Kyoto University Research Information Repository	
Title	On weakly \$(tilde{rho}, tilde{D})\$-separable polynomials in skew polynomial rings (Algebras, logics, languages and related areas)
Author(s)	Yamanaka, Satoshi
Citation	数理解析研究所講究録 = RIMS Kokyuroku (2018), 2096: 109-114
Issue Date	2018-12
URL	http://hdl.handle.net/2433/251743
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

On weakly $(\tilde{\rho}, \tilde{D})$ -separable polynomials in skew polynomial rings

Satoshi Yamanaka Department of Integrated Science and Technology National Institute of Technology, Tsuyama College

Abstract

Separable polynomials in skew polynomial rings were studied extensively by Y. Miyashita, T. Nagahara, S. Ikehata, and G. S eto. In particular, Ikehata gave the characteri ation of $(\tilde{\rho}, \tilde{D})$ -separable polynomials in skew polynomial rings. In this article, we shall introduce the notion of weakly $(\tilde{\rho}, \tilde{D})$ -separable polynomials in skew polynomial rings, and we shall give a characteri ation of the $(\tilde{\rho}, \tilde{D})$ -separability and that of the weak $(\tilde{\rho}, \tilde{D})$ -separability.

1 Introduction and Preliminaries

Throughout this paper, A/B will represent a ring extension with common identity 1. Let M be an A-A-bimodule, and x, y arbitrary elements in A. An additive map $\delta: A \to M$ is called a B-derivation of A to M if $\delta(xy) = \delta(x)y + x\delta(y)$ and $\delta(\alpha) = 0$ for any $\alpha \in B$. Moreover, δ is called *inner* if $\delta(x) = mx - xm$ for some fixed element $m \in M$. We say that a ring extension A/B is *separable* if the A-A-homomorphism of $A \otimes_B A$ onto A defined by $a \otimes b \mapsto ab$ splits. It is well known that A/B is separable if and only if for any A-A-bimodule M, every B-derivation of A to M is inner (cf. [1, Satz 4.2]). A ring extension A/B is said to be *weakly separable* if every B-derivation of A to A is inner. The notion of a weakly separable extension was introduced by N. Hamaguchi and A. Nakajima (cf. [2]) . Obviously, a separable extension is weakly separable.

Let B be a ring, ρ an automorphism of B, D a ρ -derivation of B. $B[X; \rho, D]$ will mean the skew polynomial ring in which the multiplication is given by $\alpha X = X\rho(\alpha) + D(\alpha)$ for any $\alpha \in B$. We set $B[X; \rho] := B[X; \rho, 0]$ and $B[X; D] := B[X; 1_A, D]$. By $B[X; \rho, D]_{(0)}$ we denote the set of all monic polynomials g in $B[X; \rho, D]$ such that $gB[X; \rho, D] = B[X; \rho, D]g$. For a polynomial $f \in B[X; \rho, D]_{(0)}$, the residue ring $B[X; \rho, D]/fB[X; \rho, D]$ is a free ring extension of B. We say that a polynomial $f \in B[X; \rho, D]_{(0)}$ is separable (resp. weakly separable) in $B[X; \rho, D]$ if $B[X; \rho, D]/fB[X; \rho, D]$ is separable (resp. weakly separable) over B. Throughout this article, we assume that $\rho D = D\rho$, and let $f = X^m + X^{m-1}a_{m-1} + \cdots + Xa_1 + a_0 \in B[X; \rho, D]_{(0)} \cap B^{\rho}[X]$ and

$$\begin{aligned} f' &:= mX^{m-1} + (m-1)X^{m-2}a_{m-1} \cdots + Xa_2 + a_1 \text{ (the derivative of } f), \\ Y_0 &:= X^{m-1} + X^{m-2}a_{m-1} + \cdots + Xa_2 + a_1, \\ & \ddots & \ddots \\ Y_j &:= X^{m-j-1} + X^{m-j-2}a_{m-1} + \cdots + Xa_{j+2} + a_{j+1}, \\ & \ddots & \ddots \\ Y_{m-2} &:= X + a_{m-1}, \\ Y_{m-1} &:= 1. \end{aligned}$$

