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Abstract

The large-scale integration of renewable energy sources requires flexibility from power markets in

the sense that the latter should quickly counterbalance the renewable supply variation driven by

weather conditions. Most power markets cannot (yet) provide this flexibility effectively as they

suffer from inelastic demand and insufficient flexible storage capacity.

Research accordingly shows that the volume of renewable energy in the supply system affects the

mean and volatility of power prices. We extend this view and show that the level of wind and

solar energy supply affects the tails of the electricity price distributions as well, and that it does

so asymmetrically. The higher the supply from wind and solar energy sources, the fatter the left

tail of the price distribution and the thinner the right tail.

This implies that one cannot rely on symmetric price distributions for risk management and for

valuation of (flexible) power assets. The evidence in this paper suggests that we have to rethink

the methods of subsidizing variable renewable supply such that they take also into consideration

the flexibility needs of power markets.

Keywords: Intermittent renewable supply, flexibility, power prices, fat tails, asymmetric

probability distribution.
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1. Introduction

Electricity markets have experienced radical structural changes over the past few decades. Dur-

ing this period of time, many countries liberalised their electricity sector and set the path to the

creation of competitive power markets. Besides that, most of these markets experienced drastic

reforms during the energy transition, with the most prominent being the increasing penetration

of energy supply from renewable energy sources (hereafter we refer to those with RES). The rapid

and large-scale integration of intermittent RES, however, induces significant impact on power

prices and substantially increases the demand for power system flexibility, as intermittent energy

supply comprises non-controllable variability and partial predictability (Perez-Arriaga and Batlle

(2012) and Kyritsis et al. (2017)).

Partial predictability is predominantly driven by the fact that weather-dependent RES do not

perfectly adapt their output as a reaction to economic incentives, and therefore to the flexibility

demand from the energy system. A better understanding of the impact that intermittent RES

have on electricity prices are of great concern to managers, who must take better long- and short-

term decisions in the operating on electricity markets, but also to policy makers who endeavour

to adjust the electricity market design in order to increase power system flexibility, and thereby

accelerate the reduction of emissions in the power sector.

Focusing on the German electricity market, a prominent example of a market integrating variable

energy supply from RES, Kyritsis et al. (2017) show that both solar and wind power generation

have an impact on the probability distribution function of electricity prices by decreasing the

average price, which is - in other words - the a merit-order effect. According to Kyritsis et al.

(2017), electricity prices decline when the share of RES in the power system increases. Würzburg

et al. (2013) discuss several studies, of which nine focus on the German electricity market, and all

provide evidence for the merit-order effect. More recent studies that yield the same conclusion are,

among others, Tveten et al. (2013), Ketterer (2014), Paraschiv et al. (2014), and Dillig et al. (2016).

Tveten et al. (2013), Ketterer (2014), and Kyritsis et al. (2017) go one step further and examine

how changes in intermittent renewable energy supply affect the volatility of electricity prices. In

fact, Kyritsis et al. (2017) study both solar and wind power generation technologies and, consider-

ing the recent period of high renewable penetration, they show that solar and wind have a different

impact on the volatility of electricity prices; while solar power generation reduces the volatility

of electricity prices and the probability of electricity price spikes, wind power volatility increases

electricity price volatility and introduces electricity price spikes. The same relation between solar

and the volatility of electricity prices manifests in Tveten et al. (2013) and between wind and
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Figure 1: Average daily price on the German day-ahead market 2010-2015.

electricity prices volatility in Ketterer (2014), during the first period of RES integration. A more

recent study by Johnson and Oliver (2019) analyzes wind and solar supply together and also find

that RES is increasing power price variance. Increased price variance induced by RES calls for

more knowledge about managing energy price risk and valuing real options, such as the option to

store power in batteries and alternative power storage systems and the option to flexibly adjust

consumption to respond to changes in supply from RES.

The view from the literature is that power prices decline (ceteris paribus) as a result of an increase

in RES and that the volatility of power prices changes (ceteris paribus) as a result of solar and

wind energy supply variations. This view motivates us to further examine the impact of inter-

mittent energy supply on the probability distribution of power prices. We question whether the

increasing share of variable solar and wind power generation also affects the tails of power price

distribution. The motivation for our research question becomes clear from Figure 1 which shows

the development of the day-ahead average daily prices in e/MWh in Germany from January 2010

to June 2015. In this figure, the typical characteristics of day-ahead power prices, such as mean

reversion and extremely high and low prices, become apparent. Kyritsis et al. (2017) focus on how

power price variation (volatility), being the second moment of a probability distribution function,

is affected by changes in RES supply. As extreme prices, which are kurtosis events, influence the

fourth moment of a probability distribution function, we think that these observations cannot

be captured only by variation (or the second moment as it were). Therefore, the present study

examines extreme power prices.

The expansion of variable or intermittent RES requires an increasing effort from the non-
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intermittent suppliers to counterbalance abrupt changes in production volumes. This may result

in increased supply frictions, which become more prominent during periods of limited power sys-

tem flexibility, in terms of adjusting the production volumes by the non-intermittent suppliers.

Thus, the lower the flexibility of the power system, the higher the probability of extreme prices to

occur. Hence, beyond the mean and variance of the electricity price distribution, the shape of the

probability distribution in the tails is also driven by the penetration of RES into the power system.

