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Abstract

The paper deals with the free product of generalized Gaussian process
with function t_{b}(V)=b^{H(V)} , where  H(V)=n-h(V),  h(V) is the num‐
ber of singletons in a pair‐partition  V\in \mathcal{P}_{2}(2n) . Some new combinatorial
formulas are presented. Connections with free additive convolutions prob‐
ability measure on  \mathbb{R} are also done. Also new positive definite functions
on permutations are presented and also it is proved that the function  H is
norm (on the group  S(\infty)=\cup S(n) . Connection with random matrices
and positive definite functions on permutations groups are aıso done.

1 Introduction

We present some new construction of generalized Gaussian processes and its re‐
lations with random matrices as well as with positive definite functions defined
on permutations groups. The plan of the paper is following: first we present
definitions and remarks on pair‐partitions. Next, Markov random matrices and
function  h on pair‐partitions are presented in the Section  3-\mathcal{P}_{2}(2n) as obtained
by Bryc, Dembo, Jiang [B‐D‐J]. Generalized strong Gaussian processes (fields)
{  G(f) are showed in the Section4,  f\in \mathcal{H} } (GSGP),  \mathcal{H} ‐ real Hilbert space, as
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well as the main and the new examples. The main theorem is placed in the Sec‐
tion 5. The free product of (GSGP)  G(f) and free Gaussian field  G_{0}(f) is again
(GSGP)‐ this appears in this paper as the Theorem 3. In the Section 5 we also
present the new interesting results on free convolutions of measures extend‐
ing results of  Bo\dot{z}ejko and Speicher [B‐Sp2]. Such negative‐definite functions
have mane applications in the field of telecommunication, parallel and quantum
computing as well as in operations research (see [B‐Wo, Boz2]). We show that
the function  H(\sigma)=n-h(\sigma),  \sigma\in S(n) is conditionally negative definite, i.e.
for each  x>0,  \exp(-xH(\sigma)) is positive functions on the permutation group
 S(\infty)=\cup S(n) . Also in the Theorem 6 (Section 6) it is shown that the function
 H defined as  d_{H}(\sigma, \tau)=H(\sigma^{-1}\tau) is left‐invariant distance on  S(\infty) .

2 Definitions and remarks on pair‐partitions

Definition 1  .Let_{70}istheW_{i}^{i}gner(semicircle)
 lawwithd

ensity  \frac{1}{\sqrt{2\pi},1)}\sqrt{4-x^{2}}dxTh_{\dot{i}}si_{\mathcal{S}}freeGaussian l aw.By\gamma_{1}wedenotetheNormallawN(0,withdens\dot{i}ty

  \frac{1}{\sqrt{2\pi}}e^{-x^{2}/2} . The moments (only even)

  \int_{-\infty}^{\infty}x^{2n}d\gamma_{{\imath}}(x)=m_{2n} (  \gamma ı)  =   \sum  1=1\cdot 3\cdot 5\cdot\ldots\cdot(2n-1)=(2n-1)!!=p_{2n},
 v\in \mathcal{P}_{2}(2n)

(1)
where  \mathcal{P}_{2}(2n) is the set of all pair‐partitions on  2n‐elementary set  \{ 1, 2, . . . ,  2n\}.

The moments of the Wigner law  m_{2n}( \gamma_{0})=\frac{1}{n+1}  (\begin{array}{l}
2n
n
\end{array})= the cardinality of
all non‐crossing pair‐partitions of  \mathcal{P}_{2}(2n) , where a partition  V\in \mathcal{P}_{2}(2n) has a
crossing if there exists blocks  (i_{1},j_{1}),  (i_{2},j_{2})\in V such that  i_{1}<i_{2}<j_{1}<j_{2} :

 i_{1}i_{2}j_{1}j_{2}.

Let cr(V)  =\# of all crossings of pair‐partition  V.

In contrary, the partition  V is called non‐crossing;  NC_{2}(2n)- denote the set
of all non‐crossing pair‐partitions on  2n‐elements set  \{ 1, 2, . . . ,  2n\} . Pictorially:

 V=\{(1,6), (2,5), (3,4)\}0

It is well known, that the cardinality of  NC_{2}(2n)= \frac{1}{n+1}  (\begin{array}{l}
2n
n
\end{array}) .

Definition 2. The block  B\in V\in \mathcal{P}_{2}(2n) is  a singleton, if  Bha\mathcal{S} no crossing
with other block  C\in V.
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Ex. the block  (3,  4)=B is a singleton.
 1 2 3 4 5 6

Following [B‐D‐J], let us denote   h(V)=\# of singletons in the pair‐partition
 V\in \mathcal{P}_{2}(2n) .

For example: if  V hen  h(V)=1.
Facts:

 (\alpha) If  V is non‐crossing pair‐partition on  \{1, 2\ldots, 2n\} , then  h(V)=n.

The important fact for us is the following:

(  \beta ) If  V is connected and  V\in \mathcal{P}_{2}(2n),  n>1 , then  h(V)=0,

for example  0.

The pair‐partition  V\in \mathcal{P}_{2}(2n) is connected if its graph is connected set. For

example  l2n is connected. Als  s connected.

