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IMPLICATIONS OF POSITIVE FORMULAS IN MODULES

PHILIPP ROTHMALER

To Miyuki

1. INTRODUCTION: IMPLICATIONS

As is common in logic, given formulas \varphi and  \psi , we write  \varphiarrow\psi to mean

the sentence  \forall\overline{x}(\varphiarrow\psi) , where  \overline{x} is a tuple containing all free variables of the

formulas  \varphi and  \psi . We almost always suppress the universal quantifiers when writing

implications.

We adopt the (not unusual) convention that disjunctions  V and conjunctions  \wedge

bind more strongly than  arrow.

The most prominent kind of implication may be that of a basic Horn formula,

that is an implication  \chi of the form  \wedge\Phiarrow\psi , where  \Phi=\Phi(\overline{x}) is  a (possibly infinite)

set of atomic formulas (in the same finitely many variables  \overline{x}) and  \psi=\psi(\overline{x}) is a

single atomic formula  or\perp (falsum). According to [H], such formulas were shown

by McKinsey in 1943 to be preserved in direct products. (It was Horn in 1951,

however, who proved the result in greater generality, whence the name.) That

is, given a tuple  \overline{a} of matching length in a direct product  A= \prod_{I}A_{i} , if, for all

 i\in I , the coordinate tuple  \overline{a}(i) of  \overline{a} in  A_{i} satisfies  \chi , then  \overline{a} satisfies  \chi in  A . The

straightforward proof of this, cf. [ H , Thm.9.1.5], shows more.

Fact 1. If  \Phi is a set of formulas preserved in direct factors and  \psi is a formula

preserved in direct products, then the implication  \wedge\Phiarrow\psi is preserved in direct

products.

Here we say that  \Phi is preserved in direct factors if, conversely, the truth of  \chi(\overline{a})

in  A entails that of  \chi(\overline{a}(i)) in  A_{i} for every  i\in I (and every possible direct product).

Recall that a primitive formula is an existentially quantified conjunction of

atomic and negated atomic formulas. Thus a positive primitive (henceforth pp)

formula is an existentially quantified conjunction of atomic formulas. Clearly, pp

formulas are preserved by homomorphisms.
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As is easily seen, pp formulas have both of the features figuring in the hypothesis

of Fact 1, cf. [ H , Lemma 9.1.4]. Therefore an implication of the form

  \bigwedge_{\varphi\in\Phi}\varphiarrow\psi,
with all  \varphi and  \psi pp (and in the same variables again), is preserved in direct prod‐
ucts.

Following [PRZI], we call such implications  A ‐formulas—for reasons that become

clear when we look at absolutely pure modules below. (In fact, in that paper only
 A ‐sentences were considered, by which we mean  A‐formulas with all free variables

universally quantified out.)

Fact 2.  A ‐sentences are preserved in direct products.

Actually, [PRZI] dealt only with modules (over an arbitrary associative ring with

1), which is also the context of choice here. As atomic formulas are simply linear

equations in this context, positive primitive formulas are existentially quantified

finite systems of (homogeneous!) linear equations. In a module pp formulas thus

define projections of solution sets of finite systems of linear equations (which always

form additive subgroups). See [P1] for more detail (or [P2], where they are called

pp conditions).

The simplest, and in some sense most prominent, examples of pp formula are

 rx=0 and  \exists y  (x=ry) . The latter we naturally write as  r|x.

Simple examples like  nx=0arrow x=0 show that implications of pp formulas need

not be preserved in epimorphic images and are therefore, by Lyndon’s Theorem,

in general not (equivalent to a) positive (formula). But they still behave decently

enough.

On a very general level this can be observed in positive logic as treated by Ben‐

Yaakov and Poizat [BP], where implications of finitary positive (but not necessarily

primitive) formulas play an important role in their development of model theory—

for instance, in the proof of the compactness theorem—for the simple reason that

such formulas, they call them  h‐inductive, are preserved in direct limits, as can

easily be verified. This can be used to prove the compactness theorem for sets

of  h‐inductive sentences in a rather straightforward way [BP, Cor.4]. (Moreover,

they prove a preservation theorem saying, conversely, that the theories preserved in

direct limits are precisely those that can be axiomatized by  h‐inductive sentences

[BP, Thm.23].)

If now both antecedent and consequent in an  h‐inductive sentence are (positive)

primitive, the implication is preserved in pure epimorphic images (cf. §2.4), which

indicates how close such pp implications get to positive.
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While also this makes sense for any similarity type of algebraic structures, [Rot2],

it is modules where we know of most fruitful applications of this general model‐

theoretic viewpoint. And so, in this article we survey applications of positive im‐

plications (by which we really mean implications of positive formulas) in module

categories. For reasons explained in [PRZI, Thm.4.1], all the implications we deal

with are of the form  \wedge\Phiarrow\Psi , where both  \Phi and  \Psi are allowed to be infinite

sets of pp formulas. Some features turn out nicer, cf. Fact 6 below, if we ‘prepare’

 \Psi to be closed under finite sums, so that  \Psi becomes   \sum\Psi and the implication

turns into

  \wedge\Phiarrow\sum\Psi.

