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Global bifurcation structure of a limiting system
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with cross‐diffusion *

Shoji Yotsutani †
Department of Applied Mathematics and Informatics, Ryukoku University

Seta, Otsu, 520‐2194, Japan

1 Introduction

This is a joint work with Yuan Lou (The Ohio State University), Wei‐Ming
Ni (The Chinese University of Hong Kong and University of Minnesota), Tatsuki
Mori (Osaka University), and Shota Yamakawa (Ryukoku University).

We have been interested in the cross‐diffusion system

(P) \begin{array}{l}
u_{t}=\triangle[(d_{1}+\alpha_{11}u+\alpha_{12}v)u]+u(a_{1}-b_{1}u-c_{1}v) in 
\Omega\cross(0, \infty), (1.1)
v_{t}=\triangle[(d_{2}+\alpha_{21}u+\alpha_{22}v)v]+v(a_{2}-b_{2}u-c_{2}v) in 
\Omega\cross(0, oo), (1.2)
\frac{\partial u}{\partial\nu}=\frac{\partial v}{\partial\nu}=0 on 
\partial\Omega\cross(0, \infty), (1.3)
u(x, 0)=u_{0}(x)\geq 0, v(x, 0)=v_{0}(x)\geq 0 in \Omega, (1.4)
\end{array}
where  \Omega is a bounded domain in  \mathbb{R}^{N} with smooth boundary  \partial\Omega,  \nu is the outward
unit normal vector on  \partial\Omega.

This mathematical model was proposed by Shigesada, Kawasaki and Teramoto
[8] in 1979 to investigate segregation phenomena of two competing species with
each other in the same habitat area. Here,  u=u(x, t) and  v=v(x, t) represent
the densities of two competing species,  d_{1} and  d_{2} are their diffusion coefficients,
 a_{1} and  a_{2} denote the intrinsic growth rates of these two species,  b_{1} and  c_{2} account
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=
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for intra‐specific competitions while  b_{2} and  c_{1} account for inter‐specific competi‐
tions. The constants  \alpha_{11} and  \alpha_{22} represent intra‐specific population pressures, also
known as self‐diffusion rates, and  \alpha_{12} and  \alpha_{21} are the coefficients of inter‐specific
population pressures, also known as cross‐diffusion rates.

The effect of cross‐diffusion affects the population pressure between two dif‐
ferent kinds. It is an interesting problem to see whether this effect may give rise
to a spatial segregation or not, and clarify its mechanism.

We should remark that it is well known that the important quantities involving
the constants  a_{i},  b_{i},  c_{i}(i=1,2) are only

 A:= \frac{a_{1}}{a_{2}}, B:=\frac{b_{1}}{b_{2}}, C:=\frac{c_{1}}{c_{2}} . (1.5)

It seems natural to consider the following two cases separately: the “ strong com‐
petition” case  B<C and the “weak competition” case  C<B . The behavior of
solution in case  B<C is very different from  C>B.

We refer to [7] and [8] for further details of this model.
A lot of research works are done by the singular perturbation method, which

started from a theoretical research by Mimura [5]. Kan‐on [1] obtained some
criteria on the stability of those non‐constant solutions of (P). However, it is
not easy to clarify the global structure of stationary solutions and stability of
stationary solutions.

Lou and Ni [2], [3] started to investigate  N‐dimensional case and general diffu‐
sion coefficients. To investigate the cross‐diffusion effects, let us put  \alpha_{11}=\alpha_{21}=

 \alpha_{22}=0 and  r  :=\alpha_{12}/d_{1} . We have

 (TP_{r}^{N})\{\begin{array}{ll}
u_{t}=d_{1}\triangle[(1+rv)u]+u(a_{1}-b_{1}u-c_{1}v)   in \Omega\cross(0, 
\infty) , (1.6)
v_{t}=d_{2}\triangle v+v(a_{2}-b_{2}u-c_{2}v)   in \Omega\cross(0, \infty) , (1.
7)
\frac{\partial u}{\partial\nu}=\frac{\partial v}{\partial\nu}=0   on 
\partial\Omega\cross(0, \infty) , (1.8)
u(x, 0)=u_{0}(x)\geq 0, v(x, 0)=v_{0}(x)\geq 0   in \Omega, (1.9)
\end{array}
where  u=u(x, t) and  v=v(x, t) . Then, the stationary problem of  (TP_{r}^{N}) is