Let cc(V)  = the number of connected components of the graph of the partition
 V\in \mathcal{P}_{2}(2n) , and
let   c_{2n}=\# {  V\in \mathcal{P}_{2}(2n) :  V is connected}.
That sequence is the free cumulant of the classical Gaussian distribution  N(0,1) ,
i.e.:

 c_{2}=1, c_{4}=1, c_{6}=4, c_{8}=27, c_{10}=248, 

The following formula is due to Riordan [R], see also Belinschi,  Bo\dot{z}ejko, Lehner,
Speicher [B‐B‐L‐S]:

 c_{2n+2}=n \sum_{\iota=1}^{n}c_{2i}c_{2(n-i-1)} (2)

and that sequence is the moment sequence of some symmetric probability mea‐
sure on real line, as it was proved in [B‐B‐L‐S].

That fact is equivalent to the following result:

Theorem 1. [B‐B‐L‐S] Normal law  \gamma_{1} is infinitely divisible in free ffl‐convolution
(i.e. :  \gamma ı  \in ID (EB)).

One of our aim of this work is to find different proof of that above result
using different method and the function  h(V) .
Let us first prove the following:

Proposition 1. Let us define  T_{2n}= \sum_{V\in \mathcal{P}_{2}(2n)}h(V) , and

 p_{2n}=(2n-1)!!= \sum_{V\in \mathcal{P}_{2}(2n)}1,  p_{2n}=1,3,15,105 , . . . ,

then

 T_{2n+2}=(n+1) \sum_{k=0}^{n}p_{2k} .  p_{(2n-2k)} . (3)
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That sequence  T_{2n} is following: 1, 4, 21, 144, 1245, 13140, 164745 For
more informations about this sequence see Sloane integer sequences database
(https://oeis.org/) no. A233481.
The proof of the formula (3) is by a simple considerations, if we consider pair‐
partitions as lying on a circle.
For example  (n=3) :

 V=\{(1,4), (2,6), (3,5)\},

 V=\{(1,2), (3,5), (4,6)\}.

3 Markov random matrices and function  h on

pair‐partitions  \mathcal{P}_{2}(2n)
Let  \{X_{ij} : j\geq i\geq 1\} be an infinite upper triangular array of i.i.  d . random
variables and define  X_{ji}=X_{ij} for  j>i\geq 1.
Let  X_{n}=[X_{\dot{i}j}]_{1\leq i,j\leq n} , and

 D_{n}= diag  ( \sum_{j=1}^{n}X_{i_{J}})
is a diagonal matrix. We define Markov matrices  M_{n} as a random matrix given
by

 M_{n}=X_{n}-D_{n},

so then each of rows (and columns) of  M_{n} has a zero sum.
Here for a symmetric  n\cross n matrix  A , its empirical distribution is done as

  \hat{\mu}(A)=\frac{1}{n}\sum_{j={\imath}}^{n}\delta_{\lambda_{g}(A)},
 \lambda_{j}(A),  1\leq i\leq n , denote the eigenvalues of the matrix  A and  \delta_{s} is the Dirac
mass at the point  s\in \mathbb{R}.

The Theorem of Bryc, Dembo, Jiang [B‐D‐J] is following:
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 EX_{i}^{2}J=1,  then \hat{\mu}(\frac{D-M_{n}}{\sqrt{n}})converge\mathcal{S} weakly a snarrow\infty tothemeasure  \gamma_{M}=\gamma_{0}ffl\gamma_{1}Theorem 2  ([B-J]).IfX_{ij}are\dot{i}.i.d. random variables w ith\mathbb{E}X_{ij}=0and

where  M denotes the free additive convolution of probability measures.

The even moments of the measure  \gamma_{M}=\gamma_{0} ffl  \gamma_{1} are following:

 m_{2n}(\gamma_{M})=   \sum  2^{h(V)} , and  m_{2n+1}(\gamma_{M})=0,
 v\in \mathcal{P}_{2}(2n)

 \gamma_{0} is the Wigner (semicircle) law done by density   \frac{1}{2\pi}\sqrt{4-x^{2}}\cdot\chi[-2,2],  \gamma_{1} is the
Normal law  N(0,1) .

4 Generalized Gaussian process (field)  G(f),   f\in
 \mathcal{H},  \mathcal{H}- real Hilbert space. Main and new ex‐
amples

Let in some probability system  (\mathcal{A}, \varepsilon), (A‐  *‐algebra with unit, and  \varepsilon is state
on  \mathcal{A}) . The family  G(f)=G(f)^{*}\in \mathcal{A},  f\in \mathcal{H} ‐ real Hilbert space, is called
normalized generalized Gaussian process (GGP), if for each orthogonal map
 \mathcal{O} :  \mathcal{H}arrow \mathcal{H} , for  f_{j}\in \mathcal{H}_{\mathbb{R}} , we have

 \varepsilon(G(f_{1})G(f_{2})\ldots G(f_{k}))=\varepsilon(G(\mathcal{O}(f_{1}))G
(\mathcal{O}(f_{2}))\ldots G(\mathcal{O}(f_{k})))=

 =\{\begin{array}{ll}
0   for k- odd,
\sum_{V\in \mathcal{P}_{2}(2n)}t(V)\prod_{(i,j)\in V}<f_{i}|f_{j}>   for k=2n,
\end{array}
for some function  t :  \mathcal{P}_{2}(\infty)arrow \mathbb{C} which will be called positive definite on
 \mathcal{P}_{2}(\infty) (  see [B‐Sp2],  Gu\zeta\check{a}‐Maassen [G‐M1, G‐M2], for further facts), with nor‐

 m

malization  t(12)=1 . The main examples of (GGP) are related to  q‐CCR
relations [ B‐Spl],[B‐K‐S]:

(  q‐CCR)  a(f)a^{*}(q)-qa^{*}(q)a(f)=<f,  q>I

 -1\leq q\leq 1,  a(f)\Omega=0,  f,  q\in \mathcal{H}_{\mathbb{R}} and  \Vert\Omega\Vert=1,  \Omega- vacuum vector.