Following [PRZI, Thm.4.1], we call such implications symmetric sentences.

We start, in §3, with a list of such implications, some classical, some rather new,

and go on, in §4, to exhibit consequences of the corresponding syntactic shapes.

This survey is an extended version of a talk on ‘Incomplete Theories’ given at

the model theory conference at RIMS, December 10‐12, 2018. I wish to thank

the organizer, Professor Hirotaka Kikyo, and RIMS for their hospitality and for

providing the opportunity to present part of this material there.

2. PRELIMINARIES

2.1. Tuples and matrices. Tuples are finite sequences that we think of as column

or row vectors—depending on convenience. For instance, given two tuples 3 and  \overline{t}

of same length, say  k , we use  \overline{s}\overline{t} to denote the formal linear combination   \sum_{i<k}s_{i}t_{i}.
I.e., we think of matrix multiplication of the appropriate vectors. In other words, we

think of 3 as a row vector (in say  S ) and  \overline{t} as column vector (in say  T , assuming that

there is a product defined between  S and  T and a sum between those products).

This will always be clear from the context and it will always be assumed that the

tuples are of the same length (but will never be mentioned again).

Most of the times, we have that  S is the ring  R and  T a left  R‐module. So

typically 3 would then be a row vector, while a tuple in a left module is usually

thought of as a column vector.

2.2. Modules and annihilators. Unless indicated otherwise, module means left

module over an associate ring  R with 1. The annihilator of  X\subseteq R in a module  M

is the set  ann_{M}X of all elements of  M that get annihilated by all elements of  X . It

is customary to write  \mathfrak{r}(r) instead of  ann_{R}RX , also known as the right annihilator

of  X in R. (Then  t(X) would denote the left annihilator.)
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A domain is a ring with no (nontrivial) zero divisors, i.e., a ring in which every

nonzero element has trivial left and right annihilators (i.e., the annihilators are  0

whether considered in  RR or in  R_{R}. )

2.3. Languages and formulas. Some precaution is in order with the term first‐

order, especially when infinitary languages are at play. The original sense of the

term is that the variables can stand only for elements, and hence quantifications

can only be over elements. (Second order languages also have variables for sets

of elements, and so on.) So whether infinitary or not, all expressions in  L_{\infty\infty} are

first‐order. I will use the old term elementary to single out the finitary first‐order

part, i.e.,  L_{\omega\omega} . (For some reason, over the course of the last half century, model

theorists have replaced ‘elementary’ by ‘first order’—misleadingly so, as Tommy

Kucera has pointed out to me.) The term pp formula is reserved for existentially

quantified finite conjunctions of atomic formulas, which are elementary.

The pp formulas of a given arity over a ring R—rather their classes modulo

equivalence in all  R‐modules—form a lattice with largest element  \overline{x}=\overline{x} and smallest

element  \overline{x}=\overline{0} , where meet is conjunction and join is ordinary sum (of subgroups).

To see that a conjunction of pp formulas is pp, simply pull out the quantifiers.

For the sum one has to do some more rewriting. First of all, note that, given two

pp formulas of same arity  \varphi and  \psi , in every module  M , the sum  \varphi(M)+\psi(M) can

be defined by  \exists\overline{yz}(\overline{x}=\overline{y}+\overline{z}
\wedge\varphi(\overline{y})\wedge\psi(\overline{z})) . Again, one can pull out all existential

quantifiers to make it look pp.

2.4. Purity. If the ring is a field, hence the modules are vector spaces, all embed‐

dings split, i.e., every subspace is a direct summand. In general, direct summands

may be rare. But the concept of pure submodule plays an intermediate role in

general module categories that salvages some of the convenient features of direct

summands while being numerous enough.

For model theorists the easiest definition of purity (and one that applies to any

algebraic structure) is via pp formulas: loosely speaking, an embedding of structures

is pure if it is an elementary embedding with only pp formulas under consideration.

A pure substructure is a substructure whose identical inclusion is a pure embedding.

More precisely, a structure  A sitting inside a structure  B is a pure substructure if

 A\cap\varphi(B)=\varphi(A) for every pp formula  \varphi . (Pp formulas being existential, the

inclusion from right to left is, of course, always true.) For modules, it suffices to

consider unary pp formulas, see [P2, Prop.2.1.6]. It is easy to see upon projection,

that direct summands are pure submodules (but the converse is far from true: e.g.,

every elementary substructure is pure).
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A morphism  g:Barrow C is said to be a pure epimorphism, [Rotl, §1.6], if for every

pp formula  \varphi , every tuple in  \varphi(C) has a preimage in  \varphi(B) . Again, for modules

1‐place  \varphi suffice. (Considering the trivial formula  x=x , one sees that such a map

is indeed surjective, thus justifying the term.)

