

# JRC TECHNICAL REPORT

# Fifth EC-JRC aromatic compounds interlaboratory comparison with automatic analysers

Pérez Ballesta, P., Baù, A., Lagler, F., Borowiak, A, Barbiere, M.

2020



Joint Research Centre This publication is a Technical report by the Joint Research Centre (JRC), the European Commission's science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. For information on the methodology and quality underlying the data used in this publication for which the source is neither Eurostat nor other Commission services, users should contact the referenced source. The designations employed and the presentation of material on the maps do not imply the expression of any opinion whatsoever on the part of the European Union concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

#### **Contact information**

Name: Pascual Pérez Ballesta Address: European Commission, Joint Research Centre, Directorate C- Energy, Transport and Climate. TP 124, Via E. Fermi 2749, 21027-Ispra (VA) Italy Email: pascual.ballesta@ec.europa.eu Tel.: +39 0332 785322

EU Science Hub https://ec.europa.eu/jrc

JRC120572

EUR 30239 EN

PDF ISBN 978-92-76-19198-8

ISSN 1831-9424

doi:.10.2760/70810

Luxembourg,: Publications Office of the European Union, 2020

© European Union, 2020



The reuse policy of the European Commission is implemented by the Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). Except otherwise noted, the reuse of this document is authorised under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence (<u>https://creativecommons.org/licenses/by/4.0/</u>). This means that reuse is allowed provided appropriate credit is given and any changes are indicated. For any use or reproduction of photos or other material that is not owned by the EU, permission must be sought directly from the copyright holders.

All content © European Union, 2020, except: page cover, Elena Marie Pérez Morrissey, image: Angera, 2020

How to cite this report: P. Pérez Ballesta, A. Baù,, F. Lagler, A. Borowiak, M. Barbieri, *Fifth EC-JRC aromatic compounds inter-laboratory comparison with automatic analysers*, EUR 30239 EN, Publications Office of the European Union, Luxembourg, 2020, ISBN 978-92-76-19198-8, doi:10.2760/70810, JRC120572.

# Contents

| Ac  | know   | vledgem   | ients                                                                        | 1  |
|-----|--------|-----------|------------------------------------------------------------------------------|----|
| Ab  | strac  | :t        |                                                                              | 2  |
| 1   | Intr   | oductio   | n                                                                            | 3  |
| 2   | Inte   | er-labora | atory comparison strategy                                                    | 4  |
|     | 2.1    | Partici   | pating laboratories and instrumentation                                      | 5  |
|     | 2.2    | Refere    | ence values and uncertainties                                                | 8  |
|     | 2.3    | Statist   | ical considerations                                                          | 9  |
|     |        | 2.3.1     | Reported concentration and uncertainty                                       | 9  |
|     |        | 2.3.2     | Linearity test                                                               | 9  |
|     |        | 2.3.3     | Repeatability, reproducibility and robustness of the method                  | 9  |
|     |        | 2.3.4     | Repeatability score                                                          | 10 |
|     |        | 2.3.5     | Z-scores and minimum standard deviation of the proficiency assessment        | 11 |
|     |        | 2.3.6     | En scores                                                                    | 11 |
| 3   | RES    | ULTS AN   | ND DISCUSSION                                                                | 12 |
|     | 3.1    | Data r    | eporting                                                                     | 12 |
|     | 3.2    | Linear    | ity test                                                                     | 12 |
|     | 3.3    | Blank     | levels                                                                       | 16 |
|     | 3.4    | Outlie    | rs, repeatability, reproducibility and robustness of the method              | 17 |
|     | 3.5    | Standa    | ard deviation of the proficiency assessment N37                              | 19 |
|     | 3.6    | Repea     | tability-score, Z-scores and En scores                                       | 20 |
| 4   | Con    | clusions  | 5                                                                            | 29 |
| Re  | ferer  | nces      |                                                                              | 30 |
| An  | nexe   | s:        |                                                                              | 31 |
|     | Ann    | iex 1 V   | Vork schedule for the inter-laboratory comparison exercise                   | 31 |
|     | Ann    | lex 2 Ir  | ndicators of Mandel's statistic                                              | 31 |
|     | Ann    | iex 3 R   | obust Analysis: Estimation of robust average and standard deviation          | 32 |
|     | Ann    | iex 4 R   | epeatability, reproducibility and robustness: Previous comparison exercises: | 33 |
|     | Ann    | iex 5 C   | onversion factors for data reporting                                         | 33 |
|     | Ann    | iex 6 S   | cattering of Laboratory Results                                              | 34 |
|     | Ann    | iex 7 h   | and k statistic results of the inter-laboratory comparison                   | 36 |
|     | Ann    | iex 8 A   | nalysers and method description from participating laboratories              | 39 |
| Lis | t of a | abbrevia  | itions and definitions                                                       | 78 |
| Lis | t of f | igures    |                                                                              | 81 |
| Lis | t of t | ables     |                                                                              | 82 |