We shall use the following conventions:

$$\begin{split} B^{\rho} &:= \left\{ \alpha \in B \mid \rho(\alpha) = \alpha \right\} \\ B^{D} &:= \left\{ \alpha \in B \mid D(\alpha) = 0 \right\} \\ B^{\rho,D} &:= B^{\rho} \cap B^{D} \\ C(B^{\rho,D}) &:= \left\{ \beta \in B^{\rho,D} \mid b\beta = \beta b \; (\forall b \in B^{\rho,D}) \right\} \text{ (the center of } B^{\rho,D}) \\ A &:= B[X;\rho,D]/fB[X;\rho,D] \\ x &:= X + fB[X;\rho,D] \in A \\ f' &:= f' + fB[X;\rho,D] \in A \\ y_{j} &:= Y_{j} + fB[X;\rho,D] \in A \; (0 \leq j \leq m-1) \\ \rho : \text{ an automorphism of } A \; \text{defined by } \rho \left(\sum_{j=0}^{m-1} x^{j}c_{j} \right) = \sum_{j=0}^{m-1} x^{j}\rho(c_{j}) \; (c_{j} \in B) \\ D : \text{ a } \rho - \text{derivation of } A \; \text{defined by } D \left(\sum_{j=0}^{m-1} x^{j}c_{j} \right) = \sum_{j=0}^{m-1} x^{j}D(c_{j}) \; (c_{j} \in B) \end{split}$$

For any subsets $T \subset B$ and $S \subset A$, we set

$$\begin{split} J_{m-1}(T) &:= \{ z \in A \mid \rho^{m-1}(\alpha) z = z\alpha \; (\forall \, \alpha \in T) \}, \\ V(T) &:= \{ z \in A \mid \alpha z = z\alpha \; (\forall \, \alpha \in T) \}, \\ W(S) &:= \left\{ \sum_{j=0}^{m-1} y_j \omega \otimes x^j \middle| \, \omega \in S \right\}, \\ (A \otimes_B A)^S &:= \{ \varepsilon \in A \otimes_B A \mid \varepsilon w = w\varepsilon \; (\forall \, w \in S) \}, \\ S^{\tilde{\rho}} &:= \{ z \in S \mid \rho(z) = z \}, \\ S^{\tilde{\rho}} &:= \{ z \in S \mid D(z) = 0 \}, \\ S^{\tilde{\rho}, \tilde{D}} &:= S^{\tilde{\rho}} \cap S^{\tilde{D}}. \end{split}$$

Note that $J_{m-1}(B') = V(B')$ for any subset B' of B^{ρ} .

110

We shall state some basic results which were already known.

Lemma 1.1 ([7, Lemma 1.6]). f is in $B[X; \rho, D]_{(0)}$ if and only if

(1)
$$a_i \rho^m(\alpha) = \sum_{j=i}^m \binom{j}{i} \rho^j D^{j-i}(\alpha) a_j \quad (\alpha \in B, \ 0 \le i \le m-1, \ a_m = 1)$$

(2)
$$D(a_i) = a_{i-1} - \rho(a_{i-1}) - a_i (\rho(a_{m-1}) - a_{m-1}) \quad (1 \le i \le m-1)$$

(3)
$$D(a_0) = a_0 (\rho(a_{m-1}) - a_{m-1})$$

Lemma 1.2 ([7, Corollary 1.7]). If f is in $B[X; \rho, D]_{(0)} \cap B^{\rho}[X]$ then f is in $C(B^{\rho,D})[X]$. Moreover,

$$\alpha a_i = \sum_{j=i}^m (-1)^{j-i} \binom{j}{i} a_j \rho^{m-j} D^{j-i}(\alpha) \quad (\alpha \in B, \ 0 \le j \le m, \ a_m = 1).$$

Lemma 1.3 ([6, Theorem 2.2]). Let B be a commutative ring, and f(X) a monic polynomial in B[X]. The following are equivalent.

- (1) f(X) is weakly separable in B[X].
- (2) f'(X) is a non-zero-divisor in B[X] modulo (f(X)), where f'(X) is a derivative of f(X).
- (3) $\delta(f(X))$ is a non-zero-divisor in B, where $\delta(f(X))$ is a discriminant of f(X).

Now we consider the following A-A-homomorphisms:

$$\mu : {}_{A}A \otimes_{B} A_{A} \to {}_{A}A_{A}, \quad \mu(z \otimes w) = zw$$

$$\xi : {}_{A}A \otimes_{B} A_{A} \to {}_{A}A \otimes_{B} A_{A}, \quad \xi(z \otimes w) = D(z) \otimes \rho(w) + z \otimes D(w)$$

$$\eta : {}_{A}A \otimes_{B} A_{A} \to {}_{A}A \otimes_{B} A_{A}, \quad \eta(z \otimes w) = \rho(z) \otimes \rho(w) - z \otimes w$$

By making of the above mappings, S. Ikehata gave the following definition.

