 3865.2 3588.4 7.16

Exporting power to grid (kWh) 3960.7 3756.1 5.16
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Figure 5.11: HP signal and TST SOC for day in winter.
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Figure 5.12: IHEMS results of day in summer with DR program on HP (scenario II).

the use of PV power. The battery charging strategy and battery efficiency are taken

into account. The comparison of two scenarios indicates that an optimal schedule for

the electrical and thermal storage systems has successfully achieved, thus reduced the

operation costs of the system. The simulation results prove that the proposed IHEMS

has effectively decreased the imported power from the grid by maximising the use of PV

power.

Every part of RQ2 has been addressed in Chapters 4 and 5. In this chapter, the
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Figure 5.13: IHEMS results of day in winter with DR program on HP (scenario II).

second part of RQ2 has been addressed by applying a colonial competitive algorithm to

manage the thermal and electrical energy systems in order to minimise the operation

cost while controlling the building temperature with an acceptable variation in thermal

comfort. IHEMS is also employed to control the battery charging/discharging, in order

to enhance the integration of the PV system with loads.
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Chapter 6

Optimal Sizing and Operation of

Electrical and Thermal Energy

Storage Systems in Smart

Buildings

PV systems in residential buildings require energy storage to enhance their productivity.

However, in present technology, battery storage systems are not the most cost-effective

solutions. Comparatively, thermal storage systems can provide opportunities to enhance

PV self-consumption while reducing life cycle costs. In this chapter, a new framework

has been proposed for optimal sizing design and real-time operation of energy storage

systems. The proposed framework is used for residential buildings that equipped with a

PV system, heat pump, thermal and electrical energy storage systems1. For simultaneous

optimal sizing of BSS and TSS, a particle swarm optimisation algorithm is implemented

to minimise daily electricity and life cycle costs of the smart building. A model predictive

controller is then developed to manage the energy flow of storage systems in order to

minimise electricity costs for end-users. The main objective of the proposed controller

is to optimally control HP operation and battery charge/discharge actions based on a

1The presented chapter has been published as: A. Baniasadi, D. Habibi, W. Al-Saedi, M. A. S.
Masoum, C. K. Das, and N. Mousavi, “Optimal Sizing Design and Operation of Electrical and Thermal
Energy Storage Systems in Smart Buildings” Journal of Energy Storage, 2020 Apr 1;28:101186.
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demand response program. The controller can regulate the flow of water in the storage

tank to meet the designated thermal energy requirements, by controlling HP operation.

Furthermore, the power flow of battery is controlled to supply all loads during peak-load

hours to minimise electricity costs. The results in this chapter demonstrate to rooftop

PV system owners that investment in combined TSS and BSS can be more profitable

as this system can minimise life cycle costs. The proposed methods for optimal sizing

and operation of electrical and thermal storage system has reduced the annual electricity

cost by more than 80% with over 42% reduction in the life cycle cost. Simulation and

experimental results are presented in this chapter to validate the effectiveness of the

proposed framework and controller.

6.1 Introduction

PV system is one of the top-ranked renewable resources in many countries such as

USA, China, Japan, India, and Australia. In 2017, the global installed (on-grid and

off-grid) PV capacity reached 98 GW, which is nearly one-third of the total 402 GW

load [77]. However, the renewable energy buyback rate is expected to significantly drop

in the near future. This buyback price reduction is due to power system challenges, such

as frequency regulation, reverse power and voltage imbalance issues, which are caused by

high PV penetration. A potential solution that may be beneficial for both end-users and

utilities is to increase PV self-consumption. This can be efficiently achieved by using

energy storage systems and residential flexible loads such as heat pumps and electric

vehicles [39, 78]. Energy storage systems are frequently being applied to address various

issues of RES-penetrated power networks. A comprehensive review of various energy

storage systems is presented in [51].

Accordingly, residential customers can reduce their electricity costs by capitalizing

their dispatched power. This can be done by: i) optimizing the capacities of renew-

able energy resources and energy storage systems, ii) utilizing HPs and HVAC systems

coupled with thermal energy storage systems, and iii) implementing demand response

programs to spread the HP load throughout the day based on electricity price tariffs

and the availability of RESs [79, 80]. In Australia, residential end-users have moved to

install rooftop PV systems to reduce electricity bills. However, they still have to pay for
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electricity due to high electricity prices during peak-load hours when PV production is

not sufficient. The practical solution is to implement demand response programs, flexible

loads, and energy storage systems to take full advantage of PV power production.

Electrical storage systems (e.g., Lead-acid and Li-ion batteries) have limitations such

as short lifespan, the limited number of cycles, and high initial cost. These limitations

may make them unaffordable for most applications [81, 134]. Comparatively, thermal

storage systems [51] and pumped-hydro storage systems [134, 135] are eco-friendly op-

tions that can provide more sustainable solutions. More importantly, TSSs can make

HVAC systems flexible with suitable responses to time-varying electricity prices. Hence,

a combination of TSSs and electrical storage systems would provide more economical and

eco-friendly solution compared to utilisation of only electrical storage systems. There-

fore, the motivation of this study is to provide a low-cost solution to end-users with

low environmental impact, when using TSSs and battery storage systems for energy

management applications.

Many researchers have focused on finding optimal component sizes of RES and stor-

age systems for smart buildings. Some papers have applied flat electricity tariffs or

average load as input data to find the optimal sizes of RESs and electrical energy stor-

age [84, 85]. Most publications rely on simple charging algorithms [86, 87]. Recent

research has considered optimal battery charging and discharging in their sizing strate-

gies. However, the effect of flexible loads such as HPs and HVAC systems on RES and

BSS sizes as well as PV self-consumption has not been investigated.

Accordingly, there is a research gap in developing effective sizing strategies for HPs

coupled with TSS to respond to DRP while minimising life cycle cost. Therefore, the key

goals of this chapter are first to find the optimal sizes of TSS and BSS based on TOU

tariff to increase PV self-consumption. Second is to develop a management strategy to

decrease the electricity cost of the residential buildings, after determining the optimal

BSS and TSS sizes. The well-known heuristic PSO approach is applied to find optimal

size for the thermal and electrical storage components. MCS is implemented to generate

a set of random inputs using their probability density functions. After determining

optimal BSS and TSS sizes, MPC is applied for real-time optimal operation of smart

buildings.
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The contributions of this research can be summarised as follows:

� A new optimal BSS and TSS sizing (OBTS) solution is proposed for thermal and

electrical storage systems in order to minimise annual electricity costs of smart

buildings with rooftop PVs while minimising the life cycle cost. Optimal BSS

and TSS charging and discharging are key elements of the proposed OBTS that

is considered in the optimal sizing. These elements have not been widely consid-

ered together by other researchers to determine the optimal TSS and BSS sizes.

Furthermore, cost comparison for various case studies is presented.

� A control scheme is developed for a real-time smart building energy management

system (SBEMS) to increase PV self-consumption and reduce electricity costs.

The real-time charging and discharging of BSS and TSS are achieved by using the

proposed SBEMS based on RTP.

� The proposed SBEMS is experimentally verified in a real-time environment using

the available facilities in the Smart Energy Laboratory at Edith Cowan University,

Australia. Furthermore, different sizes of BSS and TSS are applied to verify the

results of proposed OBTS.

6.2 System Model

In this study, MCS is implemented in the proposed optimal BSS and TSS sizing

(OBTS) strategy, to consider uncertainties associated with weather data such as so-

lar radiation and ambient temperature. The uncertainties in weather prediction are

described in MCS using the proper probability distribution functions (PDFs). The one-

year weather data record is used as the input data for MCS. The daily inputs with 10-min

discrete time steps for optimisation are then generated based on the daily recorded data.

