
Title
Efficient Enumeration Algorithm for Dominating Sets in
Bounded Degenerate Graphs (Foundations and Applications of
Algorithms and Computation)

Author(s) Kurita, Kazuhiro; Wasa, Kunihiro; Arimura, Hiroki; Uno,
Takeaki

Citation 数理解析研究所講究録 = RIMS Kokyuroku (2018), 2088:
44-52

Issue Date 2018-08

URL http://hdl.handle.net/2433/251597

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University

44

Efficient Enumeration Algorithm for Dominating Sets in

Bounded Degenerate Graphs

Kazuhiro Kurital, Kunihiro Wasa2, Hiroki Arimura1, and Takeaki Uno2

1 IST, Hokkaido University, Sapporo, Japan
2 National Institute of Informatics, Tokyo, Japan

Abstract

Dominating sets are fundamental graph structures. However, enumeration of dominating sets
has not received much attention. This study aims to propose an efficient enumeration algorithms
for bounded degenerate graphs. The algorithm enumerates all the dominating sets for k‐degenerate
graphs in O(k) time per solution using O(n+m) space. Since planar graphs have a constant degen‐
eracy, this algorithm can enumerate all such sets for planar graphs in constant time per solution.

1 Introduction

Dominating sets is one of the fundamental graph structure and finding the minimum

dominating set problem is NP‐hard. Moreover, it is still open that the minimal dominating

set enumeration problem can be solved in output‐polynomial time or not. Moreover,

Kanté et al. have been proved if there is an output‐polynomial time algorithm for the

minimal dominating set enumeration problem, then we can enumerate the hypergraph

transversals in output‐polynomial time in [8]. Enumeration of hypergrpah transversal is
also an interesting open problem. Several algorithms have been developed that can be

enumerate the minimal dominating sets with polynomial delays for some graph cıasses [7−
9], and incremental polynomial‐time algorithms have also been found [6, 10]. In addition,
Kanté et al. have proposed a polynomial‐delay algorithm for the minimal edge dominating

set enumeration problem [10].
In this paper, we consider the relax version problem, i.e. enumeration all dominating

sets in an input graph. For this relaxation, the number of solution increase exponentially.

Hence, the proposed algorithm may be not fast in practically in spite of the proposed

algorithm is amortized polynomial time. When we use this algorithm in the real‐world

problem, we should use some pruning techniques. Recently, there is some variations of

domination problem in vertex‐colored graph, tropical and rainbow dominating set prob‐

lem [2, 4]. Especially, the minimum tropical dominating set is not a minimal dominating
set in a graph G=(V, E) . Thus, it is important to study non‐minimal case problem. Our
algorithm is base‐line of these expansion problems.

44

45

Our main contribution is that we give the enumeration algorithm for dominating sets

in O(k) time per solution, where k is degeneracy of an input graph. It is known that

some graph classes have constant degeneracy, such as forests, grid graphs, outerplaner

graphs, planer graphs, bounded tree width graphs, and H‐minor free graphs for some

fixed H . The proposed algorithm enumerates all the dominating sets for such graphs in

constant amortized time. Moreover, enumeration of minimal dominating sets in bounded

degenerate graphs is studied. It can be enumerated in polynomial delay [7].
This study focuses on graph sparsity as being a good structural property and, in par‐

ticular, on degeneracy, which are the measures of sparseness. While it is straightforward

to enumerate dominating sets with a running time of O(n) time per solution. we aim

to develop an algorithm that is strictly faster than this trivial approach. A k‐degenerate

graph has a good vertex ordering called a degeneracy ordering [12], as shown in Section 4,
and this has been used to develop some efficient enumeration algorithms [3, 5, 13].