Another convenient feature of modules is that in a short exact sequence   0arrow

 Aarrow Barrow Carrow 0 , the monomorphism is pure if and only if the epimorphism is,

[Rotl, Cor.3.5]. In this case we speak of a pure‐exact sequence.

Lazard proved that pure‐exact sequences are precisely the direct limits of split

exact sequences, which once again points to their importance (cf. [P2, Prop.2.1.4]

and the references given there).

2.5. Elementary (Prest‐Herzog) duality. Mike Prest [P1] found an an anti‐

isomorphism  D , called elementary duality, between the lattice of pp formulas (of a

given arity) for left modules and the lattice of pp formulas (of same arity) for right

modules. Let’s look at it in arity 1. Then  D sends  r|x to  xs=0 and  sx=0 to  s|x (on

the other side, i.e., to  \exists y  (x= ys  ) ). In particular,  x=x gets sent to  x=0 and vice

versa. Also, meet goes to join and join goes to meet, so that  D(\varphi\wedge\psi)=D\varphi+D\psi

and  D(\varphi+\psi)=D\varphi\wedge D\psi . For the entire definition, see [P2], [Her], or [Rotl].

Ivo Herzog [Her] extended elementary duality to theories (which is why it is

also called Prest‐Herzog duality). This makes it an even more powerful tool. In

particular, the dual of an implication  \varphiarrow\psi is defined to be  D\psiarrow D\varphi.

Finally, [PRZI] extended all this to certain infinitary formulas. It suffices to

know here that the dual of a symmetric sentence   \wedge\Phiarrow\sum\Psi is defined to be

  \wedge D\Psiarrow\sum D\Phi , which is symmetric again. (Here by the dual of a set I mean the

set of the duals.)

An extremely useful application of elementary duality is

Fact 3 (Herzog’s criterion).  \overline{a}\otimes\overline{b}=0 in a tensor product  A\otimes_{R}B if and only if

there is a pp formula  \varphi (of matching arity) such that  \overline{a}\in D\varphi(A) and  \overline{b}\in\varphi(B) .

Here we adopt the same convention about tuples: by  \overline{a}\otimes\overline{b} we mean the linear

combination of simple tensors,   \sum_{i}a_{i}\otimes b_{i}.

3. ALGEBRA

3.1. Classical torsion. Just as for abelian groups, a left module over a domain

 R is called torsionfree if it satisfies all implications  rx=0arrow x=0 , where  r runs

over the nonzero ring elements. So the axioms are a set of implications of atomic

formulas. As the consequent is always the same, one can arrange the entire set into
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a single—possibly infinitary—implication of positive formulas, namely,

 (\vee rx=0)0\neq r\in R^{\cdot}arrow x=0.
Dually, a left  R‐module is called torsion (or periodic in group theory) if it satisfies
the implication

 x=xarrow(\vee rx=0)0\neq r\in R^{\cdot}.
In the consequent of this implication one can replace disjunction by sum, for,

over a commutative domain,  (rx=0+sx=0)arrow(rs)x=0 (which shows that these

axioms are  F‐sentences in the sense of §4.5).

We observe a curious asymmetry: while torsionfreeness can be axiomatized by

 a (possibly infinite) set of elementary sentences, namely pp implications, being

torsion is not in general an elementary property—take, for example, the (torsion)

Prüfer group  \mathbb{Z}_{p}\infty , which is elementarily equivalent to  \mathbb{Z}_{p}\infty\oplus \mathbb{Q} , which is mixed.

3.2. Torsion theory. This is done in torsion theory as follows, cf. [S]. One first

defines a map  T from  R‐Mod, the category of left  R‐modules to the category of sets

by  T(M)= {  m\in M : rm  =0 for some  0\neq r\in R}, which is easily seen to be

a functor. As the so‐called torsion part  T(M) forms a subgroup of the underlying

additive group of  M , it is in fact a functor from  R‐Mod to the category Ab of

abelian groups. Now, it is not hard to see that  T(M) is even a submodule, making

the map  T what is called a preradical.

Given any such preradical,  t , one says that  M is torsionfree (with respect to t) if

 t(M)=0 , and torsion if if  t(M)=M . If the preradical  t happens to be definable,

these classes are axiomatized by the implications

 t(x)arrow x=0,

respectively,

 x=xarrow t(x) .

The preradical  T enjoys the extra property that  T(M/T(M))=0 , which makes

it a radical. This is the same as to say that the factor module of a module modulo

its torsion part is torsionfree.

The important feature of this radical for us is that it is definable by an infinite

disjunction,  rx=0 , so that both extreme properties of torsion and tor‐

sionfree become axiomatized by implications involving that disjunction. We will

encounter more such definable radicals.