These data sets are sent to PV and building thermal models, to predict PV production

and the thermal load profile of residential buildings. Then, the system model is described

in two parts, the electrical system model and the thermal system model.
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6.2.1 Electrical system model

Electrical loads can be incorporated with the base and HP loads as shiftable loads.

In this work: i) the household appliances such as lighting, refrigerators, freezers, ovens,

stoves and computers are considered as the base loads, ii) the input data for generating

daily load profile by MCS is provided in [136] and, iii) the SELAB building at Edith

Cowan University in Western Australia with an average daily power consumption of 18

kWh is selected as the residential building. PV system is modelled in Section 4.2.3.

Battery models are mainly determined by their charging and discharging limitations.

The stored energy in battery for each time step can be calculated as:

Ebattt+1 = Ebattt + Pch,tηch −
Pdch,t
ηdch

(6.1)

where ηch and ηdch represent the efficiency during charging and discharging modes, re-

spectively. Then, the battery state of charge can be expressed as:

SOCt+1 =
Ebattt+1

Ebattmax

× 100 (6.2)

SOCmin < SOCt < SOCmax (6.3)

where Ebattmax is the maximum stored energy (kWh). An additional constraint is added

to avoid the simultaneous charging and discharging:

Pch,t · Pdch,t = 0 (6.4)

The depth of discharge (DOD) can be modelled by [137]:

Ebattt ≥ Cbatt(1−DOD) (6.5)

where Cbatt represents the size of BSS.

6.2.2 Thermal system model

In most buildings, air conditioners, radiators and fan coil units are employed to

regulate room temperature by using thermostats. The state of the on/off relay can be

89



Chapter 6. Optimal Sizing and Operation of Electrical and Thermal Energy Storage
Systems in Smart Buildings

determined by the hysteresis control rule in cooling mode as follow [138]:

Ut+1 =


0 if Tin,t ≤ T in
1 if Tin,t ≥ T in
Ut otherwise,

(6.6)

where Tin is the indoor temperature which is function of outdoor temperature, solar

radiation, internal heat gain, and building thermal mass. T in and T in are upper and

lower boundaries of temperature set-point. U is the discrete state of the relay which

switches the heat distributor on and off; according to the hysteresis control rule.

The Smart Energy laboratory building is modelled by the heat dynamic state-space

model of [64] and [113] as follows:

[
Ṫl
Ṫin

]
=

[
− 1
RinCl

1
RinCl

1
RinCin

−( 1
RioCin

+ 1
RinCin

)

] [
Tl
Tin

]
+

[
0
1
Cin

]
UQ̇td +

[
0 0 0
1

RioCin

λ
Cin

1
Cin

]ToIs
Ig

 (6.7)

where ideally TTSS = THP , thus Q̇td = ṁtdcp(TTSS − Treturn). The model parameters

are identified utilising a nonlinear regression algorithm by measuring Tin, To, Is, Ig, and

Qtd [79]. The building model is presented and validated in Chapter 3.

The daily thermal demand is calculated based on the building model of Equation

(6.7). In each time step, the updated indoor temperature (Ṫin) and building lumped

thermal mass temperature (Ṫl) are calculated based on the present temperatures, solar

radiation, outdoor temperature, and heat gain. The calculated temperatures (Equation

(6.6)) are used to determine the ON/OFF state of the heat distributor switch. When

the heat distributor is ON, the required thermal energy is assumed to be Q̇td.

6.2.2.1 Heat pump model

The heating/cooling capacity of an HP (Q̇HP ) can be calculated based on the flow

rates and temperatures of water inlet and outlet of HP as well as the coefficient of
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performance (COP) [53] as follows:

Q̇HP = ṁHP cp(THP − Treturn), COP =
Q̇HP
PHP

(6.8)

In this study, a minimum runtime of 10 minutes is considered for HP, and the installed

HP at the SELAB building is considered for the proposed model. HP is a ground source

heat pump. Figure 6.1 shows the schematic of heat transfer of the HP. The heat transfer

equations in heating and cooling are as follows:

Q̇HP = PHP + Q̇e (6.9)

Q̇HP + PHP = Q̇e (6.10)

where Q̇HP is determined by consumed power by the compressor and the heat taken

(given) from (to) the environment (Q̇e).

HP

T2

THP

Treturn

T1

PHP

QHPQe
HP

T2

THPT1

QHPQe

Cooling mode Heating mode

PHP

Treturn

Figure 6.1: Heat transfer for HP system.

The COP depends on temperature difference between external source and internal

source. The characteristics of COP can be explained by ideal Carnot heat pump cycle

[139] as follows:

COPh = η · (Te − δT )

(THP + δT )− (Te − δT )
+ 1 (6.11)

where η = 0.55 is the Carnot efficiency, δT is the temperature difference of the heat

exchangers (δT = 5oC), and Te is the ground temperature which is 16oC in WA.
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The modelled HP is a single-phase ground source heat pump from Mammoth [140].

The HP model is MSR L024H. HP technical data are taken from the manufacturer

datasheet ([140]) to evaluate the HP performance and power consumption.

6.2.2.2 Thermal storage system (TSS) model

TSS is modelled based on the stratified two-layer tank. Figure 6.2 shows the scheme

of thermal system in cooling mode. As TSS is involved to the closed-loop system, the

sum of the volume of return water (mreturn) and chilled/hot water (mTSS) is always

constant and equal to the volume of TSS (mtot):

mtot = mTSS +mreturn (6.12)

The dynamics of TSS system can be expressed by the change in volume (mTSS) and

temperature of the chilled/hot water layer of TSS (TTSS). This model can be simplified

by neglecting losses to the surrounding area. Therefore, based on the heat and mass flow

balance concept, the TSS model can be described by the following first-order non-linear

differential equation [79]:

dmTSS

dt
= ṁHP − ṁtd (6.13)

On the other hand, the product rule derivative of equation (3.8) is given by:

dQTSS
dt

(mTSS ,TTSS) = cp(
dmTSS

dt
· TTSS +mTSS ·

dTTSS
dt

) (6.14)

In charging mode (ṁHP > ṁtd), a constant mass water flow rate is considered which

is ṁHP > ṁtd. Consequently, TSS is always charged and Ttd = THP since the HP is

operating. Therefore, the following equation can be derived from Equations (3.8) and

(6.14):
dmTSS

dt
· TTSS +mTSS ·

dTTSS
dt

= (ṁHP − ṁtd)THP (6.15)

Subsequently, the temperature derivative of the bottom layer water at each time step

can be expressed by substituting Eq. (6.13) into (6.15):

dTTSS
dt

=
(ṁHP − ṁtd)(THP − TTSS)

mTSS
(6.16)
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Figure 6.2: Scheme of thermal system (in cooling mode).
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Figure 6.3: Thermostatic control simulation result.

Figure 6.3 shows the thermostatic control simulation result based on the annual

ambient temperature data for Western Australia and SELAB building thermal model.

The indoor temperature is kept within 22-24oC. This simulation result verifies the model

of thermal system.

93



Chapter 6. Optimal Sizing and Operation of Electrical and Thermal Energy Storage
Systems in Smart Buildings

6.3 Formulation of Optimum Design Problem

The system model presented in Section 6.2 is used to formulate and implement the

proposed OBTS and SBEMS. The aim of this work is to design an optimal model for

a smart home. This model encompasses rooftop PV, battery and HP system coupled

with TSS. The sizes of battery and thermal storage tank are optimised considering the

cost which is associated with the initial investment of each component, operation, main-

tenance, equipment replacement, and electricity purchase. Then, the proposed SBEMS

is employed for the real-time management of the physical system which composed the

smart building based on the optimal sizes of TSS and BSS.

