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1 Introduction

Let  A be  a (not necessarily associative) algebra over a field  K . We call  A

zeropotent if  x^{2}=0 for all  x\in A . A zeropotent algebra  A is anti‐commutative,
that is,  xy=-yx for all  x,  y\in A . The converse is true if the characteristic of
 A is not equal to 2.

In this note we discuss the classification problem of zeropotent algebras of
dimension 3. In particular, we give a complete classification over an algebraically
cıosed field of characteristic not equal to 2. We determine the isomorphism
classes of algebras by determining the equivalence classes of structure matrices
of algebras.

Let  A be a zeropotent algebra over  K of dimension 3 with a linear base
 \{e_{1}, e_{2}, e_{3}\} . Because  A is zeropotent,  e_{1}^{2}=e_{2}^{2}=e_{3}^{2}=0,  e_{1}e_{2}=-e_{2}e_{1},  e_{1}e_{3}=

 -e_{3}e_{1} and  e_{2}e_{3}=-e_{3}e_{2} . Write

 e_{2}e_{3} = a_{11}e_{1}+a_{12}e_{2}+a_{13}c_{3}

 e_{3}e_{1} = a_{21}e_{1}+a_{22}e_{2}+a_{23}e_{3} (1)
 e_{1}e_{2} = a_{31}e_{1}+a_{32}e_{2}+a_{33}e_{3}

with  a_{11},  a_{12},  a_{13},  a_{21},  a_{22},  a_{23},  a_{31},  a_{32},  a_{33}\in K . With the matrix

 A=\begin{array}{lll}
a_{11}   a_{12}   a_{1_{c}3}
o_{21}   a_{22}   a_{23}
a_{31}   a_{32}   a_{33}
\end{array}
 *

This is a digest version of Kobayashi et al. [1].
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we can rewrite (1) as

 (\begin{array}{l}
e_{2}e_{3}
e_{3}e_{1}
e_{1}e_{2}
\end{array})=A  (\begin{array}{l}
e_{1}
e_{2}
e_{3}
\end{array})
We call (2) the structure matrix of the algebra  A . We use the same  A both

for the matrix and for the algebra.

2 Matrix equation for isomorphism

Let  A' be another zeropotent algebra on a base {eí,  e_{2}',  e_{3}' } given by

 (\begin{array}{l}
e_{2}'e_{3}'
e_{3}'e_{1}'
e_{l}'e_{2}'
\end{array})  =A'  (\begin{array}{l}
e_{1}^{/}
e_{2}'
e_{3}'
\end{array}) with  A'=  (\begin{array}{lll}
a_{1l}'   a_{12}^{/}   a_{13}'
a_{21}'   a_{22}   a_{23}'
a_{31}^{/}   a_{32}'   a_{33}'
\end{array}) (3)

Let  \Phi :  Aarrow A' be an isomorphism given by a transformation matrix

 X=(\begin{array}{lll}
x_{11}   x_{12}   x_{13}
x_{21}   x_{22}   x_{23}
x_{31}   x_{32}   x_{33}
\end{array}),
that is,

 (\begin{array}{l}
\Phi(e_{1})
\Phi(e_{2})
\Phi(e_{3})
\end{array})=X  (\begin{array}{l}
c_{1}'
e_{2}'
e_{3}
\end{array})
Since  \Phi is an isomorphism, we have

 (\begin{array}{l}
\Phi(e_{2})\Phi(e_{3})
\Phi(\epsilon i_{3})\Phi(e_{1})
\Phi(e_{1})\Phi(e_{2})
\end{array})=(\begin{array}{l}
\Phi(e_{2}e_{3})
\Phi(e_{3}e_{1})
\Phi(e_{l}e_{2})
\end{array})  =A  (\begin{array}{l}
\Phi(e_{1})
\Phi(e_{2})
\Phi(e_{3})
\end{array})  =AX  (\begin{array}{l}
e_{l}'
e_{2}'
e_{3}'
\end{array}) (4)

The left side of (4) is

 (\begin{array}{l}
\Phi(e_{2})\Phi(e_{3})
\Phi(e_{3})\Phi(e_{1})
\Phi(e_{1})\Phi(e_{2})
\end{array})=Y  (\begin{array}{l}
e_{2}'e_{3}'
e_{3}'e_{1}'
e_{l}e_{2}
\end{array})  =YA'  (\begin{array}{l}
e_{1}'
e_{2}'
e_{3}'
\end{array}) (5)

where  Y is the cofactor matrix of  X . Because  Y=|X|tX^{-1} , by (4) and (5) we
get

 A'= \frac{1}{|X|}tXAX . (6)

Theorem 2.1.  A and  A' are isomorphic if and only if there is a nonsingular
matrix  X (transformation matrix) satisfying (6). If  K is algebraically closed,
we can choose  X as  |X|=1.

Cororally 2.2. If  A and  A' are isomorphic, then
(i) rank  A= rank  A' , and
(ii)  A is symmetric if and only if  A' is symmetric.
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3 Jacobi elements

By Corollary 2.2,  tl\perp e rank and symmetry are invariants under isomorphism of
algebras. Another important invariant is the Jacobi element  jac(A) of  A , which
is defined, with respect to the base  \{e_{1}, e_{2}, e_{3}\} , by

 jac(A)=e_{1}(e_{2}e_{3})+e_{2}(e_{3}e_{1})+e_{3}(e_{1}e_{2}) .