That the map  T is a radical depends heavily on properties of the ring. The proof

that it is is easy when  R is a commutative domain. Ore introduced conditions that
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make sure the same works even when the domain is no longer commutative, cf. [S].

However, there are domains that are not Ore.

Another issue is to extend this to non‐domains. The problem being that the

ring—as  a , say left, module over itself (denoted  RR)—is no longer  T‐torsionfree

if it has zero divisors. Namely, any left zero divisor is a member of  T(RR) . One

does not like that. The remedy is to let  r run only over so‐called regular elements

(which means non‐zero divisors, on either side). If one now puts the Ore conditions

on those one gets the same effect for that adjusted radical.

A torsion theory in the technical sense is then the pair of the two classes of tor‐

sionfree modules and of torsion modules. Every such pair gives rise to a preradical,

whose value on a module  M is defined to be the maximal torsion submodule of  M,

see [  S , Ch.VI].

3.3. Hattori torsion. An elegant solution to the aforementioned problems with

zero divisors was found by Hattori [Hat]. He defined a module  F to be torsionfree,

we will say  \mathfrak{h} ‐torsionfree (where  \mathfrak{h} stands for Hattori),1 if an element in  F can be
annihilated by a ring element  r\in R only if it is a linear combination of elements in

which every coefficient itself is annihilated by  r . This can be expressed by infinitary

implications as follows.

Given a tuple 3 in  R , let  \overline{s}|x denote the pp formula  \exists\overline{y}(x=\overline{s}\overline{y}) (remember,

with this notation the tuples are assumed to be of matching length).

For the purposes of the next implication, given  r\in R , write  0(r) for the set

 \mathfrak{r}(r)^{<\omega} of all (finite) row vectors 3 with entries from  \mathfrak{r}(r) . In other words,  0(r) is
the set of all row vectors from  R with  r\overline{s}=\overline{0}.

Then the above statement about annihilation and linear combinations can be

expressed by the (possibly infinitary) implication

 rx=0arrow \vee\overline{s}|x.
 \overline{s}\in o(r)

Therefore  \mathfrak{h} ‐torsionfreeness is axiomatized by all such implications where  r runs

over all (sic!) of  R.

Again, torsion theory (as an algebraic theory) has a standard way of obtaining

a torsion theory (in the technical sense) from a notion of torsionfreeness. Define
 T to be  \mathfrak{h} ‐torsion if  Hom(T, F)=0 for every  \mathfrak{h} ‐torsionfree module  F . Let  \mathfrak{h} be

the functor from  R‐Mod to Ab that singles out, in any  M\in R‐Mod, the largest

 \mathfrak{h} ‐torsion submodule  \mathfrak{h}(M) . Hattori [Hat] shows that this is always a preradical and

gives conditions when it is a radical, see also [Rot3, §5] for a discussion.

 1_{In} the literature, these are often simply called torsionfree, cf. e.g. [P2, §2.3.2].
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Note that  \mathfrak{h} ‐torsionfreeness becomes classical torsionfreeness when the ring is a

domain (commutative or not).

3.4. Flat modules. Note that the disjunction  \overline{s}|x in Hattori torsion de‐

fines in  RR exactly the right annihilator of  r . To make things more visible, let  \varphi_{r}

stand for the pp formula  rx=0 defining it.

As mentioned, in  RR , the disjunction  \overline{s}|x simply defines  \varphi_{r}(_{R}R). But

in an arbitrary module  M it defines  \varphi_{r}(_{R}R)  M , that is, the additive subgroup of
 M generated by all products  rm with  r\in\varphi_{r}(_{R}R) and  m\in M , hence exactly the

group of all linear combinations in  M with coefficients in  \varphi_{r}(RR) . In other words,  M

satisfies the implication  rx=0  arrow\overline{s}|x precisely when  \varphi_{r}(M)\subseteq\varphi_{r}(RR)M.

So  M is  \mathfrak{h} ‐torsionfree if and only if it satisfies these implications for all  r\in R,

if and only if  \varphi_{r}(M)\subseteq\varphi_{r}(RR)M for all  r\in R. (Note, the reverse implication is

always true, in any module.)

Requiring this inclusion

 \varphi(F)\subseteq\varphi(RR)F

for every pp formula  \varphi one obtains the notion of flat module F—by a result of

Zimmermann [Zim], see [P1] and [P2, Thm.2.3.9]; but for the purposes at hand, we

may adopt this as the definition. (And again, it is easily seen that the inclusion

from right to left is always true.)

From this one sees at once that every flat module is  \mathfrak{h} ‐torsionfree. Over a com‐

mutative principal ideal domain, in particular, for abelian groups, the converse is

true. More generally, the same holds for RD‐rings, see [P2, 2.4.16].

To produce an axiomatization of flatness by infinitary implications, first gener‐

alize the previous notation to an arbitrary pp formula  \varphi by writing  0(\varphi) for the

set  \varphi(_{R}R)^{<\omega} of all (finite) row vectors 3 with entries from  \varphi(_{R}R ) and consider the

infinite disjunction  \overline{s}|x , which indeed defines  \varphi(_{R}R )  M in every module  M.