6.3.1 Formulation of proposed OBTS

OBTS is presented with inner and main optimisation loops. These two loops are

described in Sections 6.3.1.1 and 6.3.1.2.

6.3.1.1 Inner optimisation loop

Inner optimisation loop is proposed here to manage the thermal energy system. Thus,

operation costs can be reduced, while the building temperature is within the thermal

comfort zone. The inner loop is also used to control the battery charging/discharging

to enhance the integration of the PV system with loads, based on TOU tariff.

During the peak and flat periods, the battery is charged by the surplus PV output

power. Besides, the charging can also be performed over the night period to store enough

energy. The load is supposed to cover first by the PV system, when it has a sufficient

output power. While the redundant power is used to charge the battery, or it can be

sent to the utility grid. Conversely, the battery is discharged, when the PV power is

not enough to meet the load. The discharging continues until the minimum level of the

SOC. Meanwhile, the power shortage is covered by purchasing power from the grid.
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The objective function is used to minimise electricity costs with the aim of the

most effective utilisation of PV generation. In this study, the objective function can be

expressed as follows:

min
∑
m

Cg,m (6.17)

where

Cg,m = Cm · Pg,m (6.18)

Equation (6.17) is subject to:

mmin
TSS ≤ mTSS ≤ mmax

TSS (6.19)

Pg,m + PPV,m + Pdch,m − Pch,m − PHP,m − Phl,m = 0 (6.20)

QHP,m −QTSS,m −Qtd,m = 0 (6.21)

where Cm is the time-of-use electricity pricing tariff ($/kWh), as described in Table

6.1 [132]. QTSS,m represents the charging mode of TSS. The stored thermal energy is

consumed on the same day and mTSS reaches the initial stored thermal energy mTSS,0

at the end of day. Note that the TSS model is simplified to reduce the complexity of

solution. In proposed OBTS, it is assumed that HP can generate chilled/hot water at

the required temperature. Therefore, TSS is modelled based on inlet and outlet water

of TSS based on equation (6.13).

Table 6.1: Time-of-use electricity pricing tariff for Western Australia.

Time of day Price ($)

7am-3pm 0.287

3pm-9pm 0.548

9pm-7am 0.151
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6.3.1.2 Main optimisation loop

The main optimisation loop is incorporated to investigate the effect of the PV self-

consumption system on BSS and TSS sizes for residential buildings. Accordingly, BSS

and TSS sizes are determined by the end of this loop. The objective function of this

loop is proposed to calculate the LCC of the system. Thus, optimal sizes are determined

for minimum cost. The objective function of this loop is:

min
∑

LCC (6.22)

where

LCC = CCTSS + CCBSS +
Y∑
y=1

MCTSS +MCBSS +RCBSS + (1 + i)y
∑365

d=1Cg,d
(1 + l)y

(6.23)

In equation (6.23), y is the year of operation of the system, Y is the planned project

lifetime, i is the expected annual energy price increase (inflation) during the project

lifetime, and l is discount rate.

6.3.1.3 Constraints of main optimisation loop

Limitation of BSS and TSS: A fixed typical rooftop PV size of 5 kWp is used in

this work. The limitations of BSS and TSS depend on the physical parameters of the

residential building. Therefore, the battery and TSS are used as follows:

0 ≤ mTSS ≤ 3000 L (6.24)

0 ≤ Cbatt ≤ 10 kWh (6.25)

Life Cycle Cost of Thermal Storage System: The number of on/off HP cycles are

reduced for higher TSS volumes. However, when the capacity of the tank is increased, the

tank thermal losses and the initial capital cost will also increase. Therefore, the thermal

losses of tank are compensated by energy-saving which is caused by the reduction of
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Table 6.2: Number of full cycles based on depth of discharge [4].

DOD 10 20 30 40 50 60 70 80 90 100

Ntot 43000 35000 27500 20000 15000 10000 6250 3200 2700 2600

HP cycling losses. On the other hand, the stored chilled/hot water in TSS is produced

and consumed on the same day. This constraint is to minimise thermal losses of TSS.

Hence, the life cycle cost of TSS is determined by the initial capital cost (CCTSS) and

the maintenance cost (MCTSS). The minimum lifetime of the water storage tank is 25

years. Therefore, the replacement cost of TSS is not considered in this work.

Life Cycle Cost of Battery Storage System: The charging and discharging cycles

of the BSS is usually reduced due to battery degradation. The rate of this degradation

largely depends on battery (calendar and cycle) aging, as well as the current state of

life [141]. Therefore, the age of the battery is mainly determined by the number of

cycles and time. The expected number of cycles (before the end of battery life) is often

mentioned by manufacturers. The rain-flow-counting method is used to determine the

number of cycles and subsequently the lifetime of BSS. The lifetime of the battery based

on DOD is described [142] as follows:

LBSS =

DOD=0.8∑
DOD=0.1

Ncyc(DOD)

Ntot(DOD)
(6.26)

where Ncyc is the number of full cycles in the specified DOD, and Ntot is the maximum

number of full cycles based on DOD. The end of battery life with different DOD cycles

is when LBSS = 1. Table 6.2 shows the number of full cycles Ntot versus DOD [4].

This work considers battery degradation costs within the operational and mainte-

nance costs (MCBSS). The replacement cost of battery (RCBSS) should be considered

in addition to battery operation and maintenance costs. Table 6.3 shows the costs which

associated with initial capital costs of BSS (CCBSS) and TSS, as well as replacement

and maintenance costs. CCBSS represents the capital cost which associated with the

battery and its inverter.
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Table 6.3: Costs associated with BSS and TSS.

CCTSS MCTSS CCBSS [143] RCBSS MCBSS

100 $/100L 1 $/100L 850 $/kWh 850 $/kWh 2% of CCBSS

6.3.1.4 Proposed optimisation approach

Figure 6.4 shows the proposed OBTS structure. The PSO algorithm is used as the

main optimisation tool to minimise the LCC of the system. PSO is a heuristic algorithm

for solving complex optimisation problems by a population (swarm) of named particles

[144]. Each particle is a vector which consists of N decision variables and defines a

position of the search space. During the iterations, each particle moves randomly based

on the swarm’s experience and its own best knowledge. Note that each particle moves

toward the location of the current global best position (pbest) and the group’s best

experience (gbest). This process is repeated until the termination criterion is reached.

In each iteration (t), the updating pattern of particles is given by:

vj(t+ 1) = w(t)× vj(t) + c1 × r1(pbestj(t)− xj(t)) + c2 × r2(gbestj(t)− xj(t)) (6.27)

xj(t+ 1) = vj(t+ 1) + xj(t) (t = 1, 2, ..., tmax) (6.28)

where xj and vj are the position and the velocity of jth particle, respectively. j is the

index of particle (j = 1, 2, ..., Np), Np is the size of particle, r1 and r2 represent uniform

random numbers between 0 and 1 which are independently generated for each particle

in each update, c1 and c2 represent learning factors which are usually between 0 and 2,

tmax is the maximum iteration times, and w is the inertia constant.

PSO is applied to simultaneously determine the BSS and TSS sizes, while optimising

the operations of battery and HP. Integer variables such as HP on-off cannot be included

in the convex optimisation problem. PSO is a well developed technique to deal with

non-linear and nonconvex constrained problems to find global optima [145]. PSO is a

promising tool that does not require the computation of derivatives. Therefore, PSO is

applied in the inner loop to optimise HP on-off and battery charging and discharging. In

main optimisation loop, PSO creates a random population of possible solutions named
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Figure 6.4: Flowchart of proposed OBTS.

particles. Each particle consists of the random sizes of BSS and TSS. In each iteration,

particles are sent to the inner optimisation loop. The objective of inner loop is to

minimise the daily electricity cost, and maximise the PV self-consumption. The annual

electricity cost is then evaluated for each particle. Particles then move toward local and

global solutions by evaluating LCC. Consequently, the optimal sizes of TSS and BSS are

determined by minimising LCC.