If we take  G_{q}(f)=a(f)+a^{*}(f) , and as a state— vacuum state:
 \varepsilon(T)=<T\Omega|\Omega> , then we get  q‐Gaussian field and  t_{q}(V)=q^{cr\langle V)} for   V\in

 \mathcal{P}_{2}(2n) , where cr(V) is the number of crossings in a partition  V.

Other examples were constructed by  Bo\dot{z}ejko‐Speicher [B‐Sp2] by the func‐
tion:

 t_{s}(V)=s^{n-cc(V)}, a\leq s\leq 1.
That examples were important to prove that Normal law  \gamma_{1} is free infinitely
divisible, i.e.  \gamma\in ID(ffl) .
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Namely, the following fact was proven in [B‐Sp2]. For  s\geq 1

 m_{2n}( \gamma_{1}^{ffls})=\sum_{v\in \mathcal{P}_{2}(2n)}s^{cc(V)},
where  E is the free additive convolution. Many other examples were done by
Accardi‐Bozejko [A‐B], Gu,  \check{a}‐Maassen [G‐M1, G‐M2],  Bo\dot{z}ejko‐Yoshida [B‐Y],
 Bo\dot{z}ejko-Gut\check{a} [B‐G],  Bo\dot{z}ejko [Bozl] and Bozejko‐Wysoczański [B‐W].

Our work presents among others the proof of the result of A. Buchholz
[Buch], that it exists a explicite realization of generalized Gaussian process con‐
nected with the function of Bryc‐Dembo‐Jiang

 t_{b}(V)=b^{n-h(V)}=b^{H(V)}

for  0\leq b\leq 1,  V\in \mathcal{P}_{2}(2n) , and this is consequence of our Main Theorem.
We define generalized strongly Gaussian process  (G(f), t_{G}, \varepsilon),  f\in \mathcal{H} , as

generalized Gaussian process, such that the function  t_{G}=t on  \mathcal{P}_{2}(\infty) is strongly
multiplicative, i.e.

 t(V_{1}\cup V_{2})=t(V_{1})\cdot t(V_{2}) ,

for  V_{1},  V_{2}\in \mathcal{P}_{2}(\infty) , which are pair‐partitions on disjoint sets.
The simple examples of strongly multiplicative functions on  \mathcal{P}_{2}(\infty) are following:

 1^{o} q^{cr(V)},
 2^{o} s^{n-cc(V)},
 3^{o} b^{n-h(V)},

see also [B‐G] for more strongly multiplicative examples, related to the Thoma
characters on  S(\infty) group.
That classes of processes correspond to so called pyramidal independence, which
has been considered by B. Kümmerer [K], see also [B‐Sp2].

In all above examples: if  q=b=s=1 , we get classical Gaussian process.

Important fact: if  \mathcal{H}=L^{2}(\mathbb{R}^{+}, dx) and  B_{u}=G(\chi_{[0,u]}) , where  \chi_{[0,u]} is the
characteristic function of interval  [0, u] , then  B_{u} , for  u\geq 0 , is a realization of
classical Brownian motion.

If we take  q=b=s=0 , we get a construction of the free Brownian motion (see
books of Voiculescu, Dykema, Nica [V‐D‐N], Nica, Speicher, [N‐S] and Hiai‐Petz
[H‐P]).

5 The main theorem

Theorem 3. If  G(f) is normalized generalized strong Gaussian process,  f\in \mathcal{H},
 \mathcal{H} is a real Hilbert space, and  G_{0}(f) is the free Gaussian process, and operators
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 \{G(f) : f\in \mathcal{H}\} and  \{G_{0}(f) : f\in \mathcal{H}\} are free independent in  \mathcal{S}ome probability
system  (\mathcal{A}, \varepsilon) , then for each  0\leq b\leq 1 , the process:

 X_{b}(f)=\sqrt{b}G(f)+\sqrt{1-b}G_{0}(f) , f\in \mathcal{H}

is again generalized  \mathcal{S}trong Gaussian process.

Moreover, if  G(f) corresponds to strongly multiplicative function

 t_{G}: \bigcup_{A_{n}}\mathcal{P}_{2}(2n)arrow \mathbb{C}
done by equation

 \varepsilon(G(f_{1})\ldots G(f_{k}))=\{\begin{array}{ll}
\sum_{V\in \mathcal{P}_{2}(2n)}t_{G}(V)\prod_{(i,j)\in V}<f_{i}|f_{j}>,   if k=
2n,
0,   if k odd.
\end{array}
Then the corresponding strongly multiplicative function of the generalized

Gaussian process  X_{b},  0\leq b\leq 1 is following:

 t_{X_{b}}(V)=b^{H(V)}\cdot t_{G}(V) , for  V\in \mathcal{P}_{2}(2n) .

 i.e.