It is now clear that a module is flat if and only if it satisfies all the implications

 \varphiarrow \vee \overline{s}|x,
 \overline{s}\in o(\varphi)

where  \varphi runs over all pp formulas (and again, 1‐place  \varphi turn out to suffice).

The union the disjunction defines in a module is exactly the sum of the subgroups

defined by the disjuncts (for torsionfreeness, simply concatenate the tuples 3, but
this is as clear for arbitrary  \varphi , since, adding two disjuncts, one simply gets longer

linear combinations of the same kind). Thus we finally obtain an axiomatization of
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flatness by the symmetric sentences

  \varphiarrow\sum_{\overline{s}\in o(\varphi)}\overline{s}|x
for every (unary) pp formula  \varphi.

3.5. Purely generated modules. Here I discuss an axiomatization result from

[HR], which generalizes that for flat modules and for which some more background
is needed.

It can be easily understood that in the ring  R , as a left module over itself, every

element  r not only satisfies the pp formula  r|x , but that this is the smallest pp

formula it satisfies, i.e., for every unary pp formula  \varphi with  r\in\varphi(RR) , one has

  r|x\leq\varphi . We say,  r|x generates the pp type of  r in  RR . Clearly, this passes on to

direct powers of  RR , that is, to free modules, except one needs to allow divisibility

formulas  \overline{r}|x with tuples as divisors, as before. And finally it passes down to direct

summmands of free modules, which is to say, to projective modules. This can be

done for tuples as well, and one obtains that pp types in projective modules are

generated by divisibility formulas, [P2, Lemma 1.2.29].

More can be said. If  \overline{a} is a tuple in a projective module  P whose pp type is

generated by such a pp formula  \varphi , then this tuple actually satisfies this formula

freely: we say  (P, \overline{a}) is a free realization of  \varphi if  \overline{a} satisfies (or realizes)  \varphi in  P and,

whenever a tuple  \overline{b} in a module  M satiesfies  \varphi as well, then there is a homomorphism

 f :  Parrow M sending  \overline{a} to  \overline{b} . It is an easy exercise to show, this implies that  \varphi

generates the pp type of  \overline{a} in  P.

Modules in which every tuple freely realizes some divisibility formula are called

locally projective. If we allow arbitrary pp formulas as generators, we obtain the

concept of locally pure projective or strict Mittag‐Leffier module, see [Rot4] for a
detailed discussion.

We say a class  C is purely generated by a class  \mathcal{B} if every member of  C is a

pure‐epimorphic image of a direct sum of modules from  \mathcal{B} . This concept plays an

important role. For instance, by a theorem of Lenzing, the flat modules are purely

generated by finitely generated projectives, cf. discussion in [HR] before Thm. 2.1.

Suppose  \mathcal{B} is a class of locally pure projective modules closed under finite direct

sum, and  C is the class purely generated by  \mathcal{B} . It was shown in [HR, Thm.2.1] that

then  C is axiomatized by implications of the form

  \varphiarrow\sum ppf_{\mathcal{B}}\varphi,
where  ppf_{\mathcal{B}}\varphi is the (usually infinite) set of pp formulas below  \varphi (in the lattice

order) that are freely realized in some member of  \mathcal{B}.
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In [Rot4], more such axiomatizations can be found. (Note, a proper definition

of  ppf_{\mathcal{B}}\varphi is missing in [HR], but it was alluded to at the end of [HR, Rem.4.2].)

3.6. Injective torsion. Returning to torsion, consider injective torsion as intro‐

duced in [MaRu, Def. 2.1], whose radical  \mathfrak{s} is defined by letting the torsion part

 \mathfrak{s}(M) of  M\in R‐Mod be the kernel of the map  \varepsilon\otimes_{R}1_{M} , where  \varepsilon denotes an in‐

jective envelope  R_{R}arrow E of  R_{R} . Applying elementary duality (§2.5), especially

Herzog’s criterion Fact 3, one can quite easily show,  [MaRo] , that  \mathfrak{s} is definable by

 a (possibly infinite) disjunction of pp formulas. More precisely,  \mathfrak{s}(M) is the union

of all pp subgroups  \psi(M) for which  \psi(_{R}R)  =0,  [MaRo] . This shows that the
 \mathfrak{s} ‐torsion modules are axiomatized by the implication

 x=xarrow \mathfrak{s}(x) ,

while the  \mathfrak{s} ‐torsionfree modules are axiomatized by the implication

 \mathfrak{s}(x)arrow x=0.

Here  \mathfrak{s}(x) denotes the aforementioned disjunction of formulas. While this may

involve an infinite disjunction in the antecedent, as with classical torsion the entire

implication is equivalent to the set of pp implications

 \psi(x)arrow x=0,

where  \psi runs over the pp formulas that vanish in  RR_{H} . Thus the class of  \mathfrak{s}‐torsionfree

modules is axiomatized by pp implications (and thus elementary). More will be said

in §4.4.