 (S_{r}^{N})\{\begin{array}{ll}
d_{1}\triangle[(1+rv)u]+u(a_{1}-b_{1}u-c_{1}v)=0   in \Omega, (1.10)
d_{2}\triangle v+v(a_{2}-b_{2}u-c_{2}v)=0   in \Omega, (1.11)
\frac{\partial u}{0\bullet}=\frac{\partial v}{\partial\nu}=0   on 
\partial\Omega, (1.12)
u\geq 0, v\geq 0   in \Omega, (1.13)
\end{array}
where  u=u(x) and  v=v(x) .

for intra-specific competitions while b2 and c1 account for inter-specific competi-
tions. The constants α11 and α22 represent intra-specific population pressures, also
known as self-diffusion rates, and α12 and α21 are the coefficients of inter-specific
population pressures, also known as cross-diffusion rates.

The effect of cross-diffusion affects the population pressure between two dif-
ferent kinds. It is an interesting problem to see whether this effect may give rise
to a spatial segregation or not, and clarify its mechanism.
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It seems natural to consider the following two cases separately: the ”strong com-
petition” case B < C and the ”weak competition” case C < B. The behavior of
solution in case B < C is very different from C > B.

We refer to [7] and [8] for further details of this model.
A lot of research works are done by the singular perturbation method, which

started from a theoretical research by Mimura [5]. Kan-on [1] obtained some
criteria on the stability of those non-constant solutions of (P). However, it is
not easy to clarify the global structure of stationary solutions and stability of
stationary solutions.

Lou and Ni [2], [3] started to investigate N-dimensional case and general diffu-
sion coefficients. To investigate the cross-diffusion effects, let us put α11 = α21 =
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vt = d2Δv + v(a2 − b2u− c2v) in Ω × (0,∞), (1.7)
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= 0 on ∂Ω× (0,∞), (1.8)

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0 in Ω, (1.9)

where u = u(x, t) and v = v(x, t). Then, the stationary problem of (TPN
r ) is

(SN
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d2Δv + v(a2 − b2u− c2v) = 0 in Ω, (1.11)

∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω, (1.12)

u ≥ 0, v ≥ 0 in Ω, (1.13)

where u = u(x) and v = v(x).
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They obtained limiting systems as   rarrow\infty for  (TP_{r}^{N}) and  (S_{r}^{N}) . One of limiting
systems as   rarrow\infty are as follows. The time‐dependent limiting system is

 (TP_{\infty}^{N})\{\begin{array}{ll}
\frac{\partial}{\partial t}\int_{\Omega}\frac{\tau}{v}dx=\int_{\Omega}
\frac{\tau}{v}(a_{1}-b_{1}\frac{\tau}{v}-c_{1}v)dx   in (0, oo), (1.14)
\frac{\partial v}{\partial t}=d_{2}\triangle v+v(a_{2}-c_{2}v)-b_{2}\tau   in 
\Omega\cross(0, \infty) , (1.15)
\frac{\partial v}{\partial\nu}=0   on \partial\Omega\cross(0, \infty) , (1.16)
v(0, t)=v_{0}(x)>0   in \Omega, (1.17)
\end{array}
where  v=v(x, t) and  \tau=\tau(t) are unknown positive functions, and  \tau(t)/v(x, t)
corresponds to  u(x, t) . The stationary limiting system is

 (S_{\infty}^{N})\{\begin{array}{ll}
\int_{\Omega}\frac{\tau}{v}(a_{1}-b_{1}\frac{\tau}{v}-c_{1}v)dx=0,   (1.18)
d_{2}\triangle v+v(a_{2}-c_{2}v)-b_{2}\tau=0   in \Omega, (1.19)
\frac{\partial v}{\partial\nu}=0   on \partial\Omega, (1.20)
v(x)>0,   in \Omega, (1.21)
\end{array}
where  v=v(x) is an unknown positive function,  \tau is an unknown positive con‐
stant.