 \varepsilon  (X_{b} (fı)  X_{b}(f_{2}) \ldots X_{b}(f_{2n}))=\sum_{V\in \mathcal{P}_{2}(2n)}b^{H(V)}
t_{G(V)}\prod_{(i,j)\in V}<f_{i}|f_{j}>,
for  f_{i}\in \mathcal{H} , and odd moments are zero.

In the proof of the Theorem 3 we will need the following Lemma.

Main Lemma. Let  t be strongly multiplicative function corresponding to strongly
generalized Gaussian process (field)  G(f)=G_{t}(f),  f\in \mathcal{H}_{\mathbb{R}} such that

 \varepsilon(G(f_{1})\ldots G(f_{k}))=\{\begin{array}{ll}
\sum_{V\in \mathcal{P}_{2}(2n)}t(V),\prod_{(i_{J})\in V}<f_{i}|f_{j}>,   k=2n,
0,   if k=2n+1.
\end{array}
then the free cumulants are following:

 r_{k}(G(f_{1}), G(f_{2}), \ldots, G(f_{k}))=\{\begin{array}{ll}
\sum t(V) \prod <f_{i}|f_{j}>,   k=2n,
v\in \mathcal{P}_{2}(2n) (z,j)\in V   
cc(V)=1   
0,   k=2n+1.
\end{array}
(4)

Proof. Let  NC_{e}(2n) denotes the set of all even non‐crossing partition  \mathcal{V} of  2n,
which all blocks of  \mathcal{V} are even.

As in the proof of Theorem 11 in [B‐Y], we define the mapping  \Phi :  \mathcal{P}_{2}(2n)arrow
 NC_{e}(2n) as follows: given a pair‐partition  V\in \mathcal{P}_{2}(2n) , the connected compo‐
nents of  V , will induce the even non‐crossing partition  \Phi(V)=W.

For example, if
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 V=  arrow^{\Phi}\{\{2,3\}\cup\{1,4,5,6\}\}\in NC_{e}(6)
 1 2 3 4 5 6

 1 2 3 4 5 6

(i.e.  \Phi in some sense forgets crossings  0.f partitions).
Let us denote  G(f_{j})=g_{\dot{j}} in the proof. Since all odd moments of  g_{j} vanish,

hence also all odd free cumulants are vanish, i.e.  r_{2k+1}(g_{i_{1}}, \ldots, g_{i_{2k+1}})=0.
Therefore the free moment‐cumulant formula is following:

  \varepsilon(g_{1}g_{2}\ldots g_{2n})=\sum_{V\in NC_{e}(2k)}B=\{i_{1},i_{2s}\}
\prod_{B\in.V}..,r_{2s}(g_{\iota_{1}}, \ldots g_{\iota_{2s}})
. (5)

By the assumption we have

 \varepsilon  (G(f_{1}) . . . G(f_{2n}))=\varepsilon(g_{1}g_{2} . . . g_{2n})=   \sum  t(V)   \prod  <f_{i}|f_{j}> (6)
 v\in \mathcal{P}_{2}(2n) (i,j)\in v

where  t is strongly multiplicative.
Let us denote

  \tilde{r}_{2k} (g_{1}, g_{2}, . . . , g_{2k})=\rho\in \mathcal{P}_{2}(2k)\sum_
{cc(\rho)=1}t(\rho)\prod_{(i,j)\in\rho}<f_{i}|f_{J}>.
We want to show that

 \tilde{r}_{2k} (g_{1} . , g_{2k})=r_{2k}(g_{1}, . . . g_{2k}) .

By the strong multiplicativity of  t , we have that the function

  \tilde{t}(\pi)=t(\pi)\prod_{(\emptyset,J)\in\pi}<f_{i}|f_{j}>
is also strong multiplicative on the  \mathcal{P}_{2}(2n) .

Let us fix a non‐crossing partition  V\in NC_{e}(2n) . By the strong multiplica‐
tive property of  \tilde{t}, we have

  \sum_{\pi\in \mathcal{P}_{2}(2n)}\tilde{t}(\pi)= \prod_{B\in V} \tilde{r}_{2s}
(g_{i_{1}}, g_{i_{2}}, \ldots, g_{i_{2s}})
.

 \Phi(\pi)=V B=\{i_{1},i_{2}, i_{2s}\}

Therefore the formulas (4) and (5) implies that

  \varepsilon (g_{1}g_{2} g_{2n})= \sum \prod \tilde{r}_{2s}(g_{i_{1}}, g_{i_{2}
}, , g_{i_{2s}})
 V\in NC_{e}(2n) B\in V

 B=\{i_{1}, i_{2}, i_{2s}\}
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Comparing with the formulas (4) and (5) and using Möbius inversion formula
for the lattice of non‐crossing partition (see Nica, Speicher book [N‐S]) we get

 \tilde{r}_{2s} (g_{1}, . . . g_{2s})=r_{2s}(g_{1}, . . . g_{2s}) .

 \blacksquare

Now we can start the proof of the Main Theorem using the Main Lemma.