3.7. Positive primitive (pp) torsion. In direct generalization of the behavior

of injective torsion, one may consider the following generalization (introduced in

[Rot3]). Given any class  \mathcal{F} of left  R‐modules, let  \mathfrak{s}_{\mathcal{F}}(x) be the disjunction of all pp

formulas that vanish on all members of  \mathcal{F} . Denote by  \mathfrak{s}_{\mathcal{F}} the map from  R‐Mod to

sets that singles out in  M\in R‐Mod the subset defined by the disjunction  \mathfrak{s}_{\mathcal{F}}(x) .

It is quite easy to see [Rot3, Rem.5.5] that the map  \mathfrak{s}_{\mathcal{F}} is a preradical—namely,

in every module  M , the union defined by the disjunction in question is in fact a

sum, and, moreover, it forms a submodule of  M . The interesting new fact is that it

always is a radical  [MaRo] . And so we have two new classes, the  \mathfrak{s}_{\mathcal{F}} ‐torsion modules

and the  \mathfrak{s}_{\mathcal{F}} ‐torsionfree modules, axiomatized, respectively, by the implications

 x=xarrow \mathfrak{s}_{\mathcal{F}}(x)

and

 \mathfrak{s}_{\mathcal{F}}(x)arrow x=0.
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For the same reason as in injective torsion, also the class of  \mathfrak{s}_{\mathcal{F}}‐torsionfree mod‐

ules is elementary.

Note,  \mathfrak{s}=\mathfrak{s}_{R}R=\mathfrak{s}_{\mathcal{F}} for  \mathcal{F}=Rb , the class of flat left  R‐modules (the latter

equality follows from the axiomatization of flat modules above).

3.8. Classical divisibility. Let  R be a domain. The elementary dual of the tor‐

sionfree axiom  rx=0arrow x=0 is  x=xarrow r|x . Doing this for all nonzero ring

elements, we see that the elementary dual of the class of torsionfree left  R‐modules

is that of divisible right  R‐modules. Similarly we see that the class of divisible left
 R‐modules is axiomatized by the set of implications

 x=xarrow r|x

with  0\neq r\in R.

3.9. Hattori divisibility. Taking the (infinitary) elementary dual of Hattori’s tor‐

sionfreeness (or  \mathfrak{h} ‐torsionfreeness) of §3.3, one obtains Hattori’s definition of divisi‐

bility: a module over an arbitrary ring  R is called divisible if it satisfies the following

(in general, infinitary) implication

(   \bigwedge_{sr=0,s\in R} sx ±  0 )  arrow r|x.

Written in plain language, this means that a module is divisible iff an element
 x is divisible by  r\in R whenever the left annihilator of  r in  R annihilates also  x

(which is certainly necessary for  x to be divisible by  r ). It is curious to note that

Lam in [ L , Def.3.16] makes precisely this definition without quoting Hattori’s work

and without making the dual definition of torsionfreeness.

3.10. Absolutely pure modules. A module is called absolutely pure if it is pure

in every module that contains it as a submodule. Since direct summands are pure,

an injective module (i.e., a module that constitutes a direct summand in in every

module that contains it) are absolutely pure. (Over noetherian rings, the converse is

true, so one may just think of injectives.) It was shown in [PRZ2, Prop.1.3] (see also

[P2, Prop.2.3.3]) that  M is absolutely pure if and only if every pp subgroup is an an‐

nihilator, more precisely, iff for every pp formula  \varphi one has  \varphi(M)=ann_{M}D\varphi(R_{R}) .

Note, this makes sense, as  D\varphi is a right formula and can thus be applied to the

ring as a right module.

It follows from the easy direction of Herzog’s criterion Fact 3 that the inclusion

from left to right is always true. Recall from §2.4 that it suffices to consider 1‐place

pp formulas for purity. The same applies to absolute purity. One concludes that
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the class of absolutely pure modules is axiomatized by the implications

 ( \wedge rx=0) arrow \varphi(x) ,

 r\in D\varphi(R_{R})

one for every  \varphi.

These axioms are dual, under the extended elementary duality of [PRZI], to

the axioms of flatness for right modules, see the introduction to §4 in that paper.

This extends an earlier result of Herzog [Her], showing the same for the case that

these classes are elementary (which, by a result of Eklof and Sabbagh, is the case

precisely when  R is left coherent).

4. LOGIC

Ever since the beginning of model theory (or universal algebra for that matter) -

namely since Birkhoff’s preservation theorem—it has been known that the mere

syntactic shape of axioms may have sweeping consequences on the structure of its

model class. We illustrate this by the examples that we have encountered in the

previous section. Most of this holds true in the larger context of structures in any

algebraic signature.