This reasoning relates the tail structure of electricity price distribution closely to power system

flexibility, which is the key challenge towards the large-scale integration of RES. However, there

is not a consensus view in the literature on the relation between intermittent wind and solar

energy supply and the tails of the power price probability distribution. Limited evidence comes

from studies that marginally touch on the link between extreme electricity prices and intermittent

supply. For instance, Paraschiv et al. (2014) do not find conclusive evidence for the case of solar

supply, but their results show that upward price spikes occur mostly when wind energy supply is

low. By comparing the tail fatness of the empirical power price distributions between emerging

and developed economies, LeBaron and Samanta (2005) show that one of the factors influencing

the distribution of electricity prices is the different penetration level of intermittent renewable

generators. From a similar point of view, Lindstrom and Regland (2012) study six European elec-

tricity markets through the employment of a regime switching model, and find a positive relation

between the frequency of extreme price events and the penetration of renewable energy sources

in the power system; hence, they provide evidence of renewable energy supply increasing the tail

fatness of the electricity price distribution. In contrast, Keles et al. (2016) apply an AR-GARCH

model on EPEX day-ahead market data and indicate that the tail fatness of the power price

distribution is reduced over the period from 2008 to 2014. Although the authors do not make a

strong claim, they suggest that their results are possibly driven by the increasing share of RES,

and particularly wind, in the power generation mix.

Kyritsis et al. (2017) demonstrate the different impact of wind and solar energy supply on power

price variation and provide some main distributional properties of electricity prices related to

price spikes, for different solar and wind power penetration levels. Those price spikes (being both

extreme high and low prices) are not studied in particular. Extreme Value Theory (EVT) is a

field within statistics that focuses on the probability structure of extreme observations only. As

extreme high and low prices occur due to abrupt changes in supply from RES and the inflexibility

of the power system to cope with these changes, prices behave different than when such changes

do not occur. This motivates us to apply EVT as we believe that the probability distribution of

extreme prices could not necessarily be caused by higher variance or volatility only. In this study,
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we therefore proceed a step further and investigate whether the results Kyritsis et al. (2017) found

for volatility also hold with regard to the tail fatness of the power price distribution. Not only we

look at the effect of solar and wind on the tails, but the main advantage is that we disentangle

the effects of each of them on the left and right tail of the power price distribution. This paper

contributes to the literature by extending Kyritsis et al. (2017). Using their data and methodology,

we examine the impact that the penetration of intermittent RES in the German power supply mix

has on both tails of the power price probability distribution, but also separately on the left and

right tail.

The distribution of electricity prices can significantly deviate from the normal distribution, and one

needs to incorporate information about the tails to correctly model the shape of the distribution.

The tail fatness of the electricity price distribution has direct implications for risk management,

energy policy making in the sense that supply from RES in combination with insufficient flexible

storage capacity and inelastic demand lead to extreme electricity prices, and for the real options

valuation of flexible power suppliers for which price variation is a key-input variable.

The remainder of the paper is structured as follows. Section 2 introduces our methodology. Section

3 discusses the data, and section 4 presents the empirical findings. Section 5 concludes.

2. Methodology

Motivated by the aforementioned discussion, we investigate the impact of energy supply from

RES on the tail fatness of the empirical power price distribution. Due to price inelastic short-term

demand and insufficient storage capacity, power prices exhibit mean reversion, high volatility, and

frequent upward and downward price spikes. As a consequence, the probability distribution of

power prices is non-normal and exhibits fat tails. This has been recognized by, among others,

Huisman and Huurman (2003), Byström (2005), Walls and Zhang (2005), Chan and Gray (2006),

and Herrera and González (2014), who apply extreme value theory (EVT) to examine extremely

high and low power prices.

None of the aforementioned studies focus on the relation between the probability and magnitude

of extreme prices and the fundamentals of the electricity markets, such as power generation mix,

flexible storage capacity, expected demand, and available supply. We agree with Paraschiv et al.

(2014) stating that stochastic models are often built on simplistic assumptions and that one should

focus more on the role of fundamentals in the analysis of power prices. This motivates us to ex-

amine the relationship between the probability and magnitude of extreme power prices and wind

and solar energy supply. In addition, we examine whether changes in intermittent supply from
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renewable energy sources have a different effect on the right side of the (empirical) power price

distribution than on the left side, as previous studies found mixed evidence for this tail asymmetry.

Frestad et al. (2010), for instance, do not find sufficient evidence for tail fatness asymmetry in the

Nordic Electricity Swap Market. González-Pedraz et al. (2014), however, suggest that positive

price spikes are more frequent in electricity prices than drops, thereby indicating tail asymmetry.

We aim to contribute to this literature by examining the relation between the volume supplied by

renewable energy sources and extreme power prices.

To formulate our expectations about this relationship, we think of a power market with inter-

mittent RES, non-intermittent suppliers who can adjust production volumes, price inelastic con-

sumers, and insufficient flexible storage capacity. With intermittent RES we mean, for instance,

wind and solar power producers who have limited capacity to adjust volumes; intermittent can

also be called variable in that sense, and we shall use both terms interchangeably. In such a power

market, non-intermittent suppliers have to increase or decrease production when energy supply

from variable RES decreases or increases so as to keep the system in balance.1

Now, consider a period in time when the energy market is in balance: the non-intermittent pro-

ducers and RES supply the customers’ demand. We question what would happen with extreme

power prices when supply from RES increases or decreases, for instance due to a change in weather

conditions. We distinguish between periods of high or low demand from customers and supply

from RES.

