

Title	RECENT RESULTS ON SEQUENTIAL OPTIMALITY THEOREMS FOR CONVEX OPTIMIZATION PROBLEMS (Nonlinear Analysis and Convex Analysis)
Author(s)	Lee, Jae Hyoung; Lee, Gue Myung
Citation	数理解析研究所講究録 = RIMS Kokyuroku (2019), 2114: 92-95
Issue Date	2019-05
URL	http://hdl.handle.net/2433/252040
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

RECENT RESULTS ON SEQUENTIAL OPTIMALITY THEOREMS FOR CONVEX OPTIMIZATION PROBLEMS

JAE HYOUNG LEE AND GUE MYUNG LEE

ABSTRACT. In this brief note, we review sequential optimality theorems in [5]. We give two kinds of sequential optimality theorems for a convex optimization problem, which are expressed in terms of sequences of ϵ -subgradients and subgradients of involved functions.

1. Introduction

Consider the following convex programming problem

(CP) min
$$f(x)$$

s.t. $g_i(x) \leq 0, i = 1, \dots, m,$

where $\overline{\mathbb{R}} = [-\infty, +\infty]$ and $f, g_i : \mathbb{R}^n \to \overline{\mathbb{R}}, i = 1, \dots, m$, are proper lower semi-continuous convex functions.

New sequential Lagrange multiplier conditions characterizing optimality without any constraint qualification for convex programs have been presented in terms of the subgradients and the ϵ -subgradients ([2, 3, 4]).

In this paper, we review sequential optimality results in [5]. We give two kinds of sequential optimality theorems for a convex optimization problem, which are expressed in terms of sequences of ϵ -subgradients and subgradients of involved functions. The involved functions of the problem are proper, lower semi-continuous and convex functions.

2. Preliminaries

Let us give some notations and preliminary results which will be used throughout this thesis.

 \mathbb{R}^n denotes the *n*-dimensional Euclidean space. The inner product in \mathbb{R}^n is defined by $\langle x,y\rangle:=x^Ty$ for all $x,y\in\mathbb{R}^n$. We say that a set A in \mathbb{R}^n is convex whenever $\mu a_1+(1-\mu)a_2\in A$ for all $\mu\in[0,1],\ a_1,a_2\in A$.

Date: January 4, 2018.

¹⁹⁹¹ Mathematics Subject Classification. 90C22, 90C25, 90C46.

Key words and phrases. sequential optimality theorems, ϵ -subgradient, convex optimization problems.

Let f be a function from \mathbb{R}^n to $\overline{\mathbb{R}}$, where $\overline{\mathbb{R}} = [-\infty, +\infty]$. Here, f is said to be proper if for all $x \in \mathbb{R}^n$, $f(x) > -\infty$, and there exists $x_0 \in \mathbb{R}^n$ such that $f(x_0) \in \mathbb{R}$. We denote the domain of f by $\mathrm{dom} f$, that is, $\mathrm{dom} f := \{x \in \mathbb{R}^n : f(x) < +\infty\}$. The epigraph of f, $\mathrm{epi} f$, is defined as $\mathrm{epi} f := \{(x, r) \in \mathbb{R}^n \times \mathbb{R} : f(x) \leq r\}$, and f is said to be convex if $\mathrm{epi} f$ is convex.

Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a convex function. The subdifferential of f at $x \in \mathbb{R}^n$ is defined by

$$\partial f(x) = \begin{cases} \{x^* \in \mathbb{R}^n : \langle x^*, y - x \rangle \leq f(y) - f(x), \ \forall y \in \mathbb{R}^n \}, & \text{if } x \in \text{dom} f, \\ \emptyset, & \text{otherwise.} \end{cases}$$

More generally, for any $\epsilon \geq 0$, the ϵ -subdifferential of f at $x \in \mathbb{R}^n$ is defined by

$$\partial_{\epsilon} f(x) = \begin{cases} \{x^* \in \mathbb{R}^n : \langle x^*, y - x \rangle \leq f(y) - f(x) + \epsilon, \ \forall y \in \mathbb{R}^n \}, & \text{if } x \in \text{dom} f, \\ \emptyset, & \text{otherwise.} \end{cases}$$

We say that f is a lower semicontinuous function if $\liminf_{y\to x} f(y) \ge f(x)$ for all $x \in \mathbb{R}^n$.