For one‐dimension  \Omega  :=(0,1) , the limiting system corresponding  (TP_{\infty}^{N}) and
 (SP_{\infty}^{N}) are

 (TP_{\infty}^{1})\{\begin{array}{l}
\frac{\partial}{\partial t}(\int_{0}^{1}\frac{\tau}{v}dx)=\int_{0}^{1}
\frac{\tau}{v}(a_{1}-b_{1}\frac{\tau}{v}-c_{1}v)dxin(0,1)\cross(0, oo) x1.22)
\frac{\partial v}{\partial t}=d_{2}v_{xx}+v(a_{2}-c_{2}v)-b_{2}\tau in (0,1) , 
(1.23)
v_{x}(0, t)=0, v_{x}(1, t)=0, in (0, oo), (1.24)
v(x, 0)=v_{0}(x)>0, in (0,1) , (1.25)
\end{array}
and

(  S_{\infty}^{1} , general)  \{\begin{array}{ll}
\int_{0}^{1}\frac{\tau}{v}(a_{1}-b_{1}\frac{\tau}{v}-c_{1}v)dx=0,   (1.26)
d_{2}v_{xx}+v(a_{2}-c_{2}v)-b_{2}\tau=0 in (0,1) ,   (1.27)
v_{x}(0)=0, v_{x}(1)=0,   (1.28)
v(x)>0 in (0,1) .   (1.29)
\end{array}
Lou, Ni and Yotsutani [4] obtained existence and non‐existence of non‐constant

steady state solutions, the asymptotic shape of solutions, and almost clarified the
structure of solutions of  (S_{\infty,genera1}^{1}) .

They obtained limiting systems as r → ∞ for (TPN
r ) and (SN

r ). One of limiting
systems as r → ∞ are as follows. The time-dependent limiting system is
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τ

v
− c1v

)

dx in (0,∞), (1.14)

∂v

∂t
= d2Δv + v(a2 − c2v)− b2τ in Ω× (0,∞), (1.15)

∂v

∂ν
= 0 on ∂Ω× (0,∞), (1.16)

v(0, t) = v0(x) > 0 in Ω, (1.17)

where v = v(x, t) and τ = τ(t) are unknown positive functions, and τ(t)/v(x, t)
corresponds to u(x, t). The stationary limiting system is
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∂v
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= 0 on ∂Ω, (1.20)

v(x) > 0, in Ω, (1.21)

where v = v(x) is an unknown positive function, τ is an unknown positive con-
stant.
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a1 − b1
τ

v
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)

dx in(0, 1)× (0,∞),(1.22)

∂v

∂t
= d2vxx + v(a2 − c2v)− b2τ in (0, 1), (1.23)

vx(0, t) = 0, vx(1, t) = 0, in (0,∞), (1.24)

v(x, 0) = v0(x) > 0, in (0, 1), (1.25)

and
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∞,general)
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v
− c1v

)

dx = 0, (1.26)

d2vxx + v(a2 − c2v)− b2τ = 0 in (0, 1), (1.27)

vx(0) = 0, vx(1) = 0, (1.28)

v(x) > 0 in (0, 1). (1.29)

Lou, Ni and Yotsutani [4] obtained existence and non-existence of non-constant
steady state solutions, the asymptotic shape of solutions, and almost clarified the
structure of solutions of (S1

∞,general).
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In what follows, we concentrate on the monotone increasing case  v_{x}(x)>0 to
understand the essence of structure of  (S_{\infty,genera1}^{1}) .

Now, we introduce  a(S_{\infty}^{1}) as follows:

 (S_{\infty}^{1})\{\begin{array}{ll}
\int_{0}^{1}\frac{\tau}{v}(a_{1}-b_{1}\frac{\tau}{v}-c_{1}v)dx=0,   (1.30)
d_{2}v_{xx}+v(a_{2}-c_{2}v)-b_{2}\tau=0 in (0,1) ,   (1.31)
v_{x}(0)=0, v_{x}(1)=0,   (1.32)
v(x)>0, v_{x}(x)>0 in (0,1).   (1.33)
\end{array}
2 Results

We first explain results in [4] for  (S_{\infty}^{1}) . As for the existence and non‐existence,
the following theorems are obtained:

Theorem A (Existence, weak competition). Suppose that  C\leq B.

(i) If  B\leq A then there exists a solution  (v, \tau) of  (S_{\infty}^{1}) .

(ii) If  (B+3C)/4<A<B, then there exists a solution of  (S_{\infty}^{1}) . for   d_{2}\in

 (0,  \frac{2A-(B+C)}{B-C}\cdot\frac{a_{2}}{\pi^{2}}) .

Figure 1: Existence and non‐existence of solutions of  (S_{\infty}^{1}) for  C\leq B.

Theorem B (Non‐Existence, weak competition). Suppose that  C\leq B.

(i) If  d_{2}>a_{2}/\pi^{2} , then there exists no solution of  (S_{\infty}^{1}) .

