Title	Classification of Zeropotent A Igebras of Dimension 3 （Algebras，logics，languages and related areas）
Author（s）	Kobayashi，Y uji；Shiray anagi，Kiyoshi；Takahasi，Sin－Ei； Tsukada，Makoto
Citation	数理解析研究所講究録＝RIMS Kokyuroku（2018），2096： $50-53$
Issue Date	$2018-12$
URL	http：／hdl．handle．net／2433／251734
Right	Departmental Bulletin Paper
Type	publisher
Textversion	

Classification of Zeropotent Algebras of Dimension 3 ＊

Yuji Kobayashi，Kiyoshi Shirayanagi，Sin－Ei Takahasi and Makoto Tsukada

Laboratory of Mathematics and Games
（https：／／math－game－labo．jimdo．com）
and
Department of Information Science，Toho University

1 Introduction

Let A be a（not necessarily associative）algebra over a field K ．We call A zeropotent if $x^{2}=0$ for all $x \in A$ ．A zeropotent algebra A is anti－commutative， that is，$x y=-y x$ for all $x, y \in A$ ．The converse is true if the characteristic of A is not equal to 2 ．

In this note we discuss the classification problem of zeropotent algebras of dimension 3．In particular，we give a complete classification over an algebraically closed field of characteristic not equal to 2 ．We determine the isomorphism classes of algebras by determining the equivalence classes of structure matrices of algebras．

Let A be a zeropotent algebra over K of dimension 3 with a linear base $\left\{e_{1}, e_{2}, e_{3}\right\}$ ．Because A is zeropotent，$e_{1}^{2}=e_{2}^{2}=e_{3}^{2}=0, e_{1} e_{2}=-e_{2} e_{1}, e_{1} e_{3}=$ $-e_{3} e_{1}$ and $e_{2} e_{3}=-e_{3} e_{2}$ ．Write

$$
\begin{align*}
& e_{2} e_{3}=a_{11} e_{1}+a_{12} e_{2}+a_{13} e_{3} \\
& e_{3} e_{1}=a_{21} e_{1}+a_{22} e_{2}+a_{23} e_{3} \tag{1}\\
& e_{1} e_{2}=a_{31} e_{1}+a_{32} e_{2}+a_{33} e_{3}
\end{align*}
$$

with $a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}, a_{31}, a_{32}, a_{33} \in K$ ．With the matrix

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \tag{2}\\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

[^0]we can rewrite (1) as
\[

\left($$
\begin{array}{l}
e_{2} e_{3} \\
e_{3} e_{1} \\
e_{1} e_{2}
\end{array}
$$\right)=A\left($$
\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}
$$\right) .
\]

We call (2) the structure matrix of the algebra A. We use the same A both for the matrix and for the algebra.

2 Matrix equation for isomorphism

Let A^{\prime} be another zeropotent algebra on a base $\left\{e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right\}$ given by

$$
\left(\begin{array}{l}
e_{2}^{\prime} e_{3}^{\prime} \tag{3}\\
e_{3}^{\prime} e_{1}^{\prime} \\
e_{1}^{\prime} e_{2}^{\prime}
\end{array}\right)=A^{\prime}\left(\begin{array}{l}
e_{1}^{\prime} \\
e_{2}^{\prime} \\
e_{3}^{\prime}
\end{array}\right) \text { with } A^{\prime}=\left(\begin{array}{ccc}
a_{11}^{\prime} & a_{12}^{\prime} & a_{13}^{\prime} \\
a_{21}^{\prime} & a_{22}^{\prime} & a_{23}^{\prime} \\
a_{31}^{\prime} & a_{32}^{\prime} & a_{33}^{\prime}
\end{array}\right) \text {. }
$$

Let $\Phi: A \rightarrow A^{\prime}$ be an isomorphism given by a transformation matrix

$$
X=\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right),
$$

that is,

$$
\left(\begin{array}{l}
\Phi\left(e_{1}\right) \\
\Phi\left(e_{2}\right) \\
\Phi\left(e_{3}\right)
\end{array}\right)=X\left(\begin{array}{l}
e_{1}^{\prime} \\
e_{2}^{\prime} \\
e_{3}^{\prime}
\end{array}\right)
$$