Increased demand for flexibility arises when supply from RES changes. The non-intermittent pro-

ducers are the only ones who can supply flexibility as they can adjust production. The prices

that the non-intermittent suppliers charge for this flexibility depend on the competition that they

face. When reserve margin, being ready to produce spare capacity, is low, demand for increasing

production can be supplied only by a few non-intermittent producers, and this might result in

very high prices. Demand for reducing production can be supplied by many producers and ex-

tremely low prices are not likely. Therefore, extremely high prices are more likely than extremely

low prices when reserve margin is low. When reserve margin is high, only a few non-intermittent

power plants produce. When a decrease in production is demanded, only a few producers can fulfil

that demand and this lack of competition might lead to extremely low prices. When an increase

1In most markets, non-intermittent output is predominantly generated using coal, nuclear, gas or hydro

technologies and each of these technologies have different flexibility levels regarding ramping up and down

production.
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in production is demanded, many producers that are standing idle can increase production and

extremely high prices are therefore less likely.

Summarising, extreme high (low) prices are more likely to occur than extreme low (high) prices

when consumer demand is high (low). When examining power prices we expect that the probability

distribution function of power prices has a fatter right (low) than low (high) tail, when demand

is high (low). This is summarised as:

1. during periods of high demand, the right tail is fatter than the left tail;

2. during periods of low demand, left tail is fatter than the right tail.

So far, we have only looked at the relation between tail fatness and demand (or reserve margin).

But the supply from RES plays a crucial role as well. When demand is low and the share of RES

supply is high, less non-intermittent power plants produce than when the share of RES is low. As

a consequence, there are even less non-intermittent producers that can provide flexibility through

decreasing production. Therefore, very low prices even become more likely when the share of RES

is high. When demand is high and the share of RES supply is low, a decrease of supply from

RES can be met by only a few producers that have spare capacity left to increase production.

Consequently, they might even charge higher prices than when the share of RES supply is high.

The combined effect can be summarised through our hypotheses below:

1. during periods of low RES supply, the right tail is fatter than the left tail and the difference

in fatness will be more pronounced when the demand is higher;

2. during periods of high RES supply, the left tail is fatter than the right tail and the difference

in fatness will be more pronounced when the demand is lower.

These statements summarise our expectations about the tails of the empirical power price

probability distribution function. The statements directly relate tail fatness on one side and

demand and RES supply fundamentals on the other.

2.1. Measuring the fatness of the tails

To observe the fatness of the tails, we apply extreme value theory (EVT) and measure what is

called the tail-index. The tail-index is a measure for tail fatness. The following discussion is based

on Huisman et al. (2001) unless otherwise stated.

EVT investigates the distribution of tail observations. Fat-tailed distributions are probability dis-

tributions whose tails do not exhibit exponential decay such as the normal distribution. Instead

they have fatter tails. In the limit, the tail shape follows a Pareto distribution or power law for

a general class of fat-tailed distributions. This power law is x−1/γ when x becomes large. The
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parameter γ is the tail-index. The higher γ is, the fatter the tail becomes, i.e. the slower the

probability density function decays to zero. This definition is good for the purpose of this paper,

but for a more general discussion we refer, for instance, to Huisman et al. (2001) and to Keles

et al. (2016). The latter is more recent and applied this to power prices.

Hill (1975) proposed a maximum likelihood estimator for the tail-index of a conditional Pareto

distribution. Consider a sample of n positive and independent observations drawn from some

fat-tailed distribution. Let x(i) be the ith-order statistic such that x(i) > x(i − 1) for i = 2...n.

Hill (1975) proposed the following estimator for γ:

γ(κ) =
1

κ

κ∑
j=1

ln(x(n− j + 1)) − ln(x(n− κ)). (1)

The idea behind the Hill (1975) estimator is that one selects to include the κ largest observations

and that one starts at the threshold observation x(n − κ) and that one measures the distance

between the other tail observations and that threshold. This estimator is simple and frequently

applied, but suffers from the problem that the researcher has to select κ, being the number of tail

observations to include in the estimate.

Huisman et al. (2001) suggest a variation of the Hill estimator that reduces the impact of the

choice for κ. They observe that the γ estimates from the Hill (1975) estimator increase almost

linearly in κ for several fat-tailed distribution functions. They propose the following regression

equation:

γ(k) = β0 + β1 × k + ε(k), (2)

for k = 1...κ. The first reason for using this method is that the evaluation of equation (2) for k

approaching zero yields that β0 becomes an unbiased estimate of γ. We refer to Huisman et al.

(2001) for the derivation, a weighted least squares variant, and the calculation of standard errors.

Huisman et al. (2001) argue that their approach, which is less dependent on a subjective choice

for κ, provides more robust estimates even in smaller samples. This is the second reason that we

choose to adopt this methodology, as we want to observe tail-index estimates from several smaller

sub-samples of our date (left and right tails and periods with high/low demand). We do not

consider others as we are not interested in the exact levels of the tail-index estimates. Following

our hypotheses, we want to observe whether tail-index estimates increase or decrease as a result of

the market share of RES and demand, and we are therefore more interested in differences, in fact

only higher or lower, and not so much in exact levels. This makes our results being less dependent

on the particular tail-index estimation method employed.
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Figure 2: Share of RES per selected subsample.

Keles et al. (2016) offer an in-depth investigation on the thresholds κ to be used for German

electricity prices. They show that the tail-index remains relatively stable between selecting the

biggest/smallest 10% and 15% of the observations. We follow their result and select κ to be set

at 10% and 15% thresholds, but also include the 20% threshold for robustness reasons.