(ii) If  (B+3C)/4<A<B, then there exists a  d_{2}^{*}=d_{2}^{*}(A, B, C, a_{2})>0 such
that there exists no solution of  (S_{\infty}^{1}) for  d_{2}\in(d_{2}^{*}, a_{2}/\pi^{2}) .

(iii) If  A\leq(B+3C)/4 , there exists no solution of  (S_{\infty}^{1}) .

In what follows, we concentrate on the monotone increasing case vx(x) > 0 to
understand the essence of structure of (S1

∞,general).
Now, we introduce a (S1

∞
) as follows:

(S1
∞
)

⎧
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⎪

⎪

⎪

⎪

⎩

∫ 1

0

τ

v

(

a1 − b1
τ

v
− c1v

)

dx = 0, (1.30)

d2vxx + v(a2 − c2v)− b2τ = 0 in (0, 1), (1.31)

vx(0) = 0, vx(1) = 0, (1.32)

v(x) > 0, vx(x) > 0 in (0, 1). (1.33)

2 Results

We first explain results in [4] for (S1
∞
). As for the existence and non-existence,

the following theorems are obtained:

Theorem A (Existence, weak competition). Suppose that C ≤ B.

(i) If B ≤ A then there exists a solution (v, τ) of (S1
∞
).

(ii) If (B + 3C)/4 < A < B, then there exists a solution of (S1
∞
). for d2 ∈

(0, 2A−(B+C)
B−C

· a2
π2 ).

Figure 1: Existence and non-existence of solutions of (S1
∞
) for C ≤ B.

Theorem B (Non-Existence, weak competition). Suppose that C ≤ B.

(i) If d2 > a2/π
2, then there exists no solution of (S1

∞
).

(ii) If (B + 3C)/4 < A < B, then there exists a d∗2 = d∗2(A,B,C, a2) > 0 such
that there exists no solution of (S1

∞
) for d2 ∈ (d∗2, a2/π

2).

(iii) If A ≤ (B + 3C)/4, there exists no solution of (S1
∞
).
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Figure 1 shows the existence and non‐existence region of solutions of  (S_{\infty}^{1}) in
the case  C\leq B assured by theorems A and B. Here, horizontal axis is  A , vertical
axis is  d_{2} . For the case  d_{2} sufficiently close to  0 and  (B+3C)/4<A<(B+C)/2,
existence and non‐existence of solutions of  (S_{\infty}^{1}) are not clear.

Figure 2 shows the existence and non‐existence region of solutions of  (S_{\infty}^{1}) in
the case  B<C assured by theorems  C and D. For the case  0<d_{2}<((B+C-
 2A)/(C-B))\cdot(a_{2}/\pi^{2}) and  B<A<(B+C)/2 , existence and non‐existence of
solutions of  (S_{\infty}^{1}) also are not clear.

Theorem C (Existence, strong competition). Suppose that  B<C . If

  \max\{0, \frac{B+C-2A}{C-B}\cdot\frac{a_{2}}{\pi^{2}}\}<d_{2}<\frac{a_{2}}
{\pi^{2}} , (2.1)

then there exists a solution  (v, \tau) of  (S_{\infty}^{1})

Figure 2: Existence and non‐existence of solutions of  (S_{\infty}^{1}) for  B<C.

Theorem D (Non‐Existence, strong competition). Suppose that  B<C.

(i) If  d_{2}>a_{2}/\pi^{2} , then there exists no solution of  (S_{\infty}^{1})

(ii) If  B\leq A<(B+C)/2 , then there exists a  d_{2}^{*}=d_{2}^{*}(A, B, C, a_{2})>0 such
that there exists no solution of  (S_{\infty}^{1}) for  d_{2}\in(0, d_{2}^{*} ].

(iii) If  A<B , there exists no solution of  (S_{\infty}^{1})

In [9], Lou, Ni and Yotsutani conjectured that the situation of existence, non‐
existence and the uniqueness drastically changes at  C=(7/3)B . For the case
 B<C\leq(7/3)B , the uniqueness seems to hold as shown in Figures 3 and 4.
Recently, we have found a mathematical proof of this case.

Figure 1 shows the existence and non-existence region of solutions of (S1
∞
) in

the case C ≤ B assured by theorems A and B. Here, horizontal axis is A, vertical
axis is d2. For the case d2 sufficiently close to 0 and (B+3C)/4 < A < (B+C)/2,
existence and non-existence of solutions of (S1

∞
) are not clear.