2 Preliminaries

Let G=(V(G), E(G)) be a simple undirected graph, that is, G has no self loops and

multiple edges, with vertex set V(G) and edge set E(G)\subseteq V(G)\cross V(G) . If G is clear

from the context, we suppose that V=V(G) and E=E(G) . Let u and v be vertices

in G . An edge e with u and v is denoted by e=\{u, v\} . Two vertices u, v\in V are

adjacent if \{u, v\}\in E . We denote by N_{G}(u) the set of vertices that are adjacent to u

on G and by N_{G}[u]=N_{G}(u)\cup\{u\} . We say v is a neighbor of u if v\in N_{G}(u) . The

set of neighbors of U is defined as N(U)= \bigcup_{u\in U}N_{G}(u)\backslash U . Similarly, let N[U] be

 \bigcup_{u\in U}N_{G}(u)\cup U . Let d_{G}(v)=|N_{G}(v)| be the degree of u in G . We call the vertex v

pendant if d_{G}(v)=1. \triangle(G)=\max_{v\in V}d(v) denotes the maximum degree of G . A set X

of vertices is a dominating set if X satisfies N[X]=V.
For any vertex subset V'\subseteq V , we call G[V']=(V', E[V']) an induced subgraph of G,

where E[V']=\{\{u, v\}\in E(G)|u, v\in V'\} . Since G[V'] is uniquely determined by V' , we

identify G[V'] with V' . We denote by G\backslash \{e\}=(V, E\backslash \{e\}) and G\backslash \{v\}=G[V\backslash \{v\}] . For

simplicity, we will use v\in G and e\in G to refer to v\in V(G) and e\in E(G) , respectively.

An alternating sequence \pi=(v_{1}, e_{1}, \ldots, e_{k}, v_{k}) of vertices and edges is a path if each edge

and vertex in \pi appears at most once. An alternating sequence C=(v_{1}, e_{1}, \ldots, e_{k}, v_{k}) of

vertices and edges is a cycle if (v_{1}, e_{1}, \ldots, v_{k-1}) is a path and v_{k}=v_{1} . The length of a

path and a cycle is defined by the number of its edges.

Let n and N be the size of the input and number of outputs, respectively. We call

enumeration algorithm as an amortized polynomial‐time algorithm if its time complexity

is O(poly(n)N) . In addition, we call it a polynomial‐delay algorithm if the following are

45

46

Figure 1: Examples for a dominating set of a graph. Black vertices indicate vertices in dominating sets.

bounded by O(poly(n)) : the time taken by the algorithm to output the first solution, the

interval between outputting two consecutive solutions, and the time taken for the algo‐

rithm to terminate after outputting the last solution. Finally, we call it as an incremental

polynomial‐time algorithm if these delays are bounded by poly (n, N') , where N' is the

number of solutions that have already been generated by the algorithm. We now define

the dominating set enumeration problem as follows:

Problem 1. Given a graph G , then output all dominating sets in G without duplication.

3 A Basic Algorithm Based on Reverse Search

In this paper, we propose an algorithm EDS‐D. Before we enter into details of EDS‐D, we

first show the basic idea for them, called reverse search method that is proposed by Avis

and Fukuda [1] and is one of the framework for constructing enumeration algorithms.
An algorithm based on reverse search method enumerates solutions by traversing on

an implicit tree structure on the set of solution, called a family tree. For building the

family tree, we first define the parent‐child relationship between solutions as follows: Let

 G=(V, E) be an input graph with V= {vı, . . . , v_{n} } and X and Y be dominating sets on
 G . We arbitrarily number the vertices in G from 1 to n and call the number of a vertex

the index of the vertex. If no confusion occurs, we identify a vertex with its index. We

assume that there is a total ordering <onV according to the indices. pv (X), called the
parent vertex, is the vertex in V\backslash X with the minimum index. For any dominating set X

such that X\neq V, Y is the parent of X if Y=X\geq\{pv(X)\} . We denote by \mathcal{P}(X) the

parent of X . Note that since any superset of a dominating set also dominates G , thus,

 \mathcal{P}(X) is also a dominating set of G . We call X is a child of Y if \mathcal{P}(X)=Y . We denote

by \mathcal{F}(G) a digraph on the set of solutions S(G) . Here, the vertex set of \mathcal{F}(G) is S(G)
and the edge set \mathcal{E}(G) of \mathcal{F}(G) is defined according to the parent‐child relationship. We

call \mathcal{F}(G) the family tree for G and call V the root of \mathcal{F}(G) . Next, we show that \mathcal{F}(G)
forms a tree rooted at V.

46

47

Algorithm 1: The algorithm enumerates all dominating sets in amortized polynomial time.