Since Φ is an isomorphism, we have

$$
\left(\begin{array}{l}
\Phi\left(e_{2}\right) \Phi\left(e_{3}\right) \tag{4}\\
\Phi\left(e_{3}\right) \Phi\left(e_{1}\right) \\
\Phi\left(e_{1}\right) \Phi\left(e_{2}\right)
\end{array}\right)=\left(\begin{array}{l}
\Phi\left(e_{2} e_{3}\right) \\
\Phi\left(e_{3} e_{1}\right) \\
\Phi\left(e_{1} e_{2}\right)
\end{array}\right)=A\left(\begin{array}{l}
\Phi\left(e_{1}\right) \\
\Phi\left(e_{2}\right) \\
\Phi\left(e_{3}\right)
\end{array}\right)=A X\left(\begin{array}{l}
e_{1}^{\prime} \\
e_{2}^{\prime} \\
e_{3}^{\prime}
\end{array}\right) .
$$

The left side of (4) is

$$
\left(\begin{array}{l}
\Phi\left(e_{2}\right) \Phi\left(e_{3}\right) \tag{5}\\
\Phi\left(e_{3}\right) \Phi\left(e_{1}\right) \\
\Phi\left(e_{1}\right) \Phi\left(e_{2}\right)
\end{array}\right)=Y\left(\begin{array}{l}
e_{2}^{\prime} e_{3}^{\prime} \\
e_{3}^{\prime} e_{1}^{\prime} \\
e_{1}^{\prime} e_{2}^{\prime}
\end{array}\right)=Y A^{\prime}\left(\begin{array}{l}
e_{1}^{\prime} \\
e_{2}^{\prime} \\
e_{3}^{\prime}
\end{array}\right)
$$

where Y is the cofactor matrix of X. Because $Y=|X|^{t} X^{-1}$, by (4) and (5) we get

$$
\begin{equation*}
A^{\prime}=\frac{1}{|X|}^{t} X A X \tag{6}
\end{equation*}
$$

Theorem 2.1. A and A^{\prime} are isomorphic if and only if there is a nonsingular matrix X (transformation matrix) satisfying (6). If K is algebraically closed, we can choose X as $|X|=1$.

Cororally 2.2. If A and A^{\prime} are isomorphic, then
(i) $\operatorname{rank} A=\operatorname{rank} A^{\prime}$, and
(ii) A is symmetric if and only if A^{\prime} is symmetric.

3 Jacobi elements

By Corollary 2.2, the rank and symmetry are invariants under isomorphism of algebras. Another important invariant is the Jacobi element $\operatorname{jac}(A)$ of A, which is defined, with respect to the base $\left\{e_{1}, e_{2}, e_{3}\right\}$, by

$$
\operatorname{jac}(A)=e_{1}\left(e_{2} e_{3}\right)+e_{2}\left(e_{3} e_{1}\right)+e_{3}\left(e_{1} e_{2}\right)
$$

Proposition 3.1. (i) If A is symmetric, then $\operatorname{jac}(A)=0$.
(ii) If A is a Lie algebra if and only if $\operatorname{jac}(A)=0$.
(iii) When $\operatorname{rank}(A)=3, A$ is a Lie algebra if and only if A is symmetric.

For algebras A and A^{\prime} with structure matrices in (2) and (3) respectively, let

$$
\operatorname{jac}(A)=a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3} \text { and } \operatorname{jac}\left(A^{\prime}\right)=a_{1}^{\prime} e_{1}^{\prime}+a_{2}^{\prime} e_{2}^{\prime}+a_{3}^{\prime} e_{3}^{\prime}
$$

Then, we have
Proposition 3.2 (Invariance of Jacobi elements). If A and A^{\prime} are isomorphic with a transformation matrix X, then

$$
\left(a_{1}, a_{2}, a_{3}\right) X=|X|\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right)
$$