6.3.2 Formulation of real-time optimal operation

The proposed SBEMS is employed to manage the physical system that composed

the smart building based on the optimal sizes of TSS and BSS. The building is equipped
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with PV panels and BSS and connected to the grid. Total electrical base load is supplied

by PV, BSS, and the grid. While the thermal load is supposed to be supplied by the

HP coupled with TSS. In general, the daily HP input and electrical load can be met

by the grid, PV panels, and batteries. The objective is to propose an SBEMS that

can achieve minimum electricity cost and maximum PV self-consumption. The main

advantage of the proposed SBEMS is the possibility to simultaneously control the BSS

and HP coupled with TSS. After determining the optimal BSS and TSS sizes, MPC is

used for the real-time optimal operation of the smart building. The schematic diagram

of the proposed SBEMS is shown in Figure 6.5. MPC uses the system model to predict

the future evolution of the smart building and perform real-time control actions [146].

The main objective of using MPC is to control the HP (on/off), in order to shift HP load

based on the DRP, by producing sufficient chilled/hot water. Moreover, this controller

is responsible to manage the charging and discharging of BSS. The cost function of the

MPC based on RTP tariffs is the trade-off between the minimum cost of the total daily

electricity and PV power exportation to the grid. At the same time, producing enough

chilled/hot water, which is subject to the dynamic constraints as follows:

min
uk

k+N−1∑
j=k

Cg(j|k) (6.29)
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subject to

x(j + 1|k) = f(x(j|k), u(j|k), d(j|k)), (6.30)

∀j = k, k + 1, . . . , k +N − 1

y(j|k) = g(x(j|k), u(j|k), d(j|k)), (6.31)

∀j = k, k + 1, . . . , k +N

where N is the prediction horizon, u is the binary decision variable, x is the state variable

which represents Tin, mTSS and SOC, y is the output which represents Pg, and d is the

disturbance. The model-based optimisation problem is solved over the finite horizon.

The horizon prediction is N which is equal to 24 hours. The control sampling time is

5 minutes. The prediction horizon is considered equal to the control horizon. In this

study, the MPC optimisation problem is defined as the problem of finding an optimal

reference power for the heat pump and the discharge/charge reference power for BSS

to supply the load. This can be described as follows: The electrical system dynamic

Equations (6.1)-(6.2.1) and the thermal system dynamic Equations (6.6)-(6.16) are the

main dynamics of the MPC, while Equations (6.20)-(6.21) and Table 6.4 correspond

to the constraints of the system. Figure 6.6 shows the overview of the MPC which is

implemented in the proposed SBEMS. The problem of control is formulated and solved

in each time step to obtain the control signal. The control signal can be calculated based

on the current system conditions, the prediction of external influences, and the future

system state. The model of the system is used to evaluate the impacts of controls on the

state of the system and to compute the optimal control solution. The first part of the

computed solution is applied to the system. The procedure continues to find the control

trajectory of u that minimises the cost function (Equation (6.29)).

6.4 Simulation Study of Proposed OBTS

In this study, SELAB building is considered as a residential building with an average

of 18 kWh daily power consumption in Western Australia. This building is equipped

with 5-kWp rooftop PV system and 10-kW water source HP system for space heating

and cooling. The project lifetime is assumed to be 25 years based on average of PV

panel lifetime. The simulations are performed with operating constraints as presented in
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Figure 6.6: Flowchart of the MPC procedure.

Table 6.4. The percentages of mTSS are associated with the volume of TSS (mtot). In the

grid-side, it is preferred for the renewable output power to be consumed locally, to avoid

the risk of causing rapid ramp generation on the conventional generators. Furthermore,

selling power price rates are appealing. Therefore, the revenue of selling PV power to

the grid is not considered in this study. The main objective of OBTS is to find optimal

sizes of thermal and electrical systems, with the aim of decreasing LCC and increasing

PV self-consumption. Detailed simulations are performed for four cases.
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Table 6.4: Operating constraints used in simulations.

SOC0 SOCmin SOCmax mmin
TSS mmax

TSS mTSS,0

50% 10% 90% 5% 100% 5%
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Figure 6.7: Case I: Average hourly power consumption for four seasons.

6.4.1 Case I: Base case

In this case, SELAB building is simulated without BSS and TSS. The reason for this

is to use this base case results to evaluate and analyse other scenarios. Figure 6.7 shows

the average hourly power consumption for four seasons. The base load and HP load are

without any storage systems. The thermostatic control is utilised to determine the HP

on-off signal, thus supplied the thermal load. The demand is increased in the peak-load

period due to HP operation, in particular in summer and winter seasons.
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Figure 6.8: Case II: Average hourly power consumption for four seasons (TSS =
2000 liters).

6.4.2 Case II: TSS only

The HP system is employed with a TSS. The optimal size/volume of TSS (determined

by the proposed OBTS) is 2000 liters. The life cycle cost of TSS is considered in this

scenario. The HP system can be operated without an initial stored thermal energy in

TSS, at first time step in each day. In order to avoid TSS thermal losses, it is assumed

that: i) the TSS is covered with 100 mm insulation layer, and ii) the OBTS algorithm

keeps the TSS without stored chilled/hot water at the end of the day. Figure 6.8 shows

the base load and shifted HP load by the OBTS algorithm for four seasons. The results

show that most of the HP load is shifted from peak-load hours (6pm-9pm) to periods

with PV generation or the periods with lower electricity prices.
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6.4.3 Case III: BSS only

The building is simulated with BSS and HP systems without any TSS. The optimal

size of BSS, considering the operating and economic constraints indicated in Table 7.1,

is 6.5 kWh. It is assumed that the initial SOC is 50%. The SOC of the battery is also

considered to be equal to the initial SOC at the end of each day. The HP system is

considered as nonshiftable load due to the lack of TSS. A possible economic solution for

cases without significant load flexibility is to store PV generation in the BSS. However,

this requires larger battery size which can subsequently raise capital cost and conse-

quently the total life cycle cost. Figure 6.9 shows the simulation results of the average

hourly power dispatch for four seasons. Note that the grid power is purchased in low

electricity tariff rates. However, in summer and winter, BSS is unable to fully supply

the total load during the peak-load period; consequently, some power is imported from

the grid.

6.4.4 Case IV: BSS and TSS

In this case, BSS and TSS are considered to find their optimal sizes in a residential

building with a 5-kWp PV system. Figure 6.10 shows the average power dispatch for

four seasons with optimal sizes of BSS (4.7 kWh) and TSS (1800 liters). The simulation

results prove that adding TSS to the HVAC system acquires more flexibility to the

system. The introduction of TSS (with optimal size of 1800 liters) positively affects the

BSS by reducing the size from 6.5 kWh to 4.7 kWh. This is achieved by shifting the HP

load from the peak-load hours to either lower electricity tariff or mid-day hours, when

PV generation is available.