1 Procedure EDS (G=(V, E)) //G : an input graph

2 | AllChildren (V, V, G) ;

3 Procedure AllChildren (X, C(X), G=(V, E)) //X : the current solution

4

5

6

7

8

9

4

5

6

7

8

9

4

5

6

7

8

9

4

5

6

7

8

9

4

5

6

7

8

9

Output X ;
for v\in C(X) do

 A1{\imath} Chi{\imath} dren(Y,C(Y), G);C(Y)arrow\{u\in C(X)|N[Y\backslash
Yarrow X\backslash \{v\};\{u\}]=V\wedge \mathcal{P}(Y\backslash \{u\})=Y\} ;

return;

Lemma 1. For any dominating set X , by recursively applying the parent function \mathcal{P}(\cdot)
to X at most n times, we obtain V.

Proof. For any dominating set X , since pv (v) always exists, there always exists the parent
vertex for X . In addition, |\mathcal{P}(X)\backslash X|=1 . Hence, the statement holds. \square

Lemma 2. \mathcal{F}(G) forms a tree.

Proof. Let X be any solution in S(G)\backslash \{V\} . Since X has exactly one parent and V has

no parent, \mathcal{F}(G) has |V(\mathcal{F}(G))|-1 edges. In addition, since there is a path between X

and V by Lemma 1, \mathcal{F}(G) is connected. Hence, the statement holds. \square

Our basic algorithm EDS is shown in Algorithm 1. We say C(X) the candidate set of X

and define C(X)=\{v\in V|N[X\backslash \{v\}]=V\wedge \mathcal{P}(X\backslash \{v\})=X\} . Intuitively, the candi‐

date set of X is the set of vertices such that any vertex v in the set, removing v from X gen‐

erates another dominating set. we show a recursive procedure AllChildren (X, C(X), G)
actually generates all children of X on \mathcal{F}(G) . We denote by ch(X) the set of children of
 X , and by gch(X) the set of grandchildren of X.

Lemma 3. Let X and Y be distinct dominating sets in a graph G. Y\in ch(X) if and

only if there is a vertex v\in C(X) such that X=Y\cup\{v\}.

Proof. The if part is immediately shown from the definition of a candidate set. We

show the only if part by contradiction. Let Z be a dominating set in ch(X) such that
 Z=X\backslash \{v'\} , where v'\in Z . We assume that v'\not\in C(X) . From v'\not\in C(X), N[\mathcal{P}(Z)]\neq V
or \mathcal{P}(Z)\neq X . Since Z is a child of X, \mathcal{P}(Z)=X , and thus, N[\mathcal{P}(Z)]=V . This

contradicts v'\not\in C(X) . Hence, the statement holds. \square

From Lemma 2 and Lemma 3, we can obtain the following theorem.

Theorem 4. By a DFS traversal of \mathcal{F}(G), EDS outputs all dominating sets in G once

and only once.

47

48

Algorithm 2: The algorithm enumerates all dominating sets in O(k) time per solution.

1 Procedure EDS‐D (G=(V, E)) //G : an input graph
2

3

2

3

2

3

2

3

2

3

2

3

foreach v\in V do D_{v}arrow\emptyset ;

AllChildren (V, V, D(V) :=\{D_{1}, \ldots, D_{|V|}\}) ;

4 Procedure AllChildren (X, C, D)

5

6

7

8

9

10

11

12

13

14

5

6

7

8

9

10

11

12

13

14

5

6

7

8

9

10

11

12

13

14

5

6

7

8

9

10

11

12

13

14

5

6

7

8

9

10

11

12

13

14

5

6

7

8

9

10

11

12

13

14

5

6

7

8

9

10

11

12

13

14

Output X ;

 C'arrow\emptyset;D'arrow D ; //\mathcal{D}':=\{D\'{i}, D_{|V|}'\}
for v\in C do //v has the largest index in C

 | foru\in N(v)^{v<}doD_{u}arrow D_{u}\cup\{v\}A11Chi1dren(Y,C(Y),D(Y));D(Y)arrow
DomList (v' Y,,X,C(Y),C' \bigoplus_{;}C(Y), D')C'arrow C(Y);D'arrow D(Y);Yarrow
X\backslash \{v\};Carrow C\backslash \{v\};, ; // Remove vertices in

 Del_{3}(X, v)

. C(Y)arrow Cand-D(X, v, C) ; // Vertices larger than v are not in C.