Figure 2 shows the existence and non-existence region of solutions of (S1
∞
) in

the case B < C assured by theorems C and D. For the case 0 < d2 < ((B + C −
2A)/(C − B)) · (a2/π2) and B < A < (B + C)/2, existence and non-existence of
solutions of (S1

∞
) also are not clear.

Theorem C (Existence, strong competition). Suppose that B < C. If

max

{

0,
B + C − 2A

C − B
· a2
π2

}

< d2 <
a2
π2

, (2.1)

then there exists a solution (v, τ) of (S1
∞
) .

Figure 2: Existence and non-existence of solutions of (S1
∞
) for B < C.

Theorem D (Non-Existence, strong competition). Suppose that B < C.

(i) If d2 > a2/π
2, then there exists no solution of (S1

∞
) .

(ii) If B ≤ A < (B + C)/2, then there exists a d∗2 = d∗2(A,B,C, a2) > 0 such
that there exists no solution of (S1

∞
) for d2 ∈ (0, d∗2].

(iii) If A < B, there exists no solution of (S1
∞
) .

In [9], Lou, Ni and Yotsutani conjectured that the situation of existence, non-
existence and the uniqueness drastically changes at C = (7/3)B. For the case
B < C ≤ (7/3)B, the uniqueness seems to hold as shown in Figures 3 and 4.
Recently, we have found a mathematical proof of this case.
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 :(S_{\infty}^{1}) has the unique solution.

Figure 3:  C=B.

Figure 4: Existence and non‐existence of solutions of  (S_{\infty}^{1}) for  B<C\leq(7/3)B.

2 4

Figure 5: Existence and non‐existence of solutions of  (S_{\infty}^{1}) for  C>(7/3)B.

On the other hand, for the case  C>(7/3)B , the existence region becomes
wider as shown in Figure 5. In [6], Mori, Suzuki and Yotsutani have obtained
precise numerical results with the stability and instability for this case

As explained above, existence, non‐existence and multiplicity of solutions for
the case  B\leq C are precisely understood.

Figure 3: C = B.

Figure 4: Existence and non-existence of solutions of (S1
∞
) for B < C ≤ (7/3)B.

Figure 5: Existence and non-existence of solutions of (S1
∞
) for C > (7/3)B.

On the other hand, for the case C > (7/3)B, the existence region becomes
wider as shown in Figure 5. In [6], Mori, Suzuki and Yotsutani have obtained
precise numerical results with the stability and instability for this case

As explained above, existence, non-existence and multiplicity of solutions for
the case B ≤ C are precisely understood.
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However, it is not clarified the case  C<B . Therefore, we investigate this case.
Figure 6 show existence, non‐existence and multiplicity of non‐constant solutions
for  (S_{\infty}^{1}) obtained by numerical computation.

 A

 \nearrow\nearrow\nearrow,, :  (S_{\infty}^{1}) has the unique solution.

:  (S_{\infty}^{1}) has two solutions.

Figure 6:  0<C<B.

3 Representation of solutions

We explain the representation of solutions of  (S_{\infty}^{1}) , since it is very efficient for
investigating the solution structure of  (S_{\infty}^{1})

Let us introduce a notations. Jacobi’s elliptic function  sn(x, k) defined by

  sn^{-1}(z, k)=\int_{0}^{z}\frac{d\xi}{\sqrt{1-k^{2}\xi^{2}}\sqrt{1-\xi^{2}}} (3.1)

for  -1\leq z\leq 1 . The complete elliptic integrals of the first, second and third kind
are defined by

  K(k) := \int_{0}^{1}\frac{d\xi}{\sqrt{1-k^{2}\xi^{2}}\sqrt{1-\xi^{2}}}, E(k) :
=\int_{0}^{1}\frac{\sqrt{1-k^{2}\xi^{2}}}{\sqrt{1-\xi^{2}}}d\xi , (3.2)

and

  \Pi(\nu, k) :=\int_{0}^{1}\frac{d\xi}{(1+\nu\xi^{2})\sqrt{1-k^{2}\xi^{2}}\sqrt
{1-\xi^{2}}} (3.3)

for  0\leq k<1 and  -1<\nu , respectively.

However, it is not clarified the case C < B. Therefore, we investigate this case.
Figure 6 show existence, non-existence and multiplicity of non-constant solutions
for (S1

∞
) obtained by numerical computation.

Figure 6: 0 < C < B.