Proof of the Main Theorem. By definition of the freeness of the families
 \{G(f)\}_{f\in \mathcal{H}},  \{G_{0}(f)\}_{f\in \mathcal{H}} in the probability system  (\mathcal{A}, \varepsilon) , we have that all mixed
free cumulants

 r_{k}(G_{\varepsilon_{1}}(f_{1}), G_{\varepsilon_{2}}(f_{2}), \ldots, 
G_{\varepsilon_{k}}(f_{k}))=0 , for all  k=2,3 , ,

if the sequence  (\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k}) is not constant  (\epsilon_{j}\in\{0,1\}) and in the proof we
denote  G_{1}(f)^{de}=^{f}G(f) .

Therefore the free cumulants of  X_{b}(f)=\sqrt{b}G(f)+\sqrt{1-b}G_{0}(f) are fol‐

lowing:
 r_{2k}(X_{b}(f_{1}), \ldots, X_{b}(f_{2k}))=

 =b^{k}r_{2k}(G(f_{1}), \ldots, G(f_{2k}))+(1-b)^{k}r_{2k}(G_{0} (fı), . . . ,  G_{0}(f_{2k})) (7)
and all odd free cumulants of  X_{b}(f) are zero.

From the assumption  G_{0}(f) is the free normalized Gaussian process, i.e.

 t_{G_{0}}(V)=\{\begin{array}{l}
1, if V\in NC_{2}(2k) ,
0, otherwise.
\end{array}
and this is equivalent that

 r_{2}(G_{0}(f_{1}), G_{0}(f_{2}))=<f_{i}, f_{2}>

and

 r_{2k} (G_{0}(f_{1}) . , G_{0}(f_{2k}))=0,

for  k>1 and arbitrary  f_{J}\in \mathcal{H}_{\mathbb{R}}.
That above facts follow at once from our Main Lemma, as we can see now:
Since by definition:

  \varepsilon(G_{0}(f_{1}), \ldots, G_{0}(f_{2k}))=\sum_{V\in NC_{2}(2k)}\prod_{
(i,j)\in V}<f_{i}|f_{j}>
hence by Main Lemma:

 r_{2k} (G_{0}(f_{1}), . . . , G_{0}(f_{2k}))= V \in\sum_{NC_{2}(2k)}\prod_{(z,
j)\in V}<f_{i}|f_{j}>
 cc(V)=1

But if  V\in NC_{2}(2k) , and cc(V)  =1 , then we have that  k=1 and therefore for
 k>1

 r_{2k}(G_{0}(f_{1}), \ldots, G_{0}(f_{2k}))=0.

43



44

If now  V\in \mathcal{P}_{2}(2k) and cc(V)  =1,  k>1 , then we have  H(V)=k-h(V)=k,
we get by (7) and Main Lemma

 r_{2k} (X_{b}(f_{1}), . X_{b}(f_{2k}))=b^{k}r_{2k}(G(f_{1}), \ldots, G(f_{2k}))
=

 = \sum_{cc(V)=1}V\in \mathcal{P}_{2}(2k)b^{k}t(V)\prod_{(i,j)\in V}<f_{i}|f_{j}
>=\sum_{cc(V)=1}V\in \mathcal{P}_{2}(2k)b^{H(V)}t(V)\prod_{(i,j)\in V}<f_{i}
|f_{j}>
On the other hand, for  k=1 we have

 r_{2}(X_{b}(f_{1}), X_{b}(f_{2}))=b<f_{1}|f_{2}>+(1-b)<f_{1}|f_{2}>=<f_{1}
|f_{2}>,

since  \{G(f)\} is normalized Gaussian process, i.e.  t(\cap)=1 and since
 H(\cap)=1-h(\cap)=0.

Therefore for all  k\geq 1

 r_{2k} (X_{b}(f_{1}), . . . X_{b}(f_{2k}))= \sum_{V\in \mathcal{P}_{2}(2k)}b^{H
(V)}t(V),\prod_{(i_{J})\in V}<f_{i}|f_{j}>
 cc(V)=1

Now using again the free moment‐cumulant formula, our Main Lemma and
the strong multiplicativity of the function  b^{H(V)}t(V) , we get

 \varepsilon  (X_{b}(f_{1}), X_{b}(f_{2}), . . . X_{b}(f_{2k}))= \sum_{v\in \mathcal{P}_{2}
(2k)}b^{H(V)}t(V)\prod_{(\iota,j)\in v}<f_{i}|f_{j}>.  \blacksquare

After that considerations a natural problem appears:

Problem 1. Is it true that if we have 2 strongly generalized Gaussian pro‐
cesses  \{G_{1}(f)\}_{f\in \mathcal{H}_{R}},  \{G_{2}(f)\}_{f\in \mathcal{H}_{R}} which are free, that the Gaussian process
 Z(f)=G_{1}(f)+G_{2}(f) is again strongly Gaussian?

As a corollary from the Main Lemma we get well‐known similar simple propo‐
sition for probability measures on real line (see [B‐Sp2], [B‐D‐J], [Leh]):

Proposition 2. If  \mu is symmetric  mea\mathcal{S}ure on  \mathbb{R} with all moments, and

 m_{2n}( \mu)=\sum_{V\in \mathcal{P}_{2}(2n)}t(V) , where  t- strongly multiplicative,

then the free cumulants of the measure  \mu are of the form:

  r_{2n}( \mu)= \sum t(V)\circ
 v\in \mathcal{P}_{2}(2n)cc(V)=1
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Now we show some special case of our results.