6.4.5 Comparison of simulation results of optimal sizing

Simulation results and cost analysis of Cases I to IV are summarised and compared in

Table 7.1. This Table shows the optimal BSS and TSS sizes, annual PV self-consumption,

annual electricity cost, life cycle cost, payback period, and the percentage of return on

investment (ROI). The payback period is the time that it takes an option to have the

same LCC as the base case. The payback periods of Cases II, III and IV are calculated
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Figure 6.9: Case III: Average hourly power dispatch for four seasons (BSS = 6.5 kWh).

based on the initial investment divided by the annual net cash flow. ROI is the ratio of

gain to the investment. ROI is defined over a life cycle of the system as follows [147]:

ROI =
Return− Investment

Investment
=
Avoided Cost

Investment
− 1 (6.32)

However, ROI does not include the project lifetime. Thus, annualised return on invest-

ment (AROI) is necessary to amortise the full investment cost over the lifetime of the
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Figure 6.10: Case IV: Average hourly power dispatch for four seasons (TSS = 1800 liters
and BSS = 4.7 kWh).

system. AROI can be described as follows:

AROI = [(1 +ROI)1/Y − 1]× 100% (6.33)

AROI is useful to compare the returns on Cases as investment opportunities. The total

average annual PV generation is 8150 kWh. In Case I, the results show that the annual

PV self-consumption is only 37.1% due to the lack of any storage systems. In this case,

62.9% of the total PV power is exported to the grid. In Case II, the introduction of TSS
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with the optimal volume of 2000 liters has decreased the annual electricity cost by 26.2%,

while PV self-consumption increased to 43.5%. As expected, this case is associated with

a relatively short payback time of 5.1 years and a relatively high AROI of 6.5% over 25

years of project lifetime. In Case III, the annual electricity cost is reduced by 69.8%

when adding a battery with an optimal size of 6.5 kWh to Case I; while the PV self-

consumption increased to 53.3%. Moreover, LCC is improved by only 4.7% from Case II.

However, the payback period and AROI are 10 years and 3.7%, respectively. In Case IV

(proposed cost-effective framework of this chapter), the introduction of TSS (with the

new optimal volume of 1800 liters) to Case III reduces the size of BSS to 4.7 kWh. In this

case, the annual electricity cost is decreased by 80.4%. Moreover, PV self-consumption

is increased to 57.3%. Interestingly, the payback period is dropped to 6.8 years, while

the AROI is increased to 5.3%. As a result, this case has the lowest LCC in compared

with other cases. Accordingly, the main advantages of using the proposed OBTS model

are as follows:

� Adding the TSS in Case II with the optimal volume of 2000 liters to the residential

HP system effectively increases the PV self-consumption by 17.1%, in compared

with Case I. Consequently, the flexible HP system reduces annual electricity cost

to $1066 (73.7% of Case I). The main advantage of this option is the short payback

period of 5.1 years along with the higher AROI of 6.5%.

� The results of Case III show that the option of adding BSS significantly reduces

the electricity bill to $436.2 (30% of Case I). However, this solution may not be

very attractive for some consumers due to the low return on investment (3.7%)

and the long payback period (10 years).

� The proposed OBTS of Case IV reveals the significant economic impacts of intro-

ducing HP coupled with TSS to Case III. This is the most attractive solution for

the consumers since the battery size is reduced by 28% (from 6.5 kWh to 4.7 kWh)

and the annual electricity cost is reduced by 81% (from $1445.4 to only $282.7)

with the acceptable LCC.
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Table 6.5: Comparison of results for Cases I-IV.

Cases
TSS
size

BSS
size

Annual PV
self-
consumption

Annual
electricity
cost

LCC
Payback
period∗ AROI∗∗

Liter kWh kWh % $ % $/year Year %

Case I (No BSS/TSS) - - 3028 37.1 1445.4 - 1445.4 - -

Case II (TSS only) 2000 - 3548 43.5 1066.4 26.2 1140.3 5.1 6.5

Case III (BSS only) - 6.5 4351 53.3 436.2 69.8 1086 10 3.7

Case IV (BSS and TSS) 1800 4.7 4678 57.3 282.7 80.4 832.6 6.8 5.3

∗ Payback period is calculated based on project lifetime (25 years) and without buyback.
∗∗ Annualised return on investment.

6.5 Verification of Proposed OBTS and SBEMS

6.5.1 Verification of proposed OBTS

In order to verify the optimal sizing solutions of Case IV, different sizes of BSS and

TSS are chosen and the corresponding costs are calculated. Sensitivity analysis results

are presented and compared in Figures 6.11 - 6.14. Figure 6.11 describes simulation

results for the annual electricity cost. As expected, the annual electricity cost decreases

when BSS and TSS sizes are increased. However, increasing storage sizes results in

higher payback period (Figure 6.12) and lower AROI (Figure 6.13) due to the increasing

trend of capital cost. Figures 6.12 and 6.13 show that increasing the size of BSS without

adding TSS to HVAC system remarkably increases the payback period and subsequently

decreases AROI. Therefore, the results of Figures 6.11 - 6.14 verify that the captured

optimal solution (marked in Figure 6.14) corresponds to the lowest life cycle cost. In

order to the analysis of optimal TSS and BSS design for different sizes of PV system,

it is necessary to consider the whole costs of PV system within LCC. The average cost

of a PV system in Australia is about $1.09/W [148]. Two per cent of the initial cost

of PV system is considered as the annual operational and maintenance costs. Four PV

sizes are chosen and results are presented in Table 6.6. The optimal BSS and TSS sizes

for different PV sizes show that increasing the size of PV increases the size of storage

systems, while the trend is not linear. The optimal sizes of TSS and BSS are required

for taking advantage of PV generation in the higher size of PV. It is not economical to

increase the storage sizes due to i) rising initial costs of PV, TSS and BSS which leads
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Table 6.6: OBTS results for different PV sizes.

PV size kWp 2 4 6 8

TSS size Liter 1200 1700 2200 2200

BSS size kWh 3.4 4.2 5.0 5.2

Annual PV power kWh 3380 6760 10140 13520

PV self-consumption kWh 2984 4042 4708 4830

Annual electricity cost $ 958 396 233 195

LCC∗ $ 1464 1139 1206 1311

Payback period∗ year 6.6 6.9 8.6 10.2

AROI∗ % 5.4 5.2 4.2 3.4

∗ The life cycle cost of PV system is considered in LCC, payback period, and AROI.

to increase the LCC, and ii) the sizes of TSS and BSS are mostly limited by households

load.

The seasonal performance factor (SPF) on the ground source heat pump is 4.4 in

heating mode and 4.8 in cooling mode for the optimal TSS size. In this work, increasing

the temperature of the TSS has not been considered to increase PV self-consumption.

Additionally, TSS is considered to be correctly insulated. OBTS optimises the stored

thermal energy in TSS to supply daily thermal demand and avoid tank heat loss. There-

fore, different sizes of TSS do not significantly impact the SPF of HP. However, the higher

sizes of TSS decreases the SPF slightly due to the increase in tank heat loss.

6.5.2 Experimental validation of SBEMS

Figure 6.15 shows the SELAB at Edith Cowan University, Western Australia. Exper-

imental validations have been performed for the thermal and electrical energy systems

installed at the SELAB. The thermal system consists of 3×1000 liters stainless steel tank

(100 mm insulation layer), and ground source HP with 10.3 kW heating capacity and

7.1 kW cooling capacity (the power consumption of the HP is between 1.5-2 kW). The

electrical system encompasses 12×285 W series mono-crystalline PV modules (3.5 kWp),

6×250 W series poly-crystalline PV modules (1.5 kWp), and 4×4×12 V series lead-acid
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Figure 6.15: Smart Energy Laboratory (SELAB) at Edith Cowan University (ECU),
Western Australia.

batteries modules MP12200 GEL CELL with nominal voltage of 48 V and total capac-

ity of 4× 4.8 kWh. All home appliances, except the HP, are modelled as uncontrollable

loads. The base load is the data of a smart meter for a house in Perth, Australia, as

shown in Figure 6.17b. The experiments are performed at SELAB with the operating

constraints shown in Table 6.4. TSS is set to mTSS = 0.1 m3 in the first time step.