A last note on estimating the tail-index is that Hill (1975) assumes that the tail observations x(i)

are positive. Assuming that the mean of the distribution function under consideration is zero, this

assumption implies that we can only measure the tail-index of the right tail. However, by using

the absolute values of all x(i)’s, we can measure the tail-index for both tails simultaneously, and

by taking −x(i), we can measure the tail-index for the left tail.

3. Data

We use the data from Kyritsis et al. (2017). Their sample consists of German day-ahead (Phe-

lix) power prices, solar and wind power generation, and total electricity load from January 2010

to June 2015. We have three reasons why we chose to use their data. First, the time span is

characterised by a rapid and large-scale integration of RES. Second, this is a period for which

we know that intermittent wind and solar supply explains variation in electricity price volatility.

Third, the data enables us to test the relationship between the tails of the power price probability

distribution and the share of renewable energy supply.
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It is important however to note that our results obtained from the German power market do not

necessarily hold in other markets, in particular for those with different market structure and dif-

ferent power generation mixes. Besides the power mix particularities, each power market has also

different regulations in place. For the German market during the period investigated, as Patrick

et al. (2019) explain, through Renewable Energy Sources Act (Erneuerbare-Energien-Gesetz –

EEG) passed in 2000 and further strengthened by Energiewende in 2010, RES output is priori-

tised for dispatch. These legislative measures led to a feed-in tariff system for the wind and solar

supply, a system that incentivises RES producers to maximize their production, regardless of the

impact on power prices. For German RES producers, since they are subsidised at a fixed positive

EUR/MWh rate, curtailment of supply is not beneficial even at negative day-ahead prices. This

aspect, combined with the fact that there is no curtailment obligation imposed at day-ahead mar-

ket level, leads to RES supply being always placed first in the merit order curve on the German

day-ahead market 2. Another pecularity of the German power markets is that negative prices are

allowed to be bid in the market, and in this way, extreme negative low prices can appear in certain

moments.

As we want to examine the differences in tail fatness for high and low demand periods and observe

how these differences alter when the share of RES changes, we create different samples. To distin-

guish between high and low demand periods, we separate between average daily prices (average

over 24 hours), average prices during off-peak hours (average over the prices for delivery during

hours 21-8) - being low demand periods - and average prices during peak hours (average over the

prices for delivery during hours 9-20) - being high demand periods.

To observe the tail fatness for different market shares of RES, we follow the methodology of Kyrit-

sis et al. (2017) and Nicolosi (2010) using actual power generation data for the total, wind and

solar output. However, their sampling method creates too many categories and too small samples

to draw conclusions. Therefore, we adjust their sampling method to create equally sized sub-

samples, which are large enough to measure the tail-index estimates.3 To differentiate between

left and right tail of the distribution of electricity prices, we place the (absolute) values below the

median into the left tail observations and the values above the median into the right tail observa-

2As both Michael and Iain (2018) and Patrick et al. (2019) show, it is only by 2016 that curtailment regulation

was implemented in the German power market and it affects only the real time markets. Through an amendment

to the Renewable Energy Act, up to 3% of RES installed capacity can be curtailed yearly in each Distribution

System Operator area and only if such a measure is needed for maintaining grid stability.
3Using initially the sampling method of Kyritsis et al. (2017), we obtained similar qualitative results as these

that we discuss later.
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tions. We are able to work with such a sampling strategy since our methodology treats data as a

cross-section where the exact location in time of each data point is not relevant.

Figure 2 illustrates a summary of the share of RES in Germany for the period investigated in

each of the three subsamples considered. The sub-sample “Low” contains prices from those days

where the market share of supply from RES is between 0.5% and 10.5%. The second sub-sample

“Medium” contains those days with supply from RES between 10.5% and 17.4%. The third sub-

sample “High” contains the days with supply from RES between 17.4% and 52.2% (the maximum

observed market share from RES). By construction, all sub-samples have equal size, and we use

the same number of observations to estimate the left and right tail, as well as both tails simul-

taneously. Each of the three sub-samples contains 669 observations, of which 334 are used to

estimate the left-tail and 334 are used to estimate the right tail4. Each of the years comprised in

the dataset includes days with “Low”, “Medium” and “High” share of RES.

4. Empirical results

Table 1 presents tail-index estimates for various sub-samples assuming that 15% of the observa-

tions are tail observations (i.e. κ is 15%). The estimates for κ equal to 10% and 20% are also shown

in Table A.1. Since in our hypotheses we develop expectations only for the “Low” and “High”

subsamples at the right and left tail of the power price distribution, we focus in this section on

analysing these results. The tail-index estimates for the “Medium” samples are also available in

Table A.1. With these estimates, we want to test our two statements.

Table 1: Tail-index estimates for samples equally sized by RES supply. κ is 15%.

Share of All hours Peak hours Off-peak hours

RES supply Left Right Left Right Left Right

Low 0.16 0.36 0.19 0.31 0.19 0.19

(0.5-10.5%) (0.148) (0.001) (0.006) (0.001) (0.006) (0.005)

t=-1.37 t=-19.21*** t=0.03

High 0.39 0.06 0.31 0.08 0.53 0.11

(17.4-52.2%) (0.001) (0.009) (0.001) (0.007) (0.001) (0.022)

t=37.19*** t=33.03*** t=19.04***

Significant at p***<0.01, p**<0.05, p*<0.1; standard errors in parentheses.

t is the t-value of the difference between the estimates of the left and the right tail.