# Acknowledgements

The support of website manager, Mr. Luca Spano, during the preparation and execution of the inter-laboratory exercise have been greatly appreciated.

# Authors

Pérez Ballesta, P., Baù, A., Lagler, F., Borowiak, A, Barbiere, M.

# In collaboration with:

Predrag Hercog Jean-Luc Picard Damiano Centioli Fabio Cadoni Christos Kizas **Christos Papadopoulos** Andrzej Pindel Tomasz Fraczkowski Jan Petré **Tine Fierens** Kevin Delaney Joe Reilly James Dernie Luke Doman Lovro Hrust Mladen Rupcic Juozas Molis Rolandas Kybartas Ed van der Gaag Han Scaf Oswald Vigl Günther Kerschbaumer Peter Holoman Maros Jurcovic Andrej Sostaric Slaviša Mladenovic'

# Abstract

This report presents the results of the fifth inter-laboratory comparison for BTEX automatic analysers performed at the JRC Ispra from the  $23^{rd}$  to the  $26^{th}$  of September 2019. Thirteen national reference laboratories and fifteen instruments participated in this exercise. Six concentration levels were tested during the inter-laboratory comparison. Benzene concentrations ranged from 1 to 20  $\mu$ g/m<sup>3</sup>. The exercise was evaluated according to ISO 13528 methodologies for the evaluation of inter-laboratory proficiency assessment and the recommendation of the protocol N37 of the AQUILA network. Participating laboratories were identified as requested by the afore-mentioned protocol.

The robust average value calculated according to ISO13528 was adopted as reference value for the exercise. The report provides information on the technique and instrumentation used by each participant and shows the results of linearity tests, identification of outliers, repeatability, reproducibility, and robustness of the method. Furthermore, parameters to evaluate individual laboratory results: repeatability score, Z-score, bias and En scores are also provided.

In general, the results showed in terms of accuracy and precision a behaviour similar to the previous interlaboratory exercise (EUR-28692-EN). The decrease in concentration avoided problems of sample's overload at the highest concentrations, i.e. toluene. For benzene and toluene, average repeatability and reproducibility values were about 6 % and 13 %, respectively. Ethyl-benzene, m,p-xylene and o-xylene showed higher repeatability values of around 9 %, while their values of reproducibility were about 20 %.

# 1 Introduction

This aromatic compounds' inter-laboratory comparison exercise is the fifth exercise carried out by the Joint Research Centre aiming to fulfil the QAQC programme for the harmonization of air quality measurements in Europe in accordance with the Directive 2008/50/EC.

The exercise took place in Ispra at the JRC ERLAP bench facility from the 23<sup>rd</sup> to the 26<sup>th</sup> September 2019. Participants were required to register and provide a detailed description of their instrumentation. In this exercise, the average robust value was adopted as the reference value of the inter-laboratory comparison. On the other hand, concentrations were also reduced by a factor of two, to fit with a range of concentrations better representing of actual ambient air levels in Europe.

In agreement with the AQUILA N37 protocol, participating laboratories are identified in the report. Measurement results are evaluated according to the repeatability-score, Z-scores and the  $E_n$  scores. The report also provides additional information regarding linearity test, blank levels, overall repeatability and reproducibility values and robustness of the method.

# 2 Inter-laboratory comparison strategy

The reporting of results from the participating laboratories was done by uploading the requested information on the JRC web site application at http://interlabo-comparison.jrc.ec.europa.eu. This included the characteristics of the BTEX analyser, description of the calibration method and traceable reference material. 30 min average concentrations and their corresponding associated uncertainties to characterise each 90 min step concentration interval were also requested. The reported information about method, instrumentation and certified reference material from the participants is shown in the Annex 8: Analysers and method description from participating laboratories.