3 Representation of solutions

We explain the representation of solutions of (S1
∞
) , since it is very efficient for

investigating the solution structure of (S1
∞
) .

Let us introduce a notations. Jacobi’s elliptic function sn(x, k) defined by

sn−1(z, k) =

∫ z

0

dξ
√

1− k2ξ2
√

1− ξ2
(3.1)

for −1 ≤ z ≤ 1. The complete elliptic integrals of the first, second and third kind
are defined by

K(k) :=

∫ 1

0

dξ
√

1− k2ξ2
√

1− ξ2
, E(k) :=

∫ 1

0

√

1− k2ξ2
√

1− ξ2
dξ, (3.2)

and

Π(ν, k) :=

∫ 1

0

dξ

(1 + νξ2)
√

1− k2ξ2
√

1− ξ2
(3.3)

for 0 ≤ k < 1 and −1 < ν, respectively.
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In what follows in  (S_{\infty}^{1}) , we will concentrate on the case

 b_{1}=1 and  a_{2}=b_{2}=c_{2}=1 . (3.4)

In fact, we get from  (S_{\infty}^{1}) .

 \{\begin{array}{ll}
\int_{0}^{1}\frac{1}{\overline{v}}(\frac{A}{B}-\frac{\overline{\tau}}
{\overline{v}}-\frac{C}{B}\overline{v})dx=0,   (3.5)
\overline{d}_{2}\overline{v}_{xx}+\overline{v}(1-\overline{v})-\overline{\tau}=0
in (0,1) ,   (3.6)
\overline{v}_{x}(0)=0, \overline{v}_{x}(1)=0,   (3.7)
\overline{v}(x)>0, \overline{v}_{x}(x)>0 in (0,1)   (3.8)
\end{array}
by employing the following change of variables

  \overline{v}:=\frac{c_{2}}{a_{2}}\cdot v, \overline{\tau}:=\frac{b_{2}c_{2}}
{a_{2}^{2}}\cdot\tau, \overline{d}_{2}:=\frac{d_{2}}{a_{2}} . (3.9)

Thus, without lose of generality, we may consider the case  b_{1}=1 and  a_{2}=b_{2}=
 c_{2}=1

Now, we introduce an auxiliary problem to investigate  (S_{\infty}^{1}) with  b_{1}=a_{2}=
 b_{2}=c_{2}=1 . Let  d_{2}>0 be given. Unknowns are a function  v=v(x) and a
constant  \tau>0.

(E)  \{\begin{array}{ll}
d_{2}v_{xx}+v(1-v)-\tau=0 in (0,1) ,   (3.10)
v(x)>0 in [0,1] and v_{x}(x)>0 in (0,1),   (3.11)
v_{x}(0)=0, v_{x}(1)=0 and \tau>0.   (3.12)
\end{array}
Exact solutions of (E) are given in the following proposition.

Proposition 3.1. (E) has a solution if and only Of  d_{2}\in(0,1/\pi^{2}) . All solutions
 (v(x), \tau) of (E) are represented by

 v(x;d_{2}, h)=\alpha+(\beta-\alpha)sn^{2}(K(\sqrt{h})_{X}, \sqrt{h}) , (3.13)

  \tau(d_{2}, h)=\frac{\alpha\beta+\beta\gamma+\gamma\alpha}{3}=\frac{1}{4}-
4d_{2}^{2}(h^{2}-h+1)K(\sqrt{h})^{4} , (3.14)

where

  \alpha=\frac{1}{2}-2d_{2}K(\sqrt{h})^{2}(h+1) , (3.15)

  \beta=\frac{1}{2}+2d_{2}K(\sqrt{h})^{2}(2h-1) , (3.16)

  \gamma=\frac{1}{2}+2d_{2}K(\sqrt{h})^{2}(2-h) . (3.17)

In what follows in (S1
∞
), we will concentrate on the case

b1 = 1 and a2 = b2 = c2 = 1. (3.4)

In fact, we get from (S1
∞
).

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∫ 1

0

1

v̄

(

A

B
− τ̄

v̄
− C

B
v̄

)

dx = 0, (3.5)

d̄2v̄xx + v̄(1− v̄)− τ̄ = 0 in (0, 1), (3.6)

v̄x(0) = 0, v̄x(1) = 0, (3.7)

v̄(x) > 0, v̄x(x) > 0 in (0, 1) (3.8)

by employing the following change of variables

v̄ :=
c2
a2

· v, τ̄ :=
b2c2
a22

· τ, d̄2 :=
d2
a2

. (3.9)

Thus, without lose of generality, we may consider the case b1 = 1 and a2 = b2 =
c2 = 1 .