15 Procedure Cand‐D (X, v, C)
16

17

18

19

20

21

22

16

17

18

19

20

21

22

16

17

18

19

20

21

22

16

17

18

19

20

21

22

16

17

18

19

20

21

22

16

17

18

19

20

21

22

 Yarrow X\backslash \{v\};Del_{1}arrow\emptyset;Del_{2}arrow\emptyset ;

for u\in N(v)^{v<}\cup(N(v)\cap C) do

 e1seifu <vthen|if N [u]\cap(X\backslash C)\emptyset\wedge|N[u]\cap C|=2 then D el_{2}arrow Del_{2}(N[u]\cap C)|<u ;
return C\backslash (Del_{1}U Del) ; //C is C(X\backslash \{v\})

23 Procedure DomList (v, Y, X, C'\oplus C(Y), D')
24

25

26

27

28

24

25

26

27

28

24

25

26

27

28

24

25

26

27

28

24

25

26

27

28

24

25

26

27

28

for u\in C'\oplus C(Y) do

 forw\in N'(u)^{u<}do|^{ifu\not\in D_{w}(X)then}if u\not\in C' then D_{w}'arrow D_{w}'\cup\{u\} ;

else D_{w}'arrow D_{w}'\backslash \{u\} ;

29

 30

 31

29

 30

 31

29

 30

 31

29

 30

 31

29

 30

 31

29

 30

 31

for u\in N(v)^{v<} do

 | if u\in X then D_{v}'arrow D_{v}'\cup\{u\} ;

return D' ; //D' is \mathcal{D}(Y)

4 The proposed algorithm

The bottle‐neck of EDS is the maintenance of candidate sets. Let X be a dominating

set and Y be a child of X . We can easily see that the time complexity of EDS is O(\triangle^{2})
time per solution since a removed vertex u\in C(Y)\backslash C(X) has the distance at most two

from v . In this section, we improve EDS by focusing on the degeneracy of an input graph

G. G is a k ‐degenerate graph [11] if for any induced subgraph H of G , the minimum

48

49

degree in H is less than or equal to k . The degeneracy of G is the smallest k such that
 G is k‐degenerate. A k‐degenerate graph has a good ordering vertices. The definition

of orderings of on vertices in G , called a degeneracy ordering of G , is as follows: for

any vertex v in G , the number of vertices that are larger than v and adjacent to v is

at most k . Matuıa and Beck show that the degeneracy and a degeneracy ordering of
 G can be obtained in O(n+m) time [12]. Our proposed algorithm EDS‐D, shown in
Algorithm 2, achieves amortized O(k) time enumeration by using this good ordering. In

what follows, we fix some degeneracy ordering of G and number the indices of vertices

from 1 to n according to the degeneracy ordering. We assume that for each vertex v and

each dominating set X, N[v] and C(X) are stored in a doubly ıinked list and sorted by

the ordering. Note that the larger neighbors of v can be listed in O(k) time. Let us

denote by V^{<v}=\{1,2, . . . , v-1\} and V^{v<}=\{v+1, . . . n\} . Moreover, A^{<v} :=A\cap V^{v<}

and A^{v<}:=A\cap V^{<v} for a subset A of V . We first show the relation between C(X) and

 C(Y) . Due to limitations of space, we omit the proofs of them.

Lemma 5. Let X be a dominating set of G and Y be a child of X. Then, C(Y)\subset C(X) .

From the Lemma 5, for any v\in C(X) , what we need to obtain the candidate set

of Y is to compute Del (X, pv (Y)) :=C(X)\backslash C(Y) , where Y=X\backslash \{v\} . In addi‐
tion, we can easily sort C(Y) by the degeneracy ordering if C(X) is sorted. In what

follows, we denote by Del_{1}(X, v)=\{u\in C(X)|N[u]\cap X=\{u, v\}\}, Del_{2}(X, v)=
 \{u\in C(X)|\exists w\in V\backslash X(N[w]\cap X=\{u, v\})\} , and Del_{3}(X, v)=C(X)^{v\leq} . By the fol‐

lowing lemmas, we show the time complexity for obtaining Del (X, pv (Y)).

Lemma 6. Suppose that v\in C(X) . Then, Del (X, v)=Del_{1}(X, v)\cup Del_{2}(X, v)\cup
 Del_{3}(X, v) .