4Since in each of the three subsamples we have an odd number of observations, the median data point is excluded

from the tail index calculations.
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Our first statement is that during periods of low RES supply, the right tail is fatter than the left

tail and the difference in fatness will be more pronounced when the demand is higher. As demand

during peak hours is higher than during off-peak hours, the peak hours represent the high demand

observations. Let’s focus on the first row with numbers. This row contains the tail-index estimates

from the sample of power prices from days when the share of intermittent RES supply is lowest.

The column headed peak hours shows that the tail-index γ for the right tail is 0.31 and for the

left tail is 0.19. The difference between the left and right tail-index is highly significant with a

t-value equal to -19.21. The higher the tail-index, the fatter the tail is, and we can therefore safely

conclude that the right tail is fatter than the left tail. This provides evidence of tail asymmetry,

which is in line with our aforementioned expectations.

We also expected that the difference in fatness will be more pronounced when the demand is

higher. This is what Table 1 shows as well. We see - as expected - that in the “Low” RES rows

for the off-peak hours, when demand is typically lower than during peak hours, the right tail-index

estimate becomes smaller. In fact, the tail asymmetry appears to not be present in the off-peak

hours for the “Low” RES samples, and the difference between the tail-indexes of the left and right

tail is not statistically significant. From the results regarding our first statement, we observe that,

on the German day-ahead market, when RES supply is low, high price spikes are more likely to

occur than low price spikes, and are more pronounced when the demand is higher.

Our second statement is that during periods of high RES supply, the left tail is fatter than the

right tail and the difference in fatness will be more pronounced when the demand is lower. When

we move to the “High” tail index row, we see that the relation becomes the opposite: the left tail

is now significantly fatter than the right tail. Apparently, in periods with high demand and high

share of RES supply, an increase in RES supply, which yields a demand to ramp down supply from

non-intermittent producers, leads more frequently to extremely low prices than when a decrease

in RES supply occurs. The energy market here is less flexible to deal with RES supply increases

than decreases, as only a few non-intermittent power plants produce and therefore can ramp down

their supply. Those power plants are more likely to be inflexible producers for whom at certain

moments in time ramping down production can be technically infeasible or economically not ben-

eficial. Such a situation might lead to extremely low prices.

During off-peak hours demand is typically lower than during peak hours, and we’ll use the samples

with prices from off-peak hours as low demand observation. For the periods with an average lower

demand, in the “High” sample, where the share of RES supply is high, we clearly see that the

left tail is fatter than the right tail, and that the difference between the two tail-indexes is highly
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significant with a t-value equal to 19.04. This finding confers additional robustness to our previous

result on tail fatness asymmetry, which is in accordance with our expectations. Table A.1 in the

appendix shows the same estimates, but for different settings for κ, supporting that the previous

conclusions are robust with respect to whether we set κ equal to 10%, 15%, or 20%.

The results that we found are all in line with our expectations. During periods of low share of

RES supply, the right tail is fatter than the left tail and the difference in fatness will be more

pronounced when demand is higher. During periods of high share of RES supply, left tail is fat-

ter than the right tail and the difference in fatness will be more pronounced when demand is lower.

As mentioned earlier, Kyritsis et al. (2017) show that supply from RES drives power price volatil-

ity and that wind and solar energy supply have a different impact. As energy supply from solar

sources only occurs during day-time, it increases the reserve margin during peak hours. So far

we have examined the impact of aggregate supply from RES on the tails. We also examined the

impact of energy supply from wind and solar separately, as in Kyritsis et al. (2017), to observe

whether the two impact tails differently. To do so, we sample the data in groups with low and

high supply from wind or solar sources. Tables 2 and 3 show how we constructed those samples

for wind and solar, respectively. 5 Estimating the tail-index for each sample, and following these

two tables, enables us to observe whether wind or solar affects our results differently, as what was

observed for volatility by Kyritsis et al. (2017).

Table 2 shows the results for supply from wind sources. We observe the same pattern as what

we found before: i) a fatter right than left tail during peak hours and low share of wind supply,

and the opposite tail structure when the share of wind supply is at the highest level, and ii) a

fatter left than right tail during off-peak hours with a high share of wind supply, which difference

disappears when the share of wind supply is lower. The results from only wind supply are no

different than the results observed from samples with aggregated energy supply, from both wind

and solar sources.

When we measure the tail-index for both tails of the electricity price distribution and thus do

not disentangle the effect on the left and right tail, we clearly notice that the higher the share

of wind supply, the fatter the tails of the power price probability distribution are. For instance,

during all hours the tail-index estimate for low share of wind supply is 0.20 and for high share of

5Tables A.2 and A.3, similar as with A.1 presented in the appendix of this manuscript, include the complete

tail-index estimates set for the wind and solar subsamples.
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Table 2: Tail-index estimates for samples equally sized by wind supply. κ is 15%.

Share of All hours Peak hours Off-peak hours

wind supply Left Right Left Right Left Right

Low 0.09 0.27 0.08 0.31 0.11 0.13

(0.4-4.9%) (0.042) (0.002) (0.013) (0.001) (0.012) (0.024)

t=-4.25*** t=-17.76*** t=-0.95

High 0.37 0.02 0.26 0.09 0.53 0.05

(11.2-50.6%) 0.001 0.009 0.002 0.007 0.001 0.010

t=36.82*** t=26.12*** t=46.06***

Significant at p***<0.01, p**<0.05, p*<0.1; standard errors in parentheses.

t is the t-value of the difference between the estimates of the left and the right tail.

wind supply is 0.29, which difference is statistically significant 6. This finding confers additional

robustness to our conclusions as it aligns with the findings of previous studies in the literature,

for instance Ketterer (2014) and Kyritsis et al. (2017), who employ conditional heteroskedasticity

models and find evidence of wind power generation increasing the volatility of electricity price in

Germany, and thus the fatness of the tails.