Definiton 1.4 ([4, pp.119]). f is called (ρ, D) -separable in $B[X; \rho, D]$ if there exists an A-A-homomorphism $\nu : A \to A \otimes_B A$ such that

$$\mu\nu = 1_A, \ \xi\nu = \nu D, \ \eta\nu = \nu(\rho - 1_A).$$

Obviously, a (ρ, D) -separable polynomial in $B[X; \rho, D]$ is separable. In [4], S. Ikehata studied (ρ, D) -separable polynomials in $B[X; \rho, D]$ and he gave the following.

- (1) f is (ρ, D) -separable in $B[X; \rho, D]$.
- (2) There exists $h \in J_{m-1}(B)^{\tilde{\rho},\tilde{D}}$ such that f'h = hf' = 1.
- (3) f is separable in $C(B^{\rho,D})[X]$.

Noting that Lemma 1.5 (3), we shall give the following definition as a generalization of (ρ, D) -separable polynomials in $B[X; \rho, D]$.

Definiton 1.6. f is called *weakly* (ρ, D) -separable in $B[X; \rho, D]$ if f is weakly separable in $C(B^{\rho,D})[X]$.

The purpose of this article is to give characterizations of weakly (ρ, D) -separable in $B[X; \rho, D]$. Moreover, we shall characterize the difference between the (ρ, D) separability and the weak (ρ, D) -separability in $B[X; \rho, D]$.

2 Main results

The conventions and notations employed in the preceding section will be used in this section. In particular, recall that $\rho D = D\rho$ and let $f = X^m + X^{m-1}a_{m-1} + \cdots + Xa_1 + a_0 \in B[X; \rho, D]_{(0)} \cap B^{\rho}[X]$. Note that f is in $C(B^{\rho,D})[X]$ by Corollary 1.2. First we shall state the following.

Lemma 2.1. The following are equivalent.

- (1) f is weakly (ρ, D) -separable in $B[X; \rho, D]$.
- (2) f' is a non-zero-divisor in $C(B^{\rho,D})[X]/fC(B^{\rho,D})[X] (\cong V(B^{\rho,D})^{\tilde{\rho},\tilde{D}}).$
- (3) $\delta(f)$ is a non-zero-divisor in $C(B^{\rho,D})$, where $\delta(f)$ is a discriminant of f.

Proof. It is obvious by Lemma 1.3.

We recall that A-A-homomorphism $\mu : A \otimes_B A \to A$ defined by $z \otimes w \mapsto zw$. Noting that $\alpha f' = f'\rho^{m-1}(\alpha)$ for any $\alpha \in B$, we can see that $\mu\left(W(J_{m-1}(B)^{\tilde{\rho},\tilde{D}})\right) \subset V(B)^{\tilde{\rho},\tilde{D}}$. In addition, it is easy to see that $\mu\left(W(V(B^{\rho,D})^{\tilde{\rho},\tilde{D}})\right) \subset V(B^{\rho,D})^{\tilde{\rho},\tilde{D}}$. Then we shall state the following.

Theorem 2.2. (1) f is (ρ, D) -separable in $B[X; \rho, D]$ if and only if the following A-A-homomorphism is onto:

$$\mu|_{W(J_{m-1}(B)^{\tilde{\rho},\tilde{D}})}:W(J_{m-1}(B)^{\tilde{\rho},D})\longrightarrow V(B)^{\tilde{\rho},D}$$

(2) f is weakly (ρ, D) -separable in $B[X; \rho, D]$ if and only if the following A-A-homomorphism is one-to-one:

 $\mu \mid_{W(V(B^{\rho,D})^{\tilde{\rho},\tilde{D}})} : W(V(B^{\rho,D})^{\tilde{\rho},\tilde{D}}) \longrightarrow V(B^{\rho,D})^{\tilde{\rho},\tilde{D}}$

Proof. Note that $\mu\left(\sum_{j=0}^{m-1} y_j h \otimes x^j\right) = f'h = hf'$ for any $h \in A^{\tilde{\rho},\tilde{D}}$.

(1) Assume that f is (ρ, D) -separable in $B[X; \rho, D]$. Then there exists $h \in J_{m-1}(B)^{\tilde{\rho},\tilde{D}}$ such that f'h = hf' = 1 by Lemma 1.5 (2). For any $g \in V(B)^{\tilde{\rho},\tilde{D}}$, we see that $hg = gh \in J_{m-1}(B)^{\tilde{\rho},\tilde{D}}$ and $\mu\left(\sum_{j=0}^{m-1} y_j hg \otimes x^j\right) = f'hg = g$. Thus $\mu \mid_{W(J_{m-1}(B)^{\tilde{\rho},\tilde{D}})}$ is onto.

