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Global bifurcation structure of a limiting system
to the SK'T competition model
with cross-diffusion *

Shoji Yotsutani
Department of Applied Mathematics and Informatics, Ryukoku University
Seta, Otsu, 520-2194, Japan

1 Introduction

This is a joint work with Yuan Lou (The Ohio State University), Wei-Ming
Ni (The Chinese University of Hong Kong and University of Minnesota), Tatsuki
Mori (Osaka University), and Shota Yamakawa (Ryukoku University).

We have been interested in the cross-diffusion system

u = Al(dy + v + appv)u] + u(a; — byu — c;v) in Q x (0,00), (1.1)

v = A[(da + ao1u + agv)v] + v(ag — bau — cov)  in Q x (0,00), (1.2)
(P) 4 ou v

il v 0 on 99 x (0,00), (1.3)

u(z,0) = up(x) > 0, v(z,0) =vo(x) >0 in Q, (1.4)

where (2 is a bounded domain in R with smooth boundary 95, v is the outward
unit normal vector on 0.

This mathematical model was proposed by Shigesada, Kawasaki and Teramoto
[8] in 1979 to investigate segregation phenomena of two competing species with
each other in the same habitat area. Here, u = u(x,t) and v = v(x,t) represent
the densities of two competing species, d; and dy are their diffusion coefficients,
a1 and ay denote the intrinsic growth rates of these two species, by and ¢y account
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for intra-specific competitions while by and ¢; account for inter-specific competi-
tions. The constants a1 and sy represent intra-specific population pressures, also
known as self-diffusion rates, and a9 and s, are the coefficients of inter-specific
population pressures, also known as cross-diffusion rates.

The effect of cross-diffusion affects the population pressure between two dif-
ferent kinds. It is an interesting problem to see whether this effect may give rise
to a spatial segregation or not, and clarify its mechanism.

We should remark that it is well known that the important quantities involving
the constants a;, b;, ¢; (i = 1,2) are only

ai by 1
A=—, Bi=— (:=—. (1.5)
a9 bg Co
It seems natural to consider the following two cases separately: the ”strong com-
petition” case B < C' and the "weak competition” case C' < B. The behavior of
solution in case B < C' is very different from C' > B.

We refer to [7] and [8] for further details of this model.

A lot of research works are done by the singular perturbation method, which
started from a theoretical research by Mimura [5]. Kan-on [1] obtained some
criteria on the stability of those non-constant solutions of (P). However, it is
not easy to clarify the global structure of stationary solutions and stability of
stationary solutions.

Lou and Ni [2], [3] started to investigate N-dimensional case and general diffu-
sion coefficients. To investigate the cross-diffusion effects, let us put a; = ag; =
age = 0 and 7 := aya/d;. We have

u = i A[(1 4+ rv)u] + u(ay — byu —cv) in Q x (0,00), (1.6)
vy = doAv + v(ay — bayu — cov) inQ x (0,00), (1.7)
(TPY) 4 ou v
% = 5 =0 on 0f) x (O, OO), (18)
u(z,0) = up(z) > 0, v(z,0) =vo(x) >0 in Q, (1.9)
where u = u(x,t) and v = v(x,t). Then, the stationary problem of (TPY) is
i A[(1+rv)u] +u(a; —bju —cv) =0 in Q, (1.10)
doAv 4+ v(ag — byu — cov) =0 in €, (1.11)
(SY)§ du v
u>0,v>0 in €, (1.13)

where v = u(z) and v = v(x).



They obtained limiting systems as r — oo for (TPY) and (SY). One of limiting

systems as r —

[oe]

where v = v(x,

oo are as follows. The time-dependent limiting system is

o [ T T .

En /Q ;d:l? = /Qv <a1 - bl; - clv) dr in (0,00), (1.14)

% = dyAv + v(ay — cv) — baT in Q x (0,00), (1.15)

? =0 on 99 x (0,00), (1.16)
v

v(0,t) = vo(x) >0 in €, (1.17)

t) and 7 = 7(t) are unknown positive functions, and 7(t)/v(z,t)

corresponds to u(z,t). The stationary limiting system is

where v = v(x)
stant.

T T
/Qv (a1 — 515 - clv) dr =0, (1.18)
(SN) daAv 4+ v(ag — cav) — by =0 in (1.19)
% =0 on 09, (1.20)
L v(z) >0, in Q, (1.21)

is an unknown positive function, 7 is an unknown positive con-

For one-dimension 2 := (0, 1), the limiting system corresponding (TPY ) and

(SPY) are
0 Lr Lr T )
e (/0 Uda:) = /0 - <a1 — bl; - cw) dx in(0,1) x (0,00)(1.22)
(TPL,) % = dyVys + v(az — c2v) — boT in (0,1), (1.23)
v(0,t) =0, wv.(1,t) =0, in (0, 00), (1.24)
v(z,0) = vo(x) > 0, in (0,1), (1.25)
and
Lr T