As usual, for any proper convex function g on \mathbb{R}^n , its conjugate function $g^* : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is defined by $g^*(x^*) = \sup\{\langle x^*, x \rangle - g(x) : x \in \mathbb{R}^n\}$ for any $x^* \in \mathbb{R}^n$.

We recall a version of the Brondsted-Rockafellar theorem which was established in [6].

Proposition 2.1. [1, 6] (Brondsted-Rockafellar Theorem) Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a proper lower semi-continuous convex function. Then for any real number $\epsilon > 0$ and any $x^* \in \partial_{\epsilon} f(\bar{x})$ there exist $x_{\epsilon} \in \mathbb{R}^n$, $x_{\epsilon}^* \in \partial f(x_{\epsilon})$ such that

$$||x_{\epsilon} - \bar{x}|| \le \sqrt{\epsilon}, \quad ||x_{\epsilon}^* - x^*|| \le \sqrt{\epsilon} \quad and \quad |f(x_{\epsilon}) - \langle x_{\epsilon}^*, x_{\epsilon} - \bar{x} \rangle - f(\bar{x})| \le 2\epsilon.$$

3. SEQUENTIAL OPTIMALITY THEOREMS

The following theorem is a sequential optimality result for (CP), which is expressed sequences of ϵ -subgradients of involved functions. The involved functions of the problem are proper, lower semi-continuous and convex functions.

Theorem 3.1. [5] Let $f, g_i : \mathbb{R}^n \to \overline{\mathbb{R}}, i = 1, ..., m$, be proper lower semi-continuous convex functions. Let $A := \{x \in \mathbb{R}^n : g_i(x) \leq 0, i = 1, ..., m\} \neq \emptyset$ and let $\bar{x} \in A$. Assume that $A \cap \text{dom} f \neq \emptyset$. Then the following statements are equivalent:

- (i) \bar{x} is an optimal solution of (CP);
- (ii) there exist $\delta_k \geq 0$, $\gamma_k \geq 0$, $\lambda_i^k \geq 0$, i = 1, ..., m, $\xi_k \in \partial_{\delta_k} f(\bar{x})$ and $\zeta_k \in \partial_{\gamma_k}(\sum_{i=1}^m \lambda_i^k g_i)(\bar{x})$ such that

$$\lim_{k \to \infty} (\xi_k + \zeta_k) = 0, \ \lim_{k \to \infty} (\delta_k + \gamma_k) = 0 \quad and \quad \lim_{k \to \infty} (\sum_{i=1}^m \lambda_i^k g_i)(\bar{x}) = 0.$$

Theorem 3.2. [5] Let $f, g_i : \mathbb{R}^n \to \overline{\mathbb{R}}, i = 1, ..., m$, be proper lower semi-continuous convex functions. Let $A := \{x \in \mathbb{R}^n : g_i(x) \leq 0, i = 1, ..., m\} \neq \emptyset$ and let $\overline{x} \in A$. Assume that $A \cap \text{dom} f \neq \emptyset$. Assume that $\text{epi} f^* + \text{cl} \bigcup_{\lambda_i \geq 0} \text{epi} (\sum_{i=1}^m \lambda_i g_i)^*$ is closed. Then the following statements are equivalent:

- (i) \bar{x} is an optimal solution of (CP);
- (ii) there exist $\gamma_k \geq 0$, $\lambda_i^k \geq 0$, i = 1, ..., m, $\xi \in \partial f(\bar{x})$, $\zeta_k \in \partial_{\gamma_k}(\sum_{i=1}^m \lambda_i^k g_i)(\bar{x})$ such that

$$\xi + \lim_{k \to \infty} \zeta_k = 0$$
, $\lim_{k \to \infty} \gamma_k = 0$ and $\lim_{k \to \infty} (\sum_{i=1}^m \lambda_i^k g_i)(\bar{x}) = 0$.