The stored chilled/hot water volume in TSS is calculated by measuring the difference

between the inlet and outlet water flow rates of the TSS. The indoor temperature set-

point is considered between 22 ◦C and 24 ◦C. Figure 6.16 shows the real-time pricing

profile used in this study. This profile is based on wholesale electricity market from the

Australian energy market operator (AEMO) website [1]. The RTP is for two typical

days in January 2019. A horizon prediction of N = 24 h and a control sampling time of
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Figure 6.16: Wholesale electricity market price for two days in Jan-2019 [1].

5 min are chosen in this test. The proposed algorithm shifts the HP load based on RTP

tariff and availability of PV generation, taking into account the stored thermal energy

in the TSS (mTSS) and the battery SOC. To verify the SBEMS results by experimental

tests, TSS with the volume of 2000 liters and BSS with the capacity of 4.8 kWh are used

as installed in SELAB.

Figure 6.17 shows SBEMS results of two days in summer. These results are obtained

based on the actual system. Based on weather prediction, SBEMS calculates PV pro-

duction and thermal demand over the prediction horizon. In each time step, the indoor

temperature is predicted and thermostat signal (U) determines the total required ther-

mal demand of the building for the next time step (Figure 6.17f). The SBEMS optimises

to run HP at midnight to directly supply thermal demand (Figure 6.17c). Figure 6.17d

shows that SBEMS is applied to import power from the grid during midnight to avoid

deep BSS discharging in the early morning. In second day, SBEMS runs the HP when

the real-time price is negative. The power is also imported from the grid when the price

is negative. It is assumed that the SOC of battery is 50% in the first time step. Figure

6.17e shows that the battery is charged by the grid power during low electricity price-

period, based on RTP, which has shown in Figure 6.16, to supply base load and HP load

during midnight and early morning. Then, BSS is fully charged by PV power to supply

the load during peak-load hours (Figure 6.17a). Figure 6.17e also demonstrates that HP

is operated to charge TSS in midnight and when PV generation is sufficient to charge

battery as well as supply the total load. The results show that according to mTSS , the

HP is run in mid-day when the PV power is available, to increase stored chilled water

mTSS . The thermal demand is then supplied by TSS during peak-load hours.

To show the effectiveness of SBEMS, test is done for the PV system without BSS

and TSS. Figures 6.18 and 6.19 show the experimental results of power dispatch for the
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system without the storage and with TSS and BSS, respectively. The HP load causes

an increase in the total load during peak-load hours when the electricity price is high.

This is due to the lack of storage systems. Thus, the total purchased grid power is

10.81 kWh in base case, while it is decreased to 3.16 kWh in the presence of TSS and

BSS. In addition, the electricity cost is decreased by 84% from $8.4 to $1.3. The PV

self-consumption is increased from 14.38 kWh (35.6 %) to 19.81 kWh (49.1 %).

Figure 6.20 and Table 6.7 show the comparison between the model results and the

experimental measurements. Figure 6.20 demonstrates that the experimental measure-

ments of BSS power and the grid power verify the simulation results with minor dif-

ferences. Table 6.7 shows the PV power, PV self-consumption, HP electrical load, and

the grid power for the first day for both simulations and measurements. The difference

between the experimental results and the simulation results is mainly due to the 5-min

time step. It can be seen that the results have verified the effectiveness of the proposed

model. However, Table 6.7 shows 0.5 kWh difference in HP power consumption. This

difference is due to the ground circulation pump of the ground source heat pump. The

ground circulation pump operates about 2 min earlier than the HP and turns off 2 min

after turning off the HP.
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Figure 6.17: Power dispatch for a day in summer with the 4.8 kWh BSS and 2000 liters
TSS. (a) PV production and battery power flow. (b) Base load. (c) HP operation signal.
(d) Signal of imported power from the grid. (e) Percentages of the stored electrical and
thermal energy in BSS and TSS. (f) Building temperature control result based on weather
condition.
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Figure 6.18: Experimental results of power dispatch for PV system without BSS and TSS.
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Figure 6.20: Comparison of experimental measurements and simulation results. (a) BSS
power. (b) grid power.

Table 6.7: Comparison of experimental measurements and simulation results.

Simulation Experiment

PV power kWh 38.4 39.3

PV self-consumption kWh 19.6 20.1

HP load kWh 12.1 12.6

Grid power kWh 3.16 3.19

6.6 Conclusion

This chapter presents a cost-effective framework for energy management of residen-

tial buildings with rooftop PVs, heat pumps, and thermal storage system and battery

storage system. Two methods are proposed and tested: 1) optimal BSS and TSS sizing

(OBTS) to determine the optimal sizes of BSS and TSS, and 2) a smart building energy

management system (SBEMS) to manage real-time operation of storage systems based

on the OBTS results. The performance of OBTS and SBEMS are verified using detailed

simulations and experimental tests. In addition, the cost benefits of the proposed OBTS

are demonstrated for different scenarios by oversizing and undersizing both TSS and

BSS components. The key outcomes of this study can be described as follows:

� The proposed OBTS reveals significant economic benefits in smart buildings with
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rooftop PVs by introducing BSS and TSS systems coupled with HP. The results

demonstrate that buildings with TSS only are a low investment solution in terms

of short payback period and reasonable AROI. However, buildings with either

thermal or battery storage (Table 7.1, Cases II and III) are not as cost-effective

as the proposed TSS+BSS systems of Case IV, in terms of low annual electricity

and life cycle costs. In particular, the control of residential HP coupled with TSS

reduces building demand from peak-load hours. Consequently, the BSS size is

decreased. Accordingly, thermal and battery storage systems significantly increase

PV self-consumption.

� With optimal sizing of BSS and TSS, the proposed SBEMS significantly reduces

the total electricity cost of the smart building by shifting the HP loads based on

DRP. This is achieved by charging the battery either during low-price electricity

hours or when PV power is available.

In this chapter, the issues related to research question RQ3 have been addressed. The

results of this study demonstrate that residential rooftop PV systems can rely on HPs

coupled with TSS systems as shifting technologies. This can help avoid power system

challenges which caused by exporting excess PV power to the grid. The enhanced sys-

tem can significantly reduce the burden of residential loads at peak hours by increasing

rooftop PV self-consumption. Due to the high initial investment and operating costs

of BSS, adding TSS to air-conditioning systems is more economical since end-users can

take full advantage of rooftop PV systems with a reasonable investment cost. Accord-

ingly, distribution network operators can support customers by introducing an incentive

framework to foster HP systems. The proposed framework can be modified to consider

the power sharing within buildings. It can also be applied in peer-to-peer trading with

other types of HVAC systems and renewable energy resources.