4 Classification

We give a classification result over the complex number field $K=\mathbb{C}$. Let

$$
\mathcal{H}=\{z \in \mathbb{C} \mid-\pi / 2<\arg (z) \leq \pi / 2\}
$$

be the half plane.
Theorem 4.1. Up to isomorphism, zeropotent algebras of dimension 3 over \mathbb{C} are classified into 10 families

$$
A_{0}, A_{1}, A_{2}, A_{3},\left\{A_{4}(a)\right\}_{a \in \mathcal{H}}, A_{5}, A_{6},\left\{A_{7}(a)\right\}_{a \in \mathcal{H}}, A_{8}, A_{9}
$$

defined by

$$
\begin{aligned}
& \left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & a \\
0 & 0 & 1
\end{array}\right), \\
& \left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & a & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 2 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 3 & 3 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

respectively. Among them, symmetric algebras are

$$
A_{0}, A_{1}, A_{4}(0), A_{7}(0)
$$

and asymmetric Lie algebras are

$$
A_{2}, A_{3},\left\{A_{4}(a)\right\}_{a \in(H) \backslash\{0\}}
$$

This classification is valid even over an arbitrary algebraically closed field of characteristic not equal to 2 .

5 Transformation

Let us take a quick look at a part of the ways how general matrices are transformed to the forms listed in Theorem 4.1.

Let A be a matrix of rank 3 given in (2), and let

$$
X=\left(\begin{array}{ccc}
\sqrt{\frac{c_{11}}{\operatorname{det} A}} & 0 & 0 \tag{7}\\
\frac{c_{12}}{\sqrt{c_{11} \operatorname{det} A}} & \sqrt{\frac{a_{33}}{c_{11}}} & 0 \\
\frac{c_{13}}{\sqrt{c_{11} \operatorname{det} A}} & \frac{-a_{32}}{\sqrt{a_{33} c_{11}}} & \frac{1}{\sqrt{a_{33}}}
\end{array}\right)
$$

where $c_{i j}$ is the (i, j)-cofactor of A, for example, $c_{11}=a_{22} a_{33}-a_{23} a_{32}$. Then, we have

$$
{ }^{t} X A X=A(a, b, c)=\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)
$$

where

$$
a=\frac{c_{12}-c_{21}}{\sqrt{a_{33} \operatorname{det} A}}, b=\frac{a_{23} c_{12}+a_{13} c_{11}+a_{33} c_{13}}{\sqrt{a_{33} c_{11} \operatorname{det} \mathrm{~A}}}, c=\frac{a_{23}-a_{32}}{\sqrt{c_{11}}} .
$$

Thus, A is isomorphic to an algebra with upper-triangular structure matrix by the transformation matrix X in (7).

Next, with the matrix

$$
Y=\left(\begin{array}{ccc}
0 & \frac{h}{d} & \frac{c}{d} \tag{8}\\
-\frac{a}{h} & \frac{b c-a d^{2}}{h d} & -\frac{b}{d} \\
\frac{a c-b}{h} & \frac{(a c-b) d^{2}-a c}{h d} & \frac{a}{d}
\end{array}\right),
$$

where $h=\sqrt{a^{2}+b^{2}-a b c}$ and $d=\sqrt{a^{2}+b^{2}+c^{2}-a b c}$, we have

$$
{ }^{t} Y A(a, b, c) Y=A(d, 0,0)=\left(\begin{array}{lll}
1 & d & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Hence, $A(a, b, c)$ is isomorphic to the algebra $A_{7}(d)$ in Theorem 4.1 with the transformation matrix Y in (8), if $h \neq 0$ and $d \neq 0$. Consequently, an algebra of rank 3 is isomorphic to $A_{7}(d)$ in a generic case.

References

[1] Y. Kobayashi, K. Shirayanagi, S.-E. Takahasi and M. Tsukada, Classification of three-dimensional zeropotent algebras over an algebraically closed field, Comm. Algebra, Vol. 45, Iss. 12, 5037-5052, 2017.

[^0]: ＊This is a digest version of Kobayashi et al．［1］．