In particular case, let  f\in \mathcal{H},  \Vert f\Vert=1 , and let the law of  G(f) is the
probability measure  \mu on  \mathbb{R},  \mathcal{L}(G(f))=\mu , i.e.

  \varepsilon(G(f)^{k})=\int_{\mathbb{R}}\lambda^{k}d\mu(\lambda) ,  k=0,1,2 , . . .

and let  \gamma_{0} is the law of the Wigner‐semicircle‐free Gaussian law  G_{0}(f) , then the
law of the process  X_{b}(f) :

 \mathcal{L}(X_{b}(f))=D_{\sqrt{b}}(\mu) ffl D  \sqrt{}ı‐b  (\gamma_{0})=\mu_{b},

here  M is the free additive convolution, and  D_{\lambda} is the dilation of the measure
done by the formula:

 (D_{\lambda}\mu)_{l}(E)=\mu(\lambda^{-1}E) , for Borel set  E\subset \mathbb{R},  \lambda>0.

Hence from the Main Theorem we get that the even moments of the measure
 \mu_{b} are following:

 m_{2n}( \mu_{b})=\int\lambda^{2n}d\mu_{b}(\lambda)=   \sum  b^{H(V)} .  t_{G}(V)
 v\in \mathcal{P}_{2}(2n)

and  m_{2n+{\imath}}(\mu_{b})=0.
If we take the classical Gaussian process as  G(f) , corresponding to  t(V)\equiv 1,

for all  V\in \mathcal{P}_{2}(2n) , se we get as corollary the completely different proof of the
theorems of A. Buchholz [Buch].

Corollary 1. For all  0\leq b\leq 1 , the function  t(V)=b^{H(V)} is strongly
multiplicative, tracable and positive definite on the set of all pair‐partitions
  \mathcal{P}_{2}(\infty)=\bigcup_{n}\mathcal{P}_{2}(2n) .

Here the function  H(V)=n-h(V) is tracable, i.e.

 H(V)=H(\nabla) , where

for a pair‐partition  V=\{ (i_{1}, j{\imath}), (i_{2},j_{2}), . (i_{n},j_{n})\},  p= {(iı,  \overline{j}_{1} ),  (\dot{i}_{2},\overline{j}_{2})- , . . .,
 (\dot{i}_{n}\dot{j}_{n})\}-,-,  7 is the cyclic rotation of our partition  V (  i_{k}arrow 1+i_{k} ( modulo  2n)).

45



46

For example:
 V  V

Remark 1. If  (G(f), t, f\in \mathcal{H}) is generalized Gaussian process and  t is traca‐
ble, then  \varepsilon is a trace on the algebra generated by  G(f),  f\in \mathcal{H},  i.e.

 \varepsilon (G(f_{1}) . . . G(f_{k}))=\varepsilon(G(f_{k})G(f_{1}) . . . G(f_{k
-1})) ,

in general  \varepsilon(XY)=\varepsilon(YX) , for  X,  Yin* ‐algebra generated by the field  G(f) ,
 f\in \mathcal{H}.

6 Free convolutions of measures

As Corollary 1 from the Main Theorem we get the following generalization of
the Theorem 6 from [B‐Sp2].

Proposition 3. Let for  0\leq b\leq 1,  \rho_{b}=D_{\sqrt{b}}(\gamma_{1})fflD_{\sqrt{{\imath}-b}}(\gamma_{0}) then for  0\leq c\leq 1

 \rho_{(bc)}=D_{\sqrt{c}}\rho_{b} ffl  D_{\sqrt{1-c}}\gamma_{0} . (8)

This is a simple case of the following reformulation of the Main Theorem:

Theorem 4. If  \mu is symmetric probability measure on  \mathbb{R} with all moments,
such that the even moments of the measure  \mu are following:

 m_{2n}( \mu)=\sum_{v\in \mathcal{P}_{2}(2n)}t(V) ,

and  t is normalized and strongly multiplicative, then for  0\leq b\leq 1 , the moments
of the measure  D_{\sqrt{b}}(\mu) ffl  D_{\sqrt{1-b}}\gamma_{0}=\mu_{b} , are of the form:

 m_{2n}( \mu_{b})=\sum_{V\in \mathcal{P}_{2}(2n)}b^{H(V)} .  t(V) .

and the free cumulants of the measure  \mu and  \mu_{b} are following (see [ B‐Spl] and
[B‐D‐J], page 96):

 r_{2n}( \mu)= \sum t(V) ,

 v\in \mathcal{P}_{2}(2n)
 cc(V)=1

 r_{2n}( \mu_{b})=b^{n}\sum t(V)=b^{n}r_{2n}(\mu)cc(V)=1 ’ for  n>1,0\leq b\leq 1.

 v\in \mathcal{P}_{2}(2n)

and  r_{2}(\mu_{b})=r_{2}(\mu) .
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Remark 2. If a measure  \mu is free infinitely divisible  (i.e. \mu\in ID(ffl)) , then
for  0\leq b\leq 1

 \mu_{b}=D_{\sqrt{b}}(\mu) El  D_{\sqrt{1-b}}(\gamma_{0}) is  al_{\mathcal{S}}o infinitely divisible,

since Wigner semicircle law  \gamma_{0}\in ID(ffl) .
And vice verse,

if  \mu_{b}\in ID(ffl) , for all  0<b<1 , then  \mu\in ID(ffl) .