Simulation results and cost analysis of Cases I to IV show that adding the TSS in

Case II with the optimal volume of 2000 liters to the residential HP system effectively

increases the PV self-consumption by 17%. The results of Case III show the option of

adding BSS significantly reduces the electricity bill and Case IV reveals the significant

economic impacts of introducing HP coupled with TSS to Case III. The proposed OBTS
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reveals significant economic benefits in smart buildings with rooftop PVs by simultane-

ously introducing BSS and TSS systems coupled with the HP. The results demonstrate

that buildings with TSS only are a low investment solution in terms of short payback

period and reasonable AROI. However, buildings with either thermal or battery storage

are not as cost-effective as the proposed TSS+BSS systems of Case IV, in terms of low

annual electricity and life cycle costs. In particular, the control of residential HP coupled

with TSS reduces building demand from peak-load hours. Consequently, the BSS size is

decreased. Accordingly, thermal and battery storage systems significantly increase PV

self-consumption. With optimal sizing of BSS and TSS, the proposed SBEMS signifi-

cantly reduces the total electricity cost of the smart building by shifting the HP loads

based on DRP. This is done by charging the battery either during low-price electricity

hours or when PV power is available. The performance of OBTS and SBEMS are verified

using detailed simulations and experimental tests. In addition, the cost benefits of the

proposed OBTS are demonstrated for different scenarios by oversizing and undersizing

both TSS and BSS components.
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Chapter 8

Conclusions and

Recommendations for Future

Research

8.1 Conclusions

This PhD research focuses on grid-side and demand-side issues related to the high

penetration of PV generation in residential areas. The power system challenges, such as

frequency regulation, reverse power and voltage imbalance issues are caused by high PV

penetration. A potential solution that may be beneficial for both end-users and utilities

is to increase PV self-consumption. This can be efficiently achieved using energy storage

systems and residential flexible loads such as heat pumps. The research objectives and

significances are presented in Section 1.1. The integration of HPs into microgrids as load

responsive and ancillary service providers have been addressed in the earlier literature in

Chapter 2. Based on the literature survey of Chapter 2, four research questions (RQ1 to

RQ4) are identified and addressed in Chapters 3-7. Controlling residential thermal loads

and thermal energy storage is a viable strategy to engage end-users in demand response

programs. This thesis has focused on the development of an optimal real-time thermal

energy management system for residential buildings to resolve various issues in micro-

grids. This research has mainly targeted residential HPs with the aim of (i) minimising
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HPs power consumption during peak-load hours while improving the energy efficiency of

HP and maintaining the indoor temperature within a desirable thermal comfort range,

(ii) enhancing the PV self-consumption in residential buildings, (iii) minimising the elec-

tricity costs for end-users, (iv) minimising the operation cost of battery in residential

buildings with PV and HP, (v) sizing thermal and electrical energy storage systems to

minimise annual electricity costs of building with rooftop PVs while minimising life cycle

costs of the system, and (vi) aggregating and controlling residential HPs load to partici-

pate in reserve capacity market. Overall, the investigations carried out within this thesis

will benefit both distribution network operators and end-users by providing solutions to

recent power network issues. These issues have been investigated, and different solution

approaches have been proposed. This concluding chapter summarises the main findings

and the contributions of this thesis. In addition, several research directions for future

works are suggested.

8.2 Key findings

Based on the work described in the preceding chapters, the key findings of this thesis

are summarised as follows:

� This research has performed studies on the implementation of optimal real-time

thermal energy management strategies for smart buildings with GSHP, WST and

FCUs. The total power consumption of the GSHP and FCUs is decreased from

peak-load hours by shifting HP loads based on DRP while providing adequate

thermal comfort levels. Two online closed-loop MPCs are applied to manage two

thermal energy storage systems, a water storage tank and the building thermal

mass. The main advantages and contributions of the proposed MPC with DTS

based on RTP tariffs compared to the existing technologies based on thermostatic

control are (i) the proposed MPC with DTS can significantly reduce the total

energy cost and overall cost by shifting up to 100% of HVAC (GSHP and FCUs)

loads based on DRP depending on weather conditions while maintaining the indoor

temperature within a desirable comfort range, and (ii) the proposed MPC with

DTS allows the end-user to take more advantage of RTP by increasing the DTS

intensity coefficient. Large values of β will significantly shift HVAC loads from
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high price periods and consequently reduce the cost while the indoor temperature

is maintained within the thermal comfort zone.

� This research has demonstrated a practical approach to resolve the issues associ-

ated with variations in rooftop PV power causing a mismatch between generation

and load demand in smart residential buildings. A real-time temperature bound-

ary strategy based on real-time pricing tariff is used to shift heat pump load to

minimise the operation cost of a smart building and reduce the export energy

to the utility. Simulations are performed for residential air-conditioning systems

without storage tank, with RTB, and with both storage tank and RTB. The pro-

posed RTB with MPC controller based on RTP increases the PV self-consumption.

The proposed RTB reduces the total energy cost by shifting the HP load from the

peak-price period.

� An IHEMS has been proposed and tested for economic operation of smart buildings

and homes that include HPs coupled with thermal energy storage, battery storage,

and rooftop PV system. The potential of HPs to minimise operation costs and

maximise the use of PV power has been investigated. The battery charging strategy

and battery efficiency are taken into account. The comparison of two different cases

has indicated that the optimal scheduling of the electrical and thermal storage

systems simultaneously can significantly reduce the operation costs of the system.

The results demonstrate that the proposed IHEMS effectively decreases power

consumption from the grid by maximising the use of PV power.

� This research has performed a cost-effective framework for energy management

of residential buildings with rooftop PVs, heat pumps, thermal storage system

and battery storage system. Two methods were proposed and tested: 1) optimal

BSS and TSS sizing (OBTS) to determine the optimal sizes of BSS and TSS, and

2) a smart building energy management system (SBEMS) to manage the real-time

operation of storage systems based on the OBTS results. The performance of

OBTS and SBEMS are verified using detailed simulations and experimental tests.

The cost benefits of the proposed OBTS are demonstrated for different scenarios by

oversizing and undersizing both TSS and BSS components. The key findings of this

study are: (i) the proposed OBTS achieves significant economic benefits in smart

buildings with rooftop PVs by introducing BSS and TSS systems coupled with the
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HP. The results demonstrate that buildings with only TSS are a low investment

solution in terms of a short payback period and reasonable AROI. However, build-

ings with either thermal or battery storage are not as cost-effective as the proposed

TSS and BSS systems, in terms of low annual electricity and life cycle costs. In

particular, the control of a residential HP coupled with TSS reduces building de-

mand from peak-load hours. Consequently, the BSS size is decreased. Accordingly,

thermal and battery storage systems significantly increase PV self-consumption;

(ii) with optimal sizing of BSS and TSS, the proposed SBEMS significantly reduces

the total electricity cost of smart buildings by shifting the HP loads based on DRP.

This is done by charging the battery either during low-price electricity hours or

when PV power is available.

� The results of this research have demonstrated that residential rooftop PV systems

can rely on HPs coupled with TSS systems as shifting technologies to avoid power

system challenges caused by exporting excess PV power to the grid. The enhanced

system can significantly reduce the burden of residential loads during peak hours

by increasing rooftop PV self-consumption. Due to the high initial investment and

operating costs of BSS, adding TSS to air-conditioning systems is more economical

since end-users can take full advantage of rooftop PV systems with a reasonable in-

vestment cost. Accordingly, distribution network operators can support customers

by introducing an incentive framework to foster the deployment of HP systems.

� In this research, a business energy aggregate model for residential heat pumps has

been proposed to allow energy aggregators to participate in individual reserve ca-

pacity requirement. The model determines trading intervals capacity requirements

through forecasting peak demand and renewable energy generation. A dynamic

model of RHPs coupled with thermal energy storage was presented to implement

the control strategy to provide demand side management capacity reserve. A re-

bound effect reduction strategy was introduced. The results of this study have

demonstrated that the aggregate RHPs model is accurate to capture all power

fluctuations. This model helps energy aggregators to implement a control strat-

egy for different purposes, like mitigating the fluctuations of renewable energy

resources, frequency regulation, and peak-load shaving. The control strategy is
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used to minimise the RHPs load during reserve capacity trading intervals in trad-

ing days. The results show that energy aggregators can take advantage of TESs

to earn capacity credits. The aggregate RHPs coupled with TES model provides

reliable and long period load reduction to receive capacity credits. The control of

the aggregate RHPs is suitable for IRCR reduction which results in decreasing the

cost for energy aggregators. However, the rebound effect is crucial to mitigate.