A E <a1 — b15 - Clv) dr =0, (126)
(Sl general) § @20z +v(a2 — cav) —bor =0 in (0,1), (1.27)
0,(0) =0, v,(1) =0, (1.28)
v(z) >0 in (0,1). (1.29)

Lou, Ni and Yotsutani [4] obtained existence and non-existence of non-constant
steady state solutions, the asymptotic shape of solutions, and almost clarified the

structure of solutions of (S

= )
oo,general/ *
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In what follows, we concentrate on the monotone increasing case v,(x) > 0 to
understand the essence of structure of (SL, ,eperal)-
Now, we introduce a (S.)) as follows:

/1 % (al . blg - clv) dz = 0, (1.30)
(SL) < davgy +v(az — cav) — by =0 in (0, 1), (1.31)
v:(0) =0, wv,(1)=0, (1.32)
v(x) >0, vy(x)>0 in (0,1). (1.33)

2 Results

We first explain results in [4] for (SL,). As for the existence and non-existence,
the following theorems are obtained:

Theorem A (Existence, weak competition). Suppose that C' < B.
(i) If B < A then there exists a solution (v,7) of (SL).

(ii) If (B + 3C)/4 < A < B, then there exists a solution of (S..)). for dy €
(0 2A—(B+C) . a72)
’ B-C w2/

d2
i Non-existence
w2 Non-existence /!
: //
i : g
e ; /jste ce
existence :
4 A
C B+3C B+C B
4 g

Figure 1: Existence and non-existence of solutions of (S.,) for C < B.

Theorem B (Non-Existence, weak competition). Suppose that C < B.
(i) If dy > ay/7?, then there exists no solution of (SL.).

(i) If (B+3C)/4 < A < B, then there exists a d5 = d3(A, B,C,a2) > 0 such
that there exists no solution of (SL.) for dy € (d3, as/m?).

(iii) If A < (B + 3C)/4, there exists no solution of (SL.).
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Figure 1 shows the existence and non-existence region of solutions of (S. ) in
the case C' < B assured by theorems A and B. Here, horizontal axis is A, vertical
axis is dy. For the case dy sufficiently close to 0 and (B+3C)/4 < A < (B+C)/2,
existence and non-existence of solutions of (Sl)) are not clear.

Figure 2 shows the existence and non-existence region of solutions of (S.)) in
the case B < C assured by theorems C and D. For the case 0 < dy < (B+ C —
2A)/(C — B)) - (ag/7*) and B < A < (B + () /2, existence and non-existence of
solutions of (SL) also are not clear.

Theorem C (Existence, strong competition). Suppose that B < C. If

B+C—-2A a a2
max {0, ﬁ . 7‘[‘2} < d2 < ﬁ’ (21)

then there exists a solution (v,T) of (SL)) .

d2

Non-existence

WS

Non-existence xistenc

'
4 Non-existence

B&g_CC A

Figure 2: Existence and non-existence of solutions of (S.,) for B < C'.

Theorem D (Non-Existence, strong competition). Suppose that B < C.
(i) If dy > ay/7?, then there exists no solution of (SL.) .

(i) If B < A < (B+ C)/2, then there exists a dy = d5(A, B,C,a2) > 0 such
that there exists no solution of (SL)) for dy € (0,d3).

(iii) If A < B, there exists no solution of (SL)) .

In [9], Lou, Ni and Yotsutani conjectured that the situation of existence, non-
existence and the uniqueness drastically changes at C' = (7/3)B. For the case
B < C < (7/3)B, the uniqueness seems to hold as shown in Figures 3 and 4.
Recently, we have found a mathematical proof of this case.
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do

as Non-existence

Non-existence 7is‘mnce/ 7
A

B=C
[_]: (SL,) has the unique solution.

Figure 3: C = B.

Existence

0 B B+C B+3C ()
2 4

Figure 4: Existence and non-existence of solutions of (S!)) for B < C' < (7/3)B.

Existence

Non-Existence

Py

0 B B+C B+3C é A
2 4

Figure 5: Existence and non-existence of solutions of (S.,) for C > (7/3)B.

On the other hand, for the case C' > (7/3)B, the existence region becomes
wider as shown in Figure 5. In [6], Mori, Suzuki and Yotsutani have obtained
precise numerical results with the stability and instability for this case

As explained above, existence, non-existence and multiplicity of solutions for
the case B < (' are precisely understood.



However, it is not clarified the case C' < B. Therefore, we investigate this case.
Figure 6 show existence, non-existence and multiplicity of non-constant solutions
for (SL,) obtained by numerical computation.

do
. Non-existence
= !
Non- i
Non- existence H Existence
existence :
] A

O B+3CB+C B
i 2
[ 1: (SL) has the unique solution.

] : (SL.) has two solutions.

Figure 6: 0 < C < B.