Proposition 3.1. (i) If  A is symmetric, then  jac(A)=0.
(ii) If  A is a Lie algebra if and only if  jac(A)=0.
(iii) When rank  (A)=3,  A is a Lie al.gebra if and only if  A is symmetric.

For algebras  A and  A' with structure matrices in (2) and (3) respectively,
let

 jac(A)=a_{1}e_{1}+a_{2}e_{2}+a_{3}e_{3} and  jac(A')=a_{1}'e_{1}'+a_{2}'e_{2}'+a_{3}'e_{3}'.
Then, we have

Proposition 3.2 (Invariance of Jacobi elements). If  A and  A' are isomorphic
with a transformation matrix  X , then

 (a_{1}, a_{2}, a_{3})X=|X|(a_{1}', a_{2}', a_{3}') .

4 Classification

We give a classification result over the complex number field  K=\mathbb{C} . Let

 \mathcal{H}=\{z\in \mathbb{C}|-\pi/2<\arg(z)\leq\pi/2\}

be the half plane.

Theorem 4.1. Up to isomorphism, zeropotent  al_{9}ebras of dimension 3 over  \mathbb{C}

are classified into 10 families

 A_{0}, A_{1}, A_{2} , A_{3} , \{A_{4}(a)\}_{a\in \mathcal{H}}, A_{5}, A_{6} , \
{A_{7}(a)\}_{a\in \mathcal{H}}, \Lambda_{8} , A_{9}

defined by

 (\begin{array}{lll}
0   0   0
0   0   0
0   0   0
\end{array}) ,  (\begin{array}{lll}
0   0   0
0   0   0
0   0   1
\end{array}) ,  (\begin{array}{lll}
0   0   1
0   0   0
0   0   1
\end{array}) ,  (\begin{array}{lll}
0   1   0
-1   0   0
0   0   0
\end{array}) ,  (\begin{array}{lll}
0   0   0
0   1   a
0   0   1
\end{array}) ,

 (\begin{array}{lll}
0   1   0
0   0   0
0   0   1
\end{array}) ,  (\begin{array}{lll}
0   1   1
0   0   1
0   0   l
\end{array}) ,  (\begin{array}{lll}
1   a   0
0   1   0
0   0   1
\end{array}) ,  (\begin{array}{lll}
1   2   2
0   1   2
0   0   1
\end{array}) ,  (\begin{array}{lll}
1   3   3
0   1   3
0   0   1
\end{array})
respectively. Among them, symmetric algebras are

 A_{0}, A_{1} , A_{4}(0) , A_{7}(0)

and asymmetric Lie algebras are

 A_{2}, A_{3}, \{A_{4}(a)\}_{a\in(H)\backslash \{0\}}.
This classification is valid even over an arbitrary algebraically closed field of

characteristic not equal to 2.
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5 Transformation

Let us take a quick look at a part of the ways how general matrices are trans‐
formed to the forms listed in Theorem 4.1.

Let  A be a matrix of rank 3 given in (2), and let

 X= ( \frac{\sqrt{\frac{c_{11}}{c_{12}\det A}}}{\sqrt{c_{11}\det A},\sqrt{c_{11}
\det A}c_{13}}\frac{}{} \frac{\sqrt{\frac{a_{33}}{a_{32}c_{11}}}-}
{\sqrt{a_{33^{C}11}}}0 \frac{1}{\sqrt{a_{33}}}00) , (7)

where  c_{ij} is the  (i, j) ‐cofactor of  A , for example,  c_{11}=a_{22}a_{33}-a_{23}a_{32} . Then,
we have

 tXAX=A(a, b, c)=(\begin{array}{lll}
1   a   b
0   1   c
0   0   1
\end{array}) ,

where

 a= \frac{c_{12}-c_{21}}{\sqrt{a_{33}\det A}}, b=\frac{a_{23}c_{12}+a_{13}c_{11}
+a_{33^{C}{\imath} 3}}{\sqrt{a_{33}c_{11}detA}}, c=\frac{a_{23}-a_{32}}{\sqrt{c_
{11}}}.
Thus,  A is isomorphic to an algebra with upper‐triangular structure matrix by
the transformation matrix  X in (7).

Next, with the matrix

 Y= ( \frac{ac-b-0}{h}\frac{a}{h} \frac{(ac-b)d-acbc-ad^{2}hd_{2}}{hd}\frac{h}
{d} -\frac{c}{d}\frac{a}{d}\frac{b}{d}) , (8)

where  h=\sqrt{a^{2}+b^{2}-}abc and  d=\sqrt{a^{2}+b^{2}+c^{2}}‐abc, we have

 tYA(a, b, c)Y=A(d, 0,0)=(\begin{array}{lll}
1   d   0
0   1   0
0   0   1
\end{array})
Hence,  A(a, b, c) is isomorphic to the algebra  A_{7}(d) in Theorem 4.1 with the
transformation matrix  Y in (8), if  h\neq 0 and  d\neq 0 . Consequently, an algebra
of rank 3 is isomorphic to  A_{7}(d) in a generic case.
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