Table 3 shows the tail-index estimates from groups sampled on the share of solar supply. For peak

hours, we again observe the same pattern: a fatter right than left tail for low share of solar supply,

which difference becomes not significant for higher shares of solar supply. For the “High” solar

sample, we observe higher but not statistically significantly different left than right tail-index esti-

mates. This result was drawn from a period when the penetration of solar supply in the German

power market was relatively low. Comparing with the results from the wind supply samples, we

would expect that for a higher penetration of solar supply to observe a significantly fatter left

tail compared to the right one for the German day-ahead power prices during peak hours. This

consequence of high solar supply is closely linked with the “duck curve” phenomenon, where, in

power markets with a high solar penetration rate, conventional producers are forced during the

peak hours to ramp down significantly their production and ramp up again during the off-peak

hours. High levels of solar supply generated during peak hours, put pressure on the flexibility of

the power markets and in the same time they lower the prices, decreasing the probability of high

spike occurrences. As opposed to tables 1 or 2, in table 3 we do not present the results for the

off-peak hours and we choose to do this because of the date limitations that we face. The data

used includes the level of solar supply as a total daily output without distinguishing between the

hours when it was produced. As solar supply is generated in mostly during peak hours, and in

6These results are displayed in Table A.2 within the appendix of this manuscript.
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many winter days exclusively during peak hours, we cannot draw expectations and conclusions

based on the off-peak solar samples.

Both Tables 2 and 3 show the estimates in which we include 15% of the observations (κ) to esti-

mate the tail-index. Tables A.2 and A.3 in the appendix also show the tail-index estimates from

samples with different settings for κ.

Table 3: Tail-index estimates for samples equally sized by solar supply. κ is 15%.

Share of All hours Peak hours

solar supply Left Right Left Right

Low 0.21 0.26 0.09 0.24

(0.0-2.2%) (0.004) (0.002) (0.012) (0.002)

t=-11.63*** t=-12.97***

High 0.23 0.18 0.28 0.15

(6.7-20.9%) (0.002) (0.013) (0.001) (0.185)

t=3.63*** t=0.68

Significant at p***<0.01, p**<0.05, p*<0.1; standard errors in parentheses.

t is the t-value of the difference between the estimates of the left and the right tail.

Our results depend on the assumption that the energy market is not flexible enough to respond

easily to changes in the supply of RES, and therefore shed light on the value of electricity storage

solutions. Fat tails make the value of an option to store power, or an option to curtail production,

higher than when tails are thin. For power storage facilities our results imply that one wants to

have them charged when demand is high, and especially when the share of RES is low. One wants

them to be discharged, being ready to charge, when demand is low and the share of RES is high.

This charging strategy that follows from our results makes perfect sense, as it follows that the

power storage facility is charged during periods when RES supply is abundant (low demand and

a high share of RES) and discharged when RES supply is relatively scarce (high demand and a

low share of RES).

5. Concluding remarks

RES supply, being a variable source of power production, poses challenges to power markets as

they are often not flexible enough to counterbalance RESs variation in production volumes, since

power storage is insufficient and power demand is inelastic. Non-intermittent producers are the

only ones that can provide this flexibility, and we argue that they either do exercise market power

during times when the supply of flexibility is low or that they are technically constrained in such

moments being not capable of supplying the needed flexibility. As a consequence, in such mo-
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ments, extremely high or low prices are more likely to occur.

Using extreme value theory, we demonstrate that the tails of the power price probability distribu-

tion are fatter when the supply of flexibility is low. Such moments of low power flexibility occur

when both the reserve margins of non-intermittent suppliers and RES supply are either at low

or at high levels. More specifically we find support for our claims that i) during periods of high

share of RES, the left tail is fatter than the right tail and the difference in fatness will be more

pronounced when demand is lower, and ii) during periods of low share of RES, right tail is fatter

than the left tail and the difference in fatness will be more pronounced when the demand is higher.

When we focus separately on the share of wind and solar supply, instead of aggregate supply from

RES, we find the same results for wind and for solar.7

Although it was already known that power prices are not normally distributed, this paper shows

that the amount of non-normality in the tails, i.e. the tail fatness, can be forecasted by demand

and volume of RES. For risk managers, this implies that risk models should be made conditional

on those variables and one should use models in which the tail structure can be flexibly adjusted

to the supply and demand conditions. This will also impact hedging decisions as one would like

to hedge more for those periods when extreme losses may be expected. Another implication of

this is that those who assess the value of storage facilities or determine storage strategies may

want to include these conditional tail estimates in their models. By doing so, they will bring their

charge/discharge decisions more in line with the demand for flexibility.

In order to achieve large-scale integration of RES in the power system, policy makers and market

participants should have a clear understanding of the requirements for power system flexibility.