3 Representation of solutions

We explain the representation of solutions of (SL)) , since it is very efficient for
investigating the solution structure of (S.) .
Let us introduce a notations. Jacobi’s elliptic function sn(z, k) defined by

(3.1)

1 [ d¢
sn(z,k) = /0 \/1 = k2§2\/1 =

for —1 < z < 1. The complete elliptic integrals of the first, second and third kind
are defined by

B 1 dé /1 kQEQ
Hk)= /0 VI- k21— / Ji-& (3:2)
and ) ”

(v, k) == /o T 1/52)\/1 — kaQ\/l —=

for 0 <k <1 and —1 < v, respectively.

(3.3)

o1



In what follows in (SL ), we will concentrate on the case
bl =1 and [ bg = Cy = 1. (34)

In fact, we get from (SL.).

'1/4 7 C
- |=—=—=v)dx=0 3.5
/0 v <B v BU> T (3:5)
IyUpe +0(1 —0) =7 =0 in (0,1), (3.6)
0:(0) =0, v,(1) =0, (3.7)
o(z) >0, v,(x)>0 in (0,1) (3.8)
by employing the following change of variables
b - d
@;:2-1)’ f::LEQ‘T, d2;:—2. (39)

Thus, without lose of generality, we may consider the case by = 1 and as = by =
Cy = 1.

Now, we introduce an auxiliary problem to investigate (S! ) with b; = ay =
by = co = 1. Let dy > 0 be given. Unknowns are a function v = v(z) and a
constant 7 > 0.

davge + (1 —v) =7 =0 in (0,1), (3.10)
(E)< v(z) >0 in [0,1] and v,(x) >0  in (0,1), (3.11)
v,(0) =0, v,(1)=0 and 7> 0. (3.12)

Exact solutions of (E) are given in the following proposition.

Proposition 3.1. (E) has a solution if and only if dy € (0,1/7%). All solutions
(v(z),7) of (E) are represented by

v(x;dy, h) = o+ (B — @) sn? (K (VR)z, Vh), (3.13)
(da, h) = W _ i AR~k )EWR) (3.14)
where
- % 2 K(VRY (h+ 1), (3.15)
B= % +2dy K(VR)? (20 — 1), (3.16)

v ==+ 2K (VR (2 —h). (3.17)



Here h is the unique solution of an equation

1

(h+1)K(Vh)? = yrn

(3.18)

in h, K(\V/h) is the complete elliptic integral of the 1st kind, and sn(-,-) is Jacobi’s
elliptic function.

Now, we note that (1.30) with b; = 1 is rewritten as
1
1
T/ —de + C1
% = ar. (3.19)
/ —dx
0 v
Thus, let us define a function a;(h; da, ¢1) by

/11d +
! 0 U(x;d27h’)2 ! “

6Nll(h; d2701> = 1 1
—d
/0 v(x;dg, h) *

(3.20)

a1 (h; dy, 1) is explicitly given in the following proposition.
Proposition 3.2. Let dy € (0,1/72), h € (0,h(d)). It holds that

a1<h§ dy, 01)
_ af+ Byt

o (T550)
: ((7 —a)aB(Vh) = ayK(Vh) + (af + By +ya)ll (ﬁ . - \/E>>
N aK (vVh)e,
I (5 - O‘,\/E)

where «, B and v are defined by (3.15), (3.16) and (3.17) respectively. Here,
K(-), E(-) and II(-,-) are the complete elliptic integral of the 1st, 2nd and 3rd
kind, respectively.

, (3.21)
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We explain the reason that the existence and non-existence regions change at
¢ ="7/3(C/B="7/3). We obtain

1
C~l1(h; d2761) = 5 (dg’ﬁz(l — Cl) + (1 + Cl)) + ELLQ . h2 + - s (322)

by Taylor’s expansion of (3.21) in h, where

~ 3d27T2

12 = m((?)g) + 1361)7T4d% — ].4772<Cl — 1)d2 + (Cl — 1)) (323)

We check the sign of the coefficient a; 5. We get dy = d; and d_ by solving

(35 + 13¢cy)m*d3 — 147%(c; — 1)dy + (¢1 — 1) = 0, (3.24)
where
T(er —1)4+2/3(c1 — 1)(3c1 — 7
g, = (=D +2v3(c = 1Be —7) (3.25)
72(35 + 13¢;)
and
T(c; —1) —2+/3(c; — 1)(3c; — 7
o= =D =23 - DB —7) (3.26)
m2(35 + 13¢1)
Thus,
ELLQ <0 for 0< c < ]., 0< d2 < d+, (327)
a12>0 for 1<¢ <7/3, 0<dy<1/7% (3.28)
a9 >0 for ¢ >7/3, dy <dy < 1/7° (3.29)
al’g <0 for c > 7/37 d_ < d2 < d+, (330)
CNLLQ >0 for c1 > 7/3, 0< d2 < d_. (331)

Therefore, the behavior of a;(h,dy, ¢;) near h = 0 is drastically change at ¢; = 1
and ¢; = 7/3.
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