We show an example of dominated list and a maintenance of C(X) in Fig. 2. To

compute a candidate set efficiently, for each vertex u in V , we maintain the vertex lists

 D_{u}(X) for X . We call D_{u}(X) the dominated list of u for X . The definition of D_{u}(X)
is as follows: If u\in V\backslash X , then D_{u}(X)=N(u)\cap(X\backslash C(X)) . If u\in X , then

 D_{u}(X)=N(u)^{<u}\cap(X\backslash C(X)) . For brevity, we write D_{u} as D_{u}(X) if no confusion arises.

We denote by \mathcal{D}(X)=\bigcup_{u\in V}\{D_{u}\} . By using \mathcal{D}(X) , we can efficiently find Del_{1}(X, v)
and Del_{2}(X, v) . Before showing the efficient dominated lists maintenance, we consider

the sets of neighbors N(u)\cap C(X) and N(u)^{u<}\cap X for each vertex u\in C(X) We use

these sets for computing dominated lists.

Lemma 7. For each vertex v\in C(X) , we can compute N(v)\cap C(X) and N(v)^{v<}\cap X
in O(k) time on average over all children of X.

49

50

Figure 2: Let X be a dominating set {1, 2, 3, 4, 5, 6}. An example of the maintenance of C(X) and D(X) .
Each dashed directed edge is stored in D(X) , and each solid edge is an edge in G . A directed edge (u, v)
implies v\in D_{u}(X) . The index of each vertex is according to a degeneracy ordering. White, black, and

gray vertices belong to V\backslash X, X\backslash C(X) , and C(X) , respectively. When the algorithm removes vertex

6, C(X\backslash \{6\})=\{1\}.

Lemma 8. Let X be a dominating set of G. Suppose that for each vertex u in G , we can

obtain the size of D_{u} in constant time. Then, for each vertex v\in C(X) , we can compute

 Del_{1}(X, v) in O(k) time on average over all children of X.

Lemma 9. Suppose that for each vertex w in G , we can obtain the size of D_{w} in constant

time. For each vertex v\in C(X) , we can compute Del_{2}(X, v) in O(k) time on average

over all children of X.

In Lemma 8 and Lemma 9, we assume that the dominated lists were computed when

we compute Del (X, v) for each vertex v in C(X) . We next consider how we maintain \mathcal{D}.

Next lemmas show the transformation from D_{u}(X) to D_{u}(Y) for each vertex u in G.

Lemma 10. Let X be a dominating set, v be a vertex in C(X) , and Y=X\backslash \{v\}.
For each vertex u\in G such that u\neq v, D_{u}(Y)=D_{u}(X)\cup(N(u)^{<u}\cap(Del_{1}(X, v)\cup
 Del_{2}(X, v)))\cup(N(u)^{<u}\cap(Del_{3}(X, v)\backslash \{v\})) .

Lemma 11. Let X be a dominating set, v be a vertex in C(X) , and Y=X\backslash \{v\}.
 D_{v}(Y)=D_{v}(X)\cup(N(v)<v\cap(Del_{1}(X, v)\cup Del_{2}(X, v)))\cup(N(v)
^{v<}\cap X) .

We next consider the time complexity for obtaining the dominated lists for children

of X . From Lemma 10 and Lemma 11, a naive method for the computation needs

 O(k|Del(X, v)|+k) time for each vertex v of X since we can list all larger neighbors

of any vertex in O(k) time. However, if we already know C(W) and \mathcal{D}(W) for a child
 W of X , then we can easily obtain \mathcal{D}(Y) , where Y is the child of X immediately after
 W . The next lemma plays a key role in EDS‐D. Here, for any two sets A, B , we denote by

 A\oplus B=(A\backslash B)\cup(B\backslash A) .

50

51

Lemma 12. Let X be a dominating set, v, u be vertices in C(X) such that u has the

minimum index in C(X)^{v<}, Y=X\backslash \{u\} , and W=X\backslash \{v\} . Suppose that we already

know C(Y)\oplus C(W), \mathcal{D}(W) , Del (X, v) , and Del (X, u) . Then, we can compute \mathcal{D}(Y) in

 O(k|C(Y)\oplus C(W)|+k) time.

Note that we can compute C(Y)\oplus C(W) when we compute C(Y) and C(W) . From

the above discussion, we can obtain the time complexity of AllChildren in EDS‐D.