This study provides insights into when, and to what extent, extreme prices occur depending on

the electricity demand and RES supply, and thereby the demand for flexibility to adjust electricity

supply through non-intermittent producers. This will directly affect the value of power storage

facilities or, options to curtail production from RES, during periods of time when the power system

cannot provide sufficient flexibility to adjust production while RES supply increases. Considering

that with the increasing share of RES we will have more variability in the power system and

more frequent extreme low prices, we call for rethinking the way new RES installed capacities are

subsidised in Germany. Besides encouraging the increase in share of RES, it is also important to

7Although, to be more precise, not for solar during off-peak hours. This is, however, a result that we do not

consider relevant, as the sun does not shine during night time and the observation most likely cannot be attributed

to solar supply.
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promote and protect power market flexibility and the stability of the grid. One type of policies

could put us closer to this path would be encouraging only instalments of RES that have attached

storage capacity so that in the critical moments, RES can ramp down or ramp up production.

Moreover, further rethinking the options of economic curtailment of RES as a measure of adding

flexibility to the market could also be part of the solution for adding more flexibility on the lower

part of the distribution function of German day-ahead power prices.

We call for additional research based on higher frequency data and on a much wider variety of

countries with varying level of flexible power generation and intermittent renewable energy sources.

The latter would provide a more accurate picture of the impact of intermittent RES on the power

system. Another path that is worth investigating is looking at how the integrated assessment

models can be improved based on the information that RES supply is changing the probability of

low and high price spike occurrence.
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6. Appendix

Table A.1: Tail-index estimates for samples equally sized by RES supply

Share of Selected All hours Peak hours Off-peak hours

RES supply threshold Left Both Right Left Both Right Left Both Right

tail at 10% 0,17 0,27 0,35 0,19 0,32 0,39 0,14 0,17 0,20

se at 10% (0,000) (0,000) (0,000) (0,000) (0,000) (0,000) (0,001) (0,000) (0,000)

(t-statistic) t=-337*** t=-460,17*** t=-54,62***

Low tail at 15% 0,16 0,26 0,36 0,19 0,28 0,31 0,19 0,19 0,19

(0.5-10.5%) se at 15% (0,148) (0,001) (0,001) (0,006) (0,001) (0,001) (0,006) (0,004) (0,005)

(t-statistic) t=-1,37 t=-19,21*** t=0,03

tail at 20% 0,17 0,25 0,34 0,16 0,25 0,34 0,18 0,19 0,18

se at 20% (0,026) (0,008) (0,003) (0,016) (0,008) (0,003) (0,040) (0,007) (0,027)

(t-statistic) t=-6,4*** t=-10,73*** t=0,11

tail at 10% 0,09 0,1 0,09 0,05 0,05 0,06 0,11 0,05 0,03

se at 10% (0,030) (0,017) (0,012) (0,008) (0,008) (0,005) (0,037) (0,008) (0,011)

(t-statistic) t=-0,13 t=-1,59 t=1,95*

Medium tail at 15% 0,11 0,10 0,11 0,11 0,11 0,11 0,13 0,08 0,03

(10.5-17.4%) se at 15% (0,017) (0,039) (0,007) (0,744) (0,011) (0,016) (0,018) (0,006) (0,010)

(t-statistic) t=0,29 t=0,01 t=4,82***

tail at 20% 0,13 0,1 0,11 0,12 0,12 0,12 0,13 0,09 0,07

se at 20% (0,007) (0,103) (0,216) (0,055) (0,018) (0,030) (0,022) (0,015) (0,010)

(t-statistic) t=0,08 t=0,05 t=2,56**

tail at 10% 0,43 0,34 0,03 0,32 0,25 0,06 0,65 0,45 0,05

se at 10% (0,000) (0,000) (0,008) (0,000) (0,000) (0,014) (0,000) (0,000) (0,062)

(t-statistic) t=48,01*** t=18,58*** t=9,63***

High tail at 15% 0,39 0,29 0,06 0,31 0,21 0,08 0,53 0,38 0,11

(17.4-52.2%) se at 15% (0,001) (0,001) (0,009) (0,001) (0,002) (0,007) (0,001) (0,001) (0,022)

(t-statistic) t=37,19*** t=33,03*** t=19,04***

tail at 20% 0,37 0,25 0,07 0,25 0,18 0,09 0,48 0,34 0,11

se at 20% (0,003) (0,008) (0,010) (0,014) (0,019) (0,008) (0,002) (0,002) (0,007)

(t-statistic) t=29,49*** t=9,85*** t=49,49***

Significant at p***<0,01, p**<0,05, p*<0,1; tail = tail-index estimate; se = standard errors.

t is the t-value of the difference between the estimates of the left and the right tail.
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Table A.2: Tail-index estimates for samples equally sized by supply from wind sources

Share of Selected All hours Peak hours Off-peak hours

wind threshold Left Both Right Left Both Right Left Both Right

tail at 10% 0,08 0,13 0,29 0,04 0,15 0,29 0,06 0,11 0,12

se at 10% (0,010) (0,001) (0,000) (0,011) (0,000) (0,000) (0,006) (0,016) (0,003)

(t-statistic) t=-20,67*** t=-21,33*** t=-10,1***

Low tail at 15% 0,09 0,2 0,27 0,08 0,17 0,31 0,11 0,14 0,13

(0.4-4.9%) se at 15% (0,042) (0,003) (0,002) (0,013) (0,008) (0,001) (0,012) (0,018) (0,024)

(t-statistic) t=-4,25*** t=-17,76*** t=-0,95

tail at 20% 0,15 0,22 0,27 0,12 0,18 0,29 0,14 0,14 0,11

se at 20% (0,008) (0,059) (0,008) (0,036) (0,023) (0,006) (0,016) (0,010) (0,014)