The following theorem is a sequential optimality result for (CP), which involve only the subgradients at nearby points to a minimizer of (CP). It is established by Proposition 2.1(a version of Brondsted-Rockafellar Theorem) and Theorem 3.1

Theorem 3.3. [5] Let $f, g_i : \mathbb{R}^n \to \overline{\mathbb{R}}, i = 1, ..., m$, be proper lower semi-continuous convex functions. Let $A := \{x \in \mathbb{R}^n : g_i(x) \leq 0, i = 1, ..., m\} \neq \emptyset$ and let $\bar{x} \in A$. Assume that $A \cap \text{dom } f \neq \emptyset$. Then the following statements are equivalent:

- (i) \bar{x} is an optimal solution of (CP);
- (ii) there exist $x_k \in \mathbb{R}^n$, $\lambda_i^k \geq 0$, $i = 1, \ldots, m$, $\bar{\zeta}_k \in \partial f(x_k)$, $\bar{\zeta}_k \in \partial (\sum_{i=1}^m \lambda_i^k g_i)(x_k)$ such that

$$\lim_{k \to \infty} x_k = \bar{x}, \quad \lim_{k \to \infty} (\bar{\xi}_k + \bar{\zeta}_k) = 0,$$
and
$$\lim_{k \to \infty} \left[f(x_k) + (\sum_{i=1}^m \lambda_i^k g_i)(x_k) - f(\bar{x}) \right] = 0.$$

The following theorem is a sequential optimality result for (CP), which involve only the subgradients at nearby points to a minimizer of (CP). It is established by Proposition 2.1(a version of Brondsted-Rockafellar Theorem) and Theorem 3.2

Theorem 3.4. [5] Let $f, g_i : \mathbb{R}^n \to \overline{\mathbb{R}}, i = 1, ..., m$, be proper lower semi-continuous convex functions. Let $A := \{x \in \mathbb{R}^n : g_i(x) \leq 0, i = 1, ..., m\} \neq \emptyset$ and let $\overline{x} \in A$. Assume that $A \cap \text{dom} f \neq \emptyset$ and $\text{epi} f^* + \text{cl} \bigcup_{\lambda_i \geq 0} \text{epi} (\sum_{i=1}^n \lambda_j g_i)^*$ is closed. Then the following statements are equivalent:

- (i) \bar{x} is an optimal solution of (CP);
- (ii) there exist $x_k \in \mathbb{R}^n$, $\lambda_i^k \geq 0$, i = 1, ..., m, $\bar{\xi} \in \partial f(\bar{x})$, $\bar{\zeta}_k \in \partial(\sum_{i=1}^m \lambda_i^k g_i)(x_k)$ such that

$$\lim_{k \to \infty} x_k = \bar{x}, \ \bar{\xi} + \lim_{k \to \infty} \bar{\zeta}_k = 0 \ and \ \lim_{k \to \infty} \left(\sum_{i=1}^m \lambda_i^k g_i \right) (x_k) = 0.$$

References

- [1] A. Brondsted and R. T. Rockafellar, On the subdifferential of convex functions, *Proc. Amer. Math. Soc.*, **16** (1965), 605-611.
- [2] V. Jeyakumar, Z. Y. Wu, G. M. Lee and N. Dinh, Liberating the subgradient optimality conditions from constraint qualifications, J. Global Optim., 36 (2006), 127-137.
- [3] V. Jeyakumar, G. M. Lee and N. Dinh, New sequential Lagrange multiplier conditions characterizing optimality without constraint qualification for convex programs, SIAM J. Optim., 14 (2003), 534-547.
- [4] J. H. Lee and G. M. Lee, On sequential optimality conditions for robust multiobjective convex optimizatiojn problems, *Linear and Nonlinear Analysis*, **2** (2015), 221-246.
- [5] J. H. Lee and G. M. Lee, On sequential optimality theorems for convex optimization problems, *Linear and Nonlinear Analysis*, **3** (2017), 155-170.
- [6] L. Thibault, Sequential convex subdifferential calculus and sequential Lagrange multipliers, SIAM. J. Control Optim., 35 (1997), 1434-1444.

Department of Applied Mathematics, Pukyong National University, Busan 48513, Korea

E-mail address: mc7558@naver.com

Department of Applied Mathematics, Pukyong National University, Busan 48513, Korea

E-mail address: gmlee@pknu.ac.kr