Conversely, assume that $\mu|_{W(J_{m-1}(B)^{\tilde{\rho},\tilde{D}})}$ is onto. Since $1 \in V(B)^{\tilde{\rho},\tilde{D}}$, there exists $h \in J_{m-1}(B)^{\tilde{\rho},\tilde{D}}$ such that $1 = \mu\left(\sum_{j=0}^{m-1} y_j h \otimes x^j\right) = f'h = hf'$. Therefore f is (ρ, D) -separable by Lemma 1.5 (2).

(2) Assume that f is weakly (ρ, D) -separable in $B[X; \rho, D]$. Then f' is a non-zerodivisor in $V(B^{\rho,D})^{\tilde{\rho},\tilde{D}}$ by Lemma 2.1 (2). Let $\sum_{j=0}^{m-1} y_j h \otimes x^j$ be in Ker $\left(\mu \mid_{W(V(B^{\rho,D})^{\tilde{\rho},\tilde{D}})}\right)$ with $h \in V(B^{\rho,D})^{\tilde{\rho},\tilde{D}}$. Then we have 0 = f'h = hf'. Since f' is a non-zero-divisor in $V(B^{\rho,D})^{\tilde{\rho},\tilde{D}}$, we obtain h = 0 and hence Ker $\left(\mu \mid_{W(V(B^{\rho,D})^{\tilde{\rho},\tilde{D}})}\right) = \{0\}$. Thus $\mu \mid_{W(V(B^{\rho,D})^{\tilde{\rho},\tilde{D}})}$ is one-to-one.

Conversely, assume that $\mu |_{W(V(B^{\rho,D})^{\bar{\rho},\bar{D}})}$ is one-to-one. Let hf' = 0 for some $h \in V(B^{\rho,D})^{\bar{\rho},\bar{D}}$. This implies that $\mu \left(\sum_{j=0}^{m-1} y_j h \otimes x^j \right) = 0$. Since $\mu |_{W(V(B^{\rho,D})^{\bar{\rho},\bar{D}})}$ is one-to-one, we have $\sum_{j=0}^{m-1} y_j h \otimes x^j = 0$, namley, h = 0. Therefore f' is a non-zero-divisor in $V(B^{\rho,D})^{\bar{\rho},\bar{D}}$, and hence f is weakly (ρ, D) -separable by Lemma 2.1 (2).

Corollary 2.3. f is (ρ, D) -separable in $B[X; \rho, D]$ if and only if $W(J_{m-1}(B)^{\tilde{\rho}, \tilde{D}}) \cong V(B)^{\tilde{\rho}, \tilde{D}}$ as an A-A-bimodule.

Proof. Note that $W(J_{m-1}(B)^{\bar{\rho},\bar{D}}) \subset W(V(B^{\rho,D})^{\bar{\rho},\bar{D}})$ and $V(B)^{\bar{\rho},\bar{D}} \subset V(B^{\rho,D})^{\bar{\rho},\bar{D}}$. If f is (ρ, D) -separable in $B[X; \rho, D]$ then f is also weakly (ρ, D) -separable, and so $\mu \mid_{W(J_{m-1}(B)^{\bar{\rho},\bar{D}})}$ is one-to-one. Therefore $\mu \mid_{W(J_{m-1}(B)^{\bar{\rho},\bar{D}})}$ is an isomorphism if and only if f is (ρ, D) -separable in $B[X; \rho, D]$.

References

 S. Elliger, Uber automorphismen und derivationen von ringen, J. Reine Angew. Math., 277 1975, 155–177.

- [2] N. Hamaguchi and A. Nakajima, On generalizations of separable polynomials over rings, *Hokkaido Math. J.*, 42 2013, no. 1, 53–68.
- [3] K. Hirata and K. Sugano, On semisimple extensions and separable extensions over noncommutative rings, J. Math. Soc. Japan 18 (1966), 360–373.
- [4] S. Ikehata, On separable polynomials and Frobenius polynomials in skew polynomial rings, Math. J. Okayama Univ., 22 1980, 115–129.
- [5] Y. Miyashita, On a skew polynomial ring, J. Math. Soc. Japan, 31 1979, no. 2, 317–330.
- [6] S. Yamanaka, On weakly separable polynomials and weakly quasi-separable polynomials over rings, *Math. J. Okayama Univ.*, 58 2016, Vol. 58, pp.175– 188.
- [7] S. Yamanaka, An alternative proof of Miyasita's theorem in a skew polynomial rings II, *Gulf Journal of Math.*, 2017, Vol. 5, Issue 4, pp.9–17.

E-mail address : yamanaka@tsuyama.kosen-ac.jp