(t-statistic) t=-10,29*** t=-4,56*** t=1,16

tail at 10% 0,13 0,23 0,32 0,13 0,22 0,35 0,11 0,15 0,21

se at 10% (0,002) (0,000) (0,000) (0,002) (0,000) (0,000) (0,008) (0,001) (0,000)

(t-statistic) t=-114,35*** t=-124,06*** t=-12,29***

Medium tail at 15% 0,13 0,18 0,26 0,08 0,19 0,35 0,11 0,14 0,16

(4.9-11.1%) se at 15% (0,021) (0,006) (0,002) (0,007) (0,004) (0,001) (0,046) (0,038) (0,041)

(t-statistic) t=-5,99*** t=-39,93*** t=-0,73

tail at 20% 0,11 0,17 0,25 0,08 0,19 0,33 0,14 0,12 0,15

se at 20% (0,007) (0,022) (0,012) (0,010) (0,014) (0,004) (0,019) (0,242) (0,037)

(t-statistic) t=-10,83*** t=-24,21*** t=-0,41

tail at 10% 0,42 0,37 0,04 0,31 0,26 0,08 0,64 0,47 0,03

se at 10% (0,000) (0,000) (0,007) (0,000) (0,000) (0,014) (0,000) (0,000) (0,008)

(t-statistic) t=53,54*** t=15,79*** t=77,16***

High tail at 15% 0,37 0,29 0,02 0,26 0,22 0,09 0,53 0,36 0,05

(11.2-50.6%) se at 15% (0,001) (0,001) (0,009) (0,002) (0,002) (0,007) (0,001) (0,001) (0,010)

(t-statistic) t=36,82*** t=26,12*** t=46,06***

tail at 20% 0,35 0,25 0,03 0,24 0,21 0,07 0,47 0,32 0,06

se at 20% (0,003) (0,009) (0,011) (0,018) (0,029) (0,015) (0,002) (0,003) (0,011)

(t-statistic) t=28,34*** t=7,1*** t=35,49***

Significant at p***<0,01, p**<0,05, p*<0,1; tail = tail-index estimate; se = standard errors.

t is the t-value of the difference between the estimates of the left and the right tail.
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Table A.3: Tail-index estimates for samples equally sized by supply from solar sources

Share of Selected All hours Peak hours Off-peak hours

solar supply threshold Left Both Right Left Both Right Left Both Right

tail at 10% 0,23 0,20 0,24 n.a. 0,10 0,19 0,38 0,32 0,20

se at 10% (0,000) (0,000) (0,000) n.a. (0,000) (0,000) (0,000) (0,000) (0,000)

(t-statistic) t=-31,62*** n.a. t=454,31***

Low tail at 15% 0,21 0,25 0,26 0,09 0,17 0,24 0,36 0,32 0,18

(0-2.2%) se at 15% (0,004) (0,001) (0,002) (0,012) (0,025) (0,002) (0,001) (0,001) (0,012)

(t-statistic) t=-11,63*** t=-12,97*** t=14,56***

tail at 20% 0,25 0,26 0,24 0,17 0,22 0,26 0,32 0,31 0,17

se at 20% (0,015) (0,006) (0,022) (0,022) (0,022) (0,010) (0,004) (0,003) (0,028)

(t-statistic) t=0,33 t=-3,49*** t=5,19***

tail at 10% 0,27 0,30 0,31 0,08 0,22 0,33 0,44 0,34 0,17

se at 10% (0,000) (0,000) (0,000) (0,050) (0,000) (0,000) (0,000) (0,000) (0,000)

(t-statistic) t=-124,64*** t=-5,16*** t=482,25***

Medium tail at 15% 0,25 0,32 0,26 0,11 0,25 0,32 0,35 0,36 0,17

(2.2-6.7%) se at 15% (0,002) (0,001) (0,002) (0,081) (0,001) (0,001) (0,001) (0,001) (0,042)

(t-statistic) t=-5,18*** t=-2,56** t=4,28***

tail at 20% 0,28 0,32 0,22 0,15 0,24 0,29 0,34 0,36 0,14

se at 20% (0,006) (0,003) (0,080) (0,019) (0,011) (0,006) (0,003) (0,002) (0,028)

(t-statistic) t=0,74 t=-6,8*** t=7,45***

tail at 10% 0,24 0,19 0,10 0,33 0,23 0,12 0,11 0,08 0,04

se at 10% (0,000) (0,000) (0,080) (0,000) (0,000) (0,004) (0,008) (0,011) (0,010)

(t-statistic) t=1,77* t=47,78*** t=5,92***

High tail at 15% 0,23 0,20 0,18 0,28 0,22 0,15 0,14 0,11 0,10

(6.7-20.9%) se at 15% (0,002) (0,002) (0,013) (0,001) (0,002) (0,185) (0,040) (0,006) (0,018)

(t-statistic) t=3,63*** t=0,68 t=1,01

tail at 20% 0,21 0,21 0,19 0,26 0,22 0,16 0,18 0,13 0,11

se at 20% (0,011) (0,144) (0,038) (0,010) (0,040) (0,027) (0,012) (0,020) (0,010)

(t-statistic) t=0,66 t=3,39*** t=4,87***

Significant at p***<0,01, p**<0,05, p*<0,1; tail = tail-index estimate; se = standard errors.

t is the t-value of the difference between the estimates of the left and the right tail.
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