Now, we introduce an auxiliary problem to investigate (S1
∞
) with b1 = a2 =

b2 = c2 = 1. Let d2 > 0 be given. Unknowns are a function v = v(x) and a
constant τ > 0.

(E)

⎧

⎨

⎩

d2vxx + v(1− v)− τ = 0 in (0, 1), (3.10)

v(x) > 0 in [0, 1] and vx(x) > 0 in (0, 1), (3.11)

vx(0) = 0, vx(1) = 0 and τ > 0. (3.12)

Exact solutions of (E) are given in the following proposition.

Proposition 3.1. (E) has a solution if and only if d2 ∈ (0, 1/π2). All solutions
(v(x), τ) of (E) are represented by

v(x; d2, h) = α + (β − α) sn2(K(
√
h)x,

√
h), (3.13)

τ(d2, h) =
αβ + βγ + γα

3
=

1

4
− 4 d22 (h

2 − h+ 1)K(
√
h)4, (3.14)

where

α =
1

2
− 2d2K(

√
h)2 (h+ 1) , (3.15)

β =
1

2
+ 2d2K(

√
h)2 (2h− 1) , (3.16)

γ =
1

2
+ 2d2K(

√
h)2 (2− h) . (3.17)
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Here  \tilde{h} is the unique solution of an equation

 (h+1)K( \sqrt{h})^{2}=\frac{1}{4d_{2}} (3.18)

in  h,  K(\sqrt{h}) is the complete elliptic integral of the 1st kind, and  sn(\cdot, \cdot) is Jacobi’s
elliptic function.

Now, we note that (1.30) with  b_{1}=1 is rewritten as

  \tau\int_{0}^{1}\frac{1}{v^{2}}dx+c_{1}
 \overline{\int_{0}^{1}\frac{1}{v}dx}=a_{1}.

(3.19)

Thus, let us define a function ãl  (h;d_{2}, c_{1}) by

ãl  (h;d_{2}, c_{1})  := \frac{\tau\int_{0}^{1}\frac{1}{v(x;d_{2},h)^{2}}dx+c_{1}}{\int_{0}^{1}
\frac{1}{v(x;d_{2},h)}dx} . (3.20)

ãl  (h;d_{2}, c_{1}) is explicitly given in the following proposition.

Proposition 3.2. Let  d_{2}\in(0,1/\pi^{2}),  h\in(0,\tilde{h}(d_{2})) . It holds that

ãl  (h;d_{2}, c_{1})
 \alpha\beta+\beta\gamma+\gamma a

 =\overline{6\alpha\beta\gamma\Pi(\frac{\beta-\alpha}{\alpha},\sqrt{h})}
 (( \gamma-\alpha)\alpha E(\sqrt{h})-\alpha\gamma K(\sqrt{h})+(\alpha\beta+\beta
\gamma+\gamma\alpha)\Pi(\frac{\beta-\alpha}{\alpha}, \sqrt{h}))

 + \frac{\alpha K(\sqrt{h})c_{1}}{\Pi(\frac{6-\alpha}{\alpha},\sqrt{h})} , (3.21)

where  \alpha,  \beta and  \gamma are defined by (3.15), (3.16) and (3.17) respectively. Here,
 K(\cdot),  E(\cdot) and  \Pi(\cdot, \cdot) are the complete elliptic integral of the 1st, 2nd and 3rd
kind, respectively.

Here h̃ is the unique solution of an equation

(h+ 1)K(
√
h)2 =

1

4d2
(3.18)

in h, K(
√
h) is the complete elliptic integral of the 1st kind, and sn(·, ·) is Jacobi’s

elliptic function.

Now, we note that (1.30) with b1 = 1 is rewritten as

τ

∫ 1

0

1

v2
dx+ c1

∫ 1

0

1

v
dx

= a1. (3.19)

Thus, let us define a function ã1(h; d2, c1) by

ã1(h; d2, c1) :=

τ

∫ 1

0

1

v(x; d2, h)2
dx+ c1

∫ 1

0

1

v(x; d2, h)
dx

. (3.20)

ã1(h; d2, c1) is explicitly given in the following proposition.