Therefore, the proposed RER reduces the peak rebound.

8.3 Future recommendations

This PhD project has considered and addressed several issues in power networks

with renewable energy sources, including modelling, analysing, and establishing HPs

application benefits. However, there are still several scopes for further studies with the

focus on the following research factors:

� In this thesis, a GSHP as an energy-efficient heating/cooling device has been used

to satisfy DRPs. However, the effect of borehole thermal energy storage (BTES) as

seasonal thermal energy storage on cost savings as well as PV self-consumption has

not been evaluated for buildings with RESs. Therefore, the potential impacts of

using BTES for a PV and wind hybrid system integrated with a GSHP at building

level can be investigated. The feasibility of the BTES for injection/extraction of

heat from the ground on the long-term operation and storage of surplus renewable

energy can also be evaluated. Furthermore, control techniques can be applied to

manage thermal energy in BTES to minimise energy costs.

� Developing an optimal bidding strategy for the residential HPs to participate in

the distribution day-ahead and real-time markets. Appropriate building energy

management systems, coupled with an optimised bidding strategy, can provide

significant cost savings for consumers with RESs and/or storage systems when

they participate in bi-directional trading. An energy management system can be

applied for HP systems with an optimisation-based scheduling and bidding strategy

for residential customers to determine optimal day-ahead energy-quantity bids.
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� A framework can be applied to consider the power-sharing within buildings with

HP systems and RESs. It can also be applied in peer-to-peer trading with the

implementation of residential demand response through heat pumps and thermal

energy storage systems. In a case that prosumers are equipped with heat pumps

and renewable generation with energy storage units, a novel strategy can be applied

that encourages sharing surplus electricity between different prosumers, in order

to maximise the overall cost savings and the utilisation of renewable energy in the

district.

� Cloud coverage transients cause rapid fluctuations in the output of PV power gen-

eration, which can considerably impact the voltage levels in a low-voltage (LV)

distribution network with high penetration of PV systems. These voltage fluctu-

ations may lead to violation of the existing power quality standards. A control

system can be applied in the HP unit coupled with thermal energy storage for the

mitigation of PV output fluctuations.
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Appendix A: Model Predictive Control

Model predictive control was proposed in the late 1970s and has developed noticeably

ever since [3]. MPC is a control methodology that utilises a process model to predict and

optimise the future evolution of a plant. The main ideas of predictive control methods

are as follows:

� Explicit use of a model to predict the process result up to a future time instant

(horizon),

� Achieving control signal by minimising an objective function,

� Using receding strategy, at each instant, the horizon extends for the same period

into the future.

Furthermore, MPC for buildings is an active research area [73]. The use of weather

prediction to control building climate has recently gained attention. In this research

MPC is applied to multi input and multi output systems and also considering multiple

control objectives at the same time.

MPC structure

The control objective and the mathematical model is formulated as a real-time op-

timisation problem that repeatedly computes the control inputs. The basic structure of

the MPC is indicated in Figure 1. The model uses past inputs and outputs data and

combines this data with potential future inputs to estimate how the system will respond.

Then the predicted output is delivered to the future time step and is compared with a

reference trajectory to determine the deviation of the systems. These future errors are

then fed into an optimiser, which operates to maximise profit, minimise operational

costs, or keeping the system around set point trajectory. In order to satisfy constraints

on outputs, inputs and states of the system, the optimiser tries different sequences of

future inputs, which are fed back into the main model for evaluation. Once the opti-

misation has converged, and the best sequence of control inputs has been found, the

first step of these is applied to the real system. At the next time step, the process is

repeated using the new measurement. This leads to what is known as “receding horizon

optimisation”.
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Figure 1: The basic structure of the MPC [3].

MPC Strategy

Predictive control is a receding horizon method. This means the horizon will be

shifted after computing the optimal sequence and the optimisation is restarted with new

data of the measurements. There are four steps to describe the methodology of the

MPC, represented in Figure 2.

Step 1 At time k the future control signals {u(k | k), ..., u(k + Nc − 1 | k)} are

optimised to minimise an objective function. The objective function induces the outputs

to follow the reference trajectory as close as possible. This optimisation is performed

using backwards simulation.

Step 2 The model predicts the future outputs for a known prediction horizon N

at each time step k using forward simulation. These predicted outputs depend on past

inputs, system state, and (initial) future control signals and disturbances.

Step 3 The constraints of the system are checked, and if they are violated, changes

are applied to make sure that they are satisfied. Several different optimisation strategies

exist for this step, but they all require some amount of iteration between the continuous

optimisation of the control inputs and the discrete optimisation of the limits at each

time step. This step is the main reason that a long time horizon (and especially a long
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Figure 2: MPC strategy [3].

control horizon) can make the MPC problem very difficult to solve, because the limits

have to be considered at each time step and therefore the total number of limits is much

higher than first it seems.

Step 4 Once the solution is found, the first step of the control input is sent to the

process. All further steps are discarded, because at the next sampling instant y(k + 1)

is already known, the prediction horizon can be increased, and a more accurate control

input can be calculated by repeating from step 1.

Process model and disturbance model The MPC makes use of a process model of

the plant to predict the control signal during a specified horizon. A linear model is com-

monly used to make an estimation of the future response of the system. Therefore, the

state space model is well-suited for the most general system description. The following

state space form will be adopted:

xk+1 = Axk +Buk
yk = Cxk

(1)

where A is the state matrix, B is the input matrix and C is the output matrix of

dimensions A ∈ RnxÖnx, B ∈ Rny×nx and C ∈ Rny×nx. Also xk is the state of the

system, uk is all predicted disturbance, and yk is the output of the system.
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Cost function The ability of the MPC control approach to define a detailed objective

function makes this control strategy one of the most flexible advanced control strategies.

The MPC makes use of a model of the plant to obtain the control signal by minimising

this objective function. The predictive controller iterates the model plant n steps forward

in time (prediction horizon) to see how the system will behave in the future for a given

set of predicted disturbances based on the current states, and adjusts the inputs, uk,

which include both the measured disturbances and controlled inputs. At each discrete

sampling time k, the vector of system states xk is measured or estimated.

The cost function of a MPC generally has the following structure:

J(u, k) =
N∑

j=Nm

Q(j)(y(k + j|k)− yr(k + j)2 +

Nc∑
j=1

ω(∆u(k + j − 1|k))2 (2)

where Q is the weighted process output signal, yr(k) is the reference trajectory, y(k)

is the process output signal, ∆u(k) is the process control increment signal, Nm is the

minimum cost-horizon, N is the prediction horizon, Nc is the control horizon, ω is the

weighting on the control signal.

where y(k + j|k) is the prediction of y(k + j), based on knowledge up to time k, the

increment input signal is ∆u(k) = u(k)− u(k − 1) and ∆u(k + j) = 0 for j ≥ Nc. The

coefficient ω determines the trade-off between tracking accuracy (first part) and control

effort (second part).

Constraint Model predictive control has the ability to include constraints in the MPC

formulation. The capability of MPC to cope with these constraints directly is one of the

key strengths of MPC. Specific signals must not violate specified bounds due to safety

limitations, environmental regulations, consumer specifications and physical restrictions

such as minimum and/or maximum temperature. Accurate tuning of the controller

parameters may keep these values away from the bounds. The constraints can be on the

inputs, the control, the outputs or states. The constraints used in this work are linear

constraints and can be given by the following kind of equation;

umin,k ≤ uk ≤ umax,k (3)
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Linear constraints are the most commonly used constraints, because they are com-

paratively easy to resolve.
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