Problem 2. If we take t(V)  \equiv l,i.e.  \mu=\gamma_{1},0\leq b\leq 1 , then

  \sum_{V\in \mathcal{P}_{2}(2n)}b^{H(V)}=m_{2n}(\omega_{b})
is the moment sequence of the probability measure  \omega_{b}=D_{\sqrt{b}}(\gamma_{1}) ffl  D_{\sqrt{1-b}}(\gamma_{0}) .

Is for  b>1 , the sequence

 m_{2n}( \mu)= \sum b^{H(V)}
 v\in \mathcal{P}_{2}(2n)

the moment sequence of some symmetric probability measure?
See the paper [Bozl] on similar results for  q^{cr(V)} , for  q>1.

7 Positive positive definite functions and,,norm”
on permutation group

In the paper [B‐Sp2] we proved (Theorem 1) that if  t is positive definite function
on   \mathcal{P}_{2}(\infty)=\bigcup_{n=0}^{\infty}\mathcal{P}_{2}(2n) , than for all natural  n , the restriction of  t to the
permutation group  S(n) is also positive definite (in the usual sense), where the
embedding  j :  S(n)arrow \mathcal{P}_{2}(2n) is done later.

We recall that  t:\mathcal{P}_{2}(\infty)arrow \mathbb{C} , is positive definite function on  \mathcal{P}_{2}(\infty) , if there
exists a generalized Gaussian process (field)  \{G_{t}(f), f\in \mathcal{H}\},  \mathcal{H}- real Hilbert
space, such that

 \varepsilon[G_{t}(f_{1})G_{t}(f_{2})\ldots G_{t}(f_{k})]=\{\begin{array}{ll}
0,   if k -- odd,
\sum_{V\in \mathcal{P}_{2}(2n)}t(V)\prod_{(i,j)\in V}<f_{i}|\dot{j}j>,   k=2n
\end{array}
for some state  \varepsilon on  the*‐algebra generated by the  G_{t}(f),  f\in \mathcal{H} (see  [G-M],[B‐
 Sp2],[B-G],[Bozl],[B-Y] , [B‐W] for more examples of positive definite functions).

The our main theorem implies that the function  t_{b}(V)=b^{H(V)} , for  0\leq b\leq 1,
is positive definite on  \mathcal{P}_{2}(\infty) , which gives another proof of Buchholtz theorem
[Buch].

Now we define the embedding map  j :  S(n)arrow \mathcal{P}_{2}(2n) formulated as follows:
for  \sigma\in S(n),  j(\sigma)=\{(k, 2n+1-\sigma(k)) : k=1,2,3, . . . , n\}\in \mathcal{P}_{2}(2n) . On the

picture:
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1 2 3 4

 \sigma=  |  arrow^{j}
8 7 6 5 1 2 3 4 5 6 7 8

From that figure we can see that the number of singletons  h_{n}(\sigma)de=^{f}h(j(\sigma)) ,
 \sigma\in S(n) , is exactly the number of fixed points of the permutation  \sigma , which are
isolated.

The following Theorem is true:

Theorem 5. The function  h_{n+1} on  S(n+1)i\mathcal{S} of the form

 h_{n+1}= \sum_{k=1}^{n+1}s_{k-1} .  \tilde{s}_{(n+1)-k},

and it  i\mathcal{S} positive definite on the permutation group  S(n+1) .

Proof of the Theorem 5. Let  s_{k-1}=\chi_{s_{k-1}} is the characteristic function

of the permutation group  S(k-1) on  \{1, 2, . . . , k-1\} , and  \tilde{s}_{(n+1)-k} is the
characteristic function of the symmetric group on the letters  \{k+1,  k+2,
 n+1\},

 \ulcorner\underline{S(k-1)}  k  n+1

 |  \underline{\sqrt/}
 k S(n+1)-k

here  S(k-1) is the group generated by inversions  \{\pi_{1}, \pi_{2}, . . . , \pi_{k-2}\} , and the
group  S(n+1-k) is generated by inversions  \{\pi_{k+1}, \pi_{k+1}, . . . , \pi_{n}\} (here  \pi_{j}=

 (j,j+1) is the inversion (transposition) of  (j,j+1) . Hence  s_{k-1}\cdot\tilde{s}_{(n+1)-k} is the
characteristic function of the group generated by  \{\pi_{1}, . . . , \pi_{k-2}, \pi\pi, . . . , \pi_{n}\},
so it is positive definite on the group  S(n+1) .

Let us define the function

 h_{n+1}^{(k)}(\sigma)=\{\begin{array}{l}
1, if the singleton (k, k) appears in the permutation \sigma,
0, otherwise.
\end{array}
 k

 k

For the above picture on can see that:  h_{n+1}^{(k)}=s_{k-1}\cdot\overline{s}_{(n+1)-k}.
Since our function

 h_{n+1}= \sum_{k=1}^{n+1}h_{n+1}^{(k)} , so we get
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 h_{n+1}= \sum_{k=1}^{n}s_{k-1} .  \tilde{s}_{(n+1)-k}

and it is positive definite as finite sum of positive definite functions.  \blacksquare

Corollary 2. For each  b\geq 1 and  \sigma\in S(n)

 (\alpha) The function  S(n)\ni\sigmaarrow b^{h_{n}(\sigma)} is positive definite on  S(n) .