Proposition 3.2. Let d2 ∈ (0, 1/π2), h ∈ (0, h̃(d2)). It holds that

ã1(h; d2, c1)

=
αβ + βγ + γα

6αβγΠ

(

β − α

α
,
√
h

)

·
(

(γ − α)αE(
√
h)− αγK(

√
h) + (αβ + βγ + γα)Π

(

β − α

α
,
√
h

))

+
αK(

√
h)c1

Π

(

β − α

α
,
√
h

) , (3.21)

where α, β and γ are defined by (3.15), (3.16) and (3.17) respectively. Here,
K(·), E(·) and Π(·, ·) are the complete elliptic integral of the 1st, 2nd and 3rd
kind, respectively.
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We explain the reason that the existence and non‐existence regions change at
 c_{1}=7/3(C/B=7/3) . We obtain

ãl  (h;d_{2}, c_{1})= \frac{1}{2} (  d_{2}\pi^{2} (1 —cl)  + (l  + cl))  + ã1,  2^{\cdot}   h^{2}+\cdots , (3.22)

by Taylor’s expansion of (3.21) in  h , where

ã1,2  := \frac{3d_{2}\pi^{2}}{64(1-\pi^{2}d_{2})^{2}}((35+13c_{1})\pi^{4}d_{2}^{2}-14
\pi^{2}(c_{1}-1)d_{2}+(c_{1}-1)) . (3.23)

We check the sign of the coefficient ã1,2. We get  d_{2}=d_{+} and  d_{-} by solving

 (35+13c_{1})\pi^{4}d_{2}^{2}-14\pi^{2}(c_{1}-1)d_{2}+(c_{1}-1)=0 , (3.24)

where

 d_{+}:= \frac{7(c_{1}-1)+2\sqrt{3(c_{1}-1)(3c_{1}-7)}}{\pi^{2}(35+13c_{1})} (3.25)

and

 d_{-} := \frac{7(c_{1}-1)-2\sqrt{3(c_{1}-1)(3c_{1}-7)}}{\pi^{2}(35+13c_{1})} . (3.26)

Thus,

ã1,2  <0 for  0<c_{1}<1,  0<d_{2}<d_{+} , (3.27)
ã1,2  \geq 0 for  1\leq c_{1}\leq 7/3,  0<d_{2}<1/\pi^{2} , (3.28)
ã1,2  \geq 0 for  c_{1}>7/3,  d_{+}\leq d_{2}<1/\pi^{2} , (3.29)
ã1,2  <0 for  c_{1}>7/3,  d_{-}<d_{2}<d_{+} , (3.30)
ã1,2  \geq 0 for  c_{1}>7/3,  0<d_{2}\leq d_{-} . (3.31)

Therefore, the behavior of ãl  (h, d_{2}, c_{1}) near  h=0 is drastically change at  c_{1}=1
and  c_{1}=7/3.
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We explain the reason that the existence and non-existence regions change at
c1 = 7/3 (C/B = 7/3). We obtain

ã1(h; d2, c1) =
1

2

(

d2π
2(1− c1) + (1 + c1)

)

+ ã1,2 · h2 + · · · , (3.22)

by Taylor’s expansion of (3.21) in h, where

ã1,2 :=
3d2π

2

64(1− π2d2)2

(

(35 + 13c1)π
4d22 − 14π2(c1 − 1)d2 + (c1 − 1)

)

. (3.23)

We check the sign of the coefficient ã1,2. We get d2 = d+ and d− by solving

(35 + 13c1)π
4d22 − 14π2(c1 − 1)d2 + (c1 − 1) = 0, (3.24)

where

d+ :=
7(c1 − 1) + 2

√

3(c1 − 1)(3c1 − 7)

π2(35 + 13c1)
(3.25)

and

d− :=
7(c1 − 1)− 2

√

3(c1 − 1)(3c1 − 7)

π2(35 + 13c1)
. (3.26)

Thus,

ã1,2 < 0 for 0 < c1 < 1, 0 < d2 < d+, (3.27)

ã1,2 ≥ 0 for 1 ≤ c1 ≤ 7/3, 0 < d2 < 1/π2, (3.28)

ã1,2 ≥ 0 for c1 > 7/3, d+ ≤ d2 < 1/π2, (3.29)

ã1,2 < 0 for c1 > 7/3, d− < d2 < d+, (3.30)

ã1,2 ≥ 0 for c1 > 7/3, 0 < d2 ≤ d−. (3.31)

Therefore, the behavior of ã1(h, d2, c1) near h = 0 is drastically change at c1 = 1
and c1 = 7/3.
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