4.1. Valid pp implications: Lemma Presta. It would be a shame to talk about

implications of pp formulas in modules without mentioning a description of those

that are valid, i.e., true in all left R‐modules—in which case we write  \varphi\leq\psi . This

description was found by Mike Prest [Pl, §8.3] and brought to my attention by

Gena Puninski about three decades ago as ‘Lemma Presta.’ I have always found

the exact statement difficult to memorize, which is why I wish to present it here—in

a way that is easy to remember.

Lemma Presta, [Pl, Lemma 8.10] or [P2, Cor.1.1.16], describes the pp implica‐

tions  \varphiarrow\psi that are valid (in  R‐Mod), i.e., for which we have  \varphi\leq\psi . It shows that

for any pp formulas  \varphi and  \psi , one can find a first order sentence in the language

of rings whose truth in  R is equivalent to  \varphi\leq\psi . Here is how. Let  \varphi and  \psi be

written in matrix form as  A|B\overline{x} and  C|D\overline{x} , respectively.

Write the matrices  A,  B,  C with another three unknown matrices  X,  Y,  Z as

 X,  A,  B,  C,  Y,  Z and form the products  XA,  XB,  CY,  CZ . Assuming

that all the matrices match appropriately, state that the outer two products are

equal,  XA=CZ , and that  D is equal to the sum of the inner two,  XB+CY=D.

It is an easy exercise in formalization to write the statement that is intended to

mean  \exists XYZ(XA=CZ\wedge XB+CY=D) as a first order statement in the theory

of rings. Let us prove that this is the desired sentence.
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Theorem 1 (Lemma Presta).

 A|B\overline{x}\leq C|D\overline{x} if and only if  R\models\exists XYZ(XA=CZ\wedge XB+CY=D) .

Proof. If the right hand side holds, we have

 A|B\overline{x}\leq XA|XB\overline{x}\sim CZ|XB\overline{x}\leq 
C|XB\overline{x} , and since  C|CY\overline{x} is trivially

true, also  A|B\overline{x}\leq C|(XB+CY)\overline{x} , which is the left hand side, as desired.

For the hard direction, consider a module  M with generators  \overline{a}\overline{b} and relations

 A\overline{a}=B\overline{b} , or  (A, -B)(\overline{\frac{a}{b}})=\overline{0} . We will use the standard feature of a module

given by generators 7 and relations  G\overline{z}=\overline{0} (where  G is a matching matrix over

the ring) that any other matching matrix  H annihilating 7 must be divisible on the

right by  G , i.e., there must be a matching matrix  X with  H=XG.

Note that  \overline{b} satisfies  A|B\overline{x} in  M , hence, by hypothesis, also  C|D\overline{x} . Pick a

witness  \overline{c} in  M such that  Ci=D\overline{b} . Now, being in  M allows us to write  \overline{1} as  Z\overline{a}+Y\overline{b},

so  CZ\overline{a}+CY\overline{b}=D\overline{b} , hence ( CZ , CY—D)  (\overline{\frac{a}{b}})=\overline{0} . The standard feature
mentioned before yields a matrix  X such that ( CZ , CY—D)  =X(A, -B) .
Consequently,  XA=CZ and  XB+CY=D , as desired.  \square 

This result is an essential ingredient in the development of elementary duality,

cf. [Pl, Thm.8.21], [P2, Prop.1.3.1], or [Rotl, Prop.1.10]. See [Her2, Thm.39] for

Lemma Presta viewed as a completeness theorem.

4.2. Symmetric sentences. The following is easily verified using the very defini‐

tion of purity (that pp formulas pass up and down in extensions).

Fact 4. Symmetric sentences are preserved in pure substructures.

4.3.  A‐sentences. Symmetric sentences in which the the consequent consists of a

single pp formula we called  A‐sentences and saw, in Fact 2, that  A‐sentences are

preserved in direct products. (We are back to infinitary implications:  \Phi is allowed

to be an infinite set of pp formulas.)

Remembering the axiomatizations of divisibility (§3.9) and absolute purity (§3.10)

by (possibly infinitary)  A‐sentences, one infers that the classes of divisible modules
and that of absolutely pure modules are closed under direct products. This im‐

plies the same for the class of injectives modules, for ‘injective  =pure‐injective  +

absolutely pure’ and direct products of pure‐injective modules are pure‐injective.

The question arises how much more can be said: can one extend this to arbitrary

symmetric sentences? The answer is ‘no’ by a variant of McKinsey’s lemma, see

[ H , Cor.9.1.7], whose straightforward proof works just as well for pp formulas.
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Fact 5 (McKinsey’s lemma). Let  \Phi and  \Psi be sets of pp formulas.

  If\wedge\Phiarrow\vee\Psi is preserved in direct products, then there is a single  \psi\in\Psi such

  that\wedge\Phiarrow\vee\Psi is equivalent  to\wedge\Phiarrow\psi.
In particular, symmetric sentences closed under product are  A ‐sentences.