( \beta) The function  H_{n}(\sigma)=n-h_{n}(\sigma) is conditionally negative definite on  S(n)
(i.e.  \exp(-xH_{n}(\sigma)) is positive definite on  S(n) for all positive  x>0).

( \gamma) The function  H_{n}(\sigma) is well defined on  S(\infty)=\cup S(n),  S(n)\subset S(n+1)
(natural embedding) and  H_{n}=H_{n+1}|S(n) , so we can define   H:S(\infty)arrow

 \mathbb{R} , as

 H(\sigma)=H_{n}(\sigma)=n-h_{n}(\sigma) , for  \sigma\in S(n) .

Proof. The case (  \gamma ) can be easily checked, since the function
 h^{(k)}

 n+1 is the characteristic function of the group generated by

 \{\pi_{1}, \pi_{2}, . . . \pi_{k-2}, \pi_{k+1}, \pi_{k+2}, . . . , \pi_{n}\},

so by the restriction of  h_{n+1}^{(k)} to the subgroup  \{\pi_{1}, . . . , \pi k-2, \pi_{k+1}, . . . , \pi_{n-1}\} , we
get  h_{k+1}^{(k)}=h_{n}^{(k)}+1 , so

 H_{n}=H_{n+1}|S(n) .

Both cases  (\alpha) and (  \beta ) follow from the theorems of I. Schur and I. Schoenberg
(see  [Boz0] or Berg, Christensen, Ressel [B‐Ch‐R]).

Now we can state:

Theorem 6. The function  H is  a, , norm”’ on  S(n) and also on  S(\infty),  i.e.

(i)  H(e)=0

(ii)  H(\sigma)=H(\sigma^{-1}),  \sigma\in S(\infty)

(iiii)  H(\sigma^{-1}\tau)\leq H(\sigma)+H(\tau) ,  \sigma,  \tau\in S(\infty)

(iv) If we define a function  d(\sigma, \tau)=H(\sigma^{-1}\tau) ,  \sigma,  \tau\in S(\infty) , then  d is a
lefl‐invariant metric on the group  S(\infty) .

Proof. Let us see that for for  \sigma\in S_{n}

 n-1 n-1

 H( \sigma)=n-\sum s_{k}(\sigma) .   \tilde{s}_{n-k}(\sigma)=\sum(1-\chi_{s_{k}\cross\tilde{s}_{n-k-1}}) .

 k=0 k=0

Let us denote  \triangle_{k}=1-\chi_{s_{k}x\overline{s}_{n-k-1}},  k=0,1,2 , ,  n-1 , then  \triangle_{k} is conditionally
negative definite and

 \triangle_{k}(\sigma)=\{\begin{array}{l}
0, \sigma\in S_{k}\cross\overline{S}_{n-{\imath}-k}
1, otherwise,
\end{array}
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therefore  \sqrt{\triangle_{k}}=\triangle_{k}.
By the well known property of the conditionally negative definite function

(see [B‐Ch‐R],  [Boz0] ), we have

 \triangle_{k}(\sigma\tau)=\sqrt{\triangle_{k}(\sigma\tau)}
\leq\sqrt{\triangle_{k}(\sigma)}+\sqrt{\triangle_{k}(\tau)}=\triangle_{k}
(\sigma)+\triangle_{k}(\tau) .

Therefore our function

 H= \sum_{k=0}^{n-1}\triangle_{k}
is also subadditive.

Other facts follow at once from the definition of the function H.  \blacksquare

Remark 3. More general considerations can be done for signed permutations
group and arbitrary Coxeter groups using the result of the paper  Bo\dot{z}ejko et al.
[B‐G‐M].

8 Some questions and problems

Problem 3. If the assumption that the function  t :  \mathcal{P}_{2}(\infty)arrow \mathbb{R} is strongly
multiplicative is necessary in our Main Theorem and Lemmas?

Problem 4. Let  \Gamma_{b}(\mathcal{H}) is the von Neumann algebra generated by our b‐
Gaussian process

 Y_{b}(f)=\sqrt{1-b}G_{0}(f)+\sqrt{b}G_{1}(f) , f\in \mathcal{H}_{\mathbb{R}},

where  G_{0}(f) is the free Gaussian process and  G_{1}(f) is the classical Gaussian
process and  G_{0}(f) and  G_{1}(f) are free independent. As we can see in that von
Neumann algebra  \Gamma_{b}(\mathcal{H}) , the vacuum is the trace, it is faithful and normal state.

Problem 5. Natural question is, if that von Neumann algebras  \Gamma_{b}(\mathcal{H}) is a
factor,  \Gamma_{b}(\mathcal{H})=\{Y_{b}(f):f\in \mathcal{H}_{\mathbb{R}}\}" (bicommutant), for  \dim \mathcal{H}\geq 2.
Problem 6. If for  0<b<1 that algebras  \Gamma_{b}(\mathcal{H}) are isomorphic as von
Neumann algebras?

Some others facts about our algebra  \Gamma_{b}(\mathcal{H}) will be presented in the second
part of our paper.
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