Lemma 13. Let X be a dominating set. Then, AllChildren(X, C(X), \mathcal{D}(X)) of EDS-D

other than recursive calls can be done in O(k|ch(X)|+k|gch(X)|) time.

Theorem 14. EDS‐D enumerates all dominating sets in O(k) time per solution in a
 k ‐degenerate graph by using O(n+m) space.

5 Conclusion

In this paper, we proposed two enumeration algorithms. EDS‐D solves the dominating

set enumeration problem in O(k) time per solution by using O(n+m) space, where k is

a degeneracy of an input graph G.

Our future work includes to develop efficient dominating set enumeration algorithms for

dense graphs. If a graph is dense, then k is large and G has many dominating sets. For

example, in the case of complete graphs, k is equal to n-1 and every nonempty subset

of V is a dominating set. That is, the number of solutions for a dense graph is much

larger than that for a sparse graph. This allows us to spend more time in each recursive

call. However, EDS‐D is not efficient for dense graphs although the number of solutions is

large.

References

[1] D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Appl. Math.,
 65(1):21-46 , 1996.

[2] B. Brešar, M. A. Henning, D. F. Rall, et al. Rainbow domination in graphs. Taiwanese
Journal of Mathematics, 12(1):213-225 , 2008.

[3] A. Conte, R. Grossi, A. Marino, and L. Versari. Sublinear‐Space Bounded‐Delay
Enumeration for Massive Network Analytics: Maximal Cliques. In ICALP 2016,

volume 55 of LIPIcs, pages 148:1−148:15. Schloss Dagstuhl−Leibniz‐Zentrum fuer

Informatik, 2016.

51

52

[4] J.‐A. A. d’Auriac, C. Bujtás, H. El Maftouhi, M. Karpinski, Y. Manoussakis, L. Mon‐
tero, N. Narayanan, L. Rosaz, J. Thapper, and Z. Tuza. Tropical dominating sets in

vertex‐coloured graphs. In WALCOM 2016, pages 17‐27. Springer, 2016.

[5] D. Eppstein, M. Löfller, and D. Strash. Listing all maximal cliques in ıarge sparse
real‐world graphs. J. Exp. Algorithmics, 18:3.1:3.1−3.1:3.21, Nov. 2013.

[6] P. A. Golovach, P. Heggernes, M. M. Kanté, D. Kratsch, and Y. Villanger. Enu‐
merating minimal dominating sets in chordal bipartite graphs. Discrete Appl. Math.,

 199(30):30-36 , 2016.

[7] M. M. Kanté, V. Limouzy, A. Mary, and L. Nourine. Enumeration of minimal dom‐
inating sets and variants. LNCS, 6914 LNCS:298−309, 2011.

[8] M. M. Kanté, V. Limouzy, A. Mary, and L. Nourine. On the enumeration of minimal
dominating sets and related notions. SIAM J. Discrete Math., 28(4):1916-1929 , 2014.

[9] M. M. Kanté, V. Limouzy, A. Mary, L. Nourine, and T. Uno. On the enumeration and
counting of minimal dominating sets in interval and permutation graphs. In ISAAC

2013, volume 8283 of LNCS, pages 339‐349. Springer Berlin Heidelberg, 2013.

[10] M. M. Kanté, V. Limouzy, A. Mary, L. Nourine, and T. Uno. Polynomial delay
algorithm for listing minimal edge dominating sets in graphs. In WADS 2015, volume

9214 of LNCS, pages 446‐457. Springer Berlin Heidelberg, 2015.

[11] D. R. Lick and A. T. White. k‐degenerate graphs. Canadian J. Math., 22:1082−1096,
1970.

[12] D. W. Matula and L. L. Beck. Smallest‐last ordering and clustering and graph
coloring algorithms. J. ACM, 30(3):417-427 , 1983.

[13] K. Wasa, H. Arimura, and T. Uno. Efficient enumeration of induced subtrees in a
 k‐degenerate graph. In ISAAC 2014, volume 8889 of LNCS, pages 94‐102. Springer

International Publishing, 2014.

Graduate School of Information Science and Technology

Hokkaido University
Hokkaido 060‐0814

JAPAN

E‐mail address: k‐kurita@ist.hokudai.ac.jp

52