4.4. Pp implications: definable subcategories. Consider an  A‐sentence as

above. If  \Phi is finite (or, equivalently, a singleton2), we can write it as a pp im‐
plication, i.e., an implication of the form  \varphiarrow\psi with both  \varphi and  \psi pp formulas.

Having characterized, in Lemma Presta, the pp implications that are always true,

we go on to describe (classes axiomatized by) arbitrary pp implications.

Such sentences are elementary (finitary first‐order), and therefore classes of mod‐
els of pp implications are elementary classes. Crawley‐Boevey called such classes, or

rather the corresponding full subcategories of modules, definable subcategories (of
 R‐Mod).3 Since trivially pp implications are  A‐sentences, definable subcategories
are elementary classes closed under direct products.

The largest definable subcategory of  R‐Mod is  R‐Mod itself. This is, because

it even is an equational class (or variety in Birkhoff’s terminology of universal

algebra), i.e., a class defined by sentences of the form  \exists\overline{x}\alpha with  \alpha=\alpha(\overline{x}) a term

equation (hence an atomic formula). Note, such a sentence is equivalent to the

implication  \overline{x}=\overline{x}arrow\alpha , clearly a pp implication.

There is a preservation theorem for definable subcategories: a class of modules

constitutes a definable subcategory if and only if it is closed under direct products,

direct limits and pure substructures, [Rot2] or [P2, Thm.3.4.7]. From this it fol‐

lows that definable subcategories are exactly the (full subcategories on) additive

elementary classes, i.e., elementary classes closed under finite direct sum and direct

summand, see [HR, §1. 1] again.

Plain inspection of the axioms shows that among the examples discussed in the

algebra section above, the class of torsionfree modules over a domain and the classes

of  \mathfrak{s}_{\mathcal{F}}‐torsionfree modules (with  \mathfrak{s}_{\mathcal{F}} pp torsion) constitute definable subcategories.

In particular, the  \mathfrak{s}‐torsionfree modules (for injective torsion  \mathfrak{s} ) do.

4.5.  F‐sentences: Pure Serre subcategories. Following [PRZI, §4.2], an F‐

sentence is a symmetric sentence with antecedent a singleton, i.e., an implication

of the form   \varphiarrow\sum\Psi with  \varphi pp and  \Psi a set of pp formulas. An  F‐class is a class

of structures axiomatized by  F‐sentences.

 2_{Finite} conjunctions of pp formulas are pp.

 3_{For} a discussion of the history of (and the names for) that concept, see [HR, §1.1].
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A class  K is said to be a pure Serre subcategory if, in every pure‐exact sequence,

the outer terms belong to  K if and only if the middle term does. In other words,

pure Serre subcategories are closed under pure submodules, pure epimorphic images

and pure extensions.

It is easy to see that  F‐sentences are preserved in pure submodules and pure

epimorphic images. For instance, given a pure epimorphism  g :  Barrow C such

that   B\models\varphiarrow\vee\Psi , if  \overline{c}\in\varphi(C) , then, by purity, there’s a preimage  \overline{b}\in\varphi(B) ,

which then must satisfy also some  \psi\in\Psi ; finally, any homomorphism preserves pp

formulas, hence  \overline{c}\in\psi(C) , which concludes the proof that  C\models\varphiarrow\Psi.
The converse is also true:

Fact 6. [HR, Lemma 2.2]  F‐classes form pure Serre subcategories.

But to show that  F‐sentences are preserved in pure extensions, though still

straightforward, one needs to make sure that the big disjunction is in fact a sum,

i.e., one needs to have the implication in true  F‐form   \varphiarrow\sum\Psi , see the details in

the proof of [HR, Lemma 2.2]. The same applies to the next property of  F‐classes—

here one has to add disjuncts for every coordinate in the (finite!) support of an
element in the direct sum.

Fact 7. [HR, Prop. 2.3]  F‐classes are closed under direct sum.

In arbitrary direct products the proof breaks down as one cannot expect to

be able to add up infinitely many disjuncts from  \Psi to get a single one. In fact,

McKinsey’s lemma, Fact 5, applies and shows that, under the assumption that

the  F‐sentence is preserved in direct products, a single disjunct must have worked

throughout to begin with:

Fact 8. If an implication  \varphiarrow\vee\Psi is preserved in direct products, then there is a

single  \psi\in\Psi such that  \varphiarrow\vee\Psi is equivalent to  \varphiarrow\psi.

In particular,  F‐sentences preserved in direct products are pp implications. Hence

 F‐classes closed under direct product are definable subcategories.

(This was extended to pure Serre subcategories in [HR, Prop. 2.8].)

Examples of  F‐classes are all classes of torsion modules for the various kinds

of torsion discussed in the algebra section (except for possibly Hattori torsion).

Further, the classes of Hattori torsionfree modules, of flat modules and the ones

from §3.5 are also  F‐classes.
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