The exercise consisted of a start and end zero-air check and an up and down path of six concentration level steps of two hours each one (see Figure 1). Such a step-time interval allowed the different automatic analysers to perform, according to their modus operandi, from three to six complete measurements, varying from 15 to 30 minutes. The time schedule for the exercise is given in the Annex 1: Work schedule for the inter-laboratory comparison exercise.

In this inter-laboratory comparison, to fit with more realistic sceneries of the current air pollution state in Europe, concentration levels were reduced by half with respect to the previous exercises. As an additional difference from previous inter-laboratory exercises, the reference concentration was derived from the robust average concentration of the exercise. Furthermore, laboratories were requested to calculate the uncertainties associated with the average concentration of each level. On the other hand, ERLAP results were included in the comparison and managed as any other participant.

Concentrations were expressed in  $\mu g/m^3$  at 20 °C and 1 atm. Conversion factors from ppb (v/v) to  $\mu g/m^3$  for reporting results were agreed before the inter-laboratory comparison (see Annex 5: Conversion factor for data reporting: Table A 5).



Figure 1.- Time versus concentration steps along the exercise

# 2.1 Participating laboratories and instrumentation

Fourteen laboratories including JRC participated in the inter-laboratory comparison exercise. Table 1 shows the name of the participating laboratories.

Table 2 identifies the type of instrumentation used by each laboratory. DMRS reported results from two different instruments. Therefore, from the fifteen instruments in comparison, eight had a flame ionization detector (FID), while the others seven used a photo ionization detector (PID). Table 3 shows the reference material or travelling standard used by each laboratory to calibrate their analysers.

| Acronym | Laboratory                                                                     | Country                | Contact                               |
|---------|--------------------------------------------------------------------------------|------------------------|---------------------------------------|
| EKONERG | Energy and Environmental Protection<br>Institute                               | Croatia                | Predrag Hercog, Jean-Luc Picard (AKA) |
| ISPRA   | Istituto Superiore per la Protezione e<br>Ricerca Ambientale - Area Metrologia | Italy                  | Damiano Centioli, Fabio Cadoni        |
|         | Department of Labour Inspection                                                |                        |                                       |
| DLI     | Ministry of Labour, Welfare and Social<br>Insurance                            | Cyprus                 | Christos Kizas, Christos Papadopoulos |
|         | Air Quality Section                                                            |                        |                                       |
| GIOS    | Chief Inspectorate of Environmental<br>Protection                              | Poland                 | Andrzej Pindel, Tomasz Fraczkowski    |
| VMM     | Vlaamse Milieumaatschappij                                                     | Belgium                | Jan Petré, Tine Fierens               |
| EPA     | Environmental Protection Agency                                                | Ireland                | Kevin Delaney, Joe Reilly             |
| REE     | Ricardo Energy and Environment                                                 | United Kingdom         | James Dernie, Luke Doman              |
|         | Ambient Air Testing Laboratory                                                 |                        |                                       |
| LIKZ    | Croatian Hydrological and Meteorological Service                               | Croatia                | Lovro Hrust, Mladen Rupcic            |
| AAA     | Environmental Protection Agency                                                | Lithuania              | Juozas. Molis, Rolandas Kybartas      |
| DCMR    | DCMR Milieudienst Rijnmond                                                     | The Netherlands        | Ed van der Gaag, Han Scaf             |
| ΑΡΡΑ    | Agenzia Provinciale Per l'Ambiente e la<br>Tutela del Clima (Bolzano)          | Italy                  | Oswald Vigl, Günther Kerschbaumer     |
| SHMU    | Slovak Hydrometeorological Institute                                           | Slovakia               | Peter Holoman, Maros Jurcovic         |
| IPH     | Institute of Public Health of Belgrado                                         | Serbia                 | Andrej Sostaric, Slaviša Mladenovic'  |
| JRC     | Joint Research Centre – ERLAP                                                  | European<br>Commission | Andrea Baù, Pascual Pérez Ballesta,   |

Table 1. List of participating laboratories

| Code<br>EKONERG<br>ISPRA | Analyser<br>Chromatotec AirmoVOC<br>GC866 (2014)<br>ORION BTX 2000 –<br>SRI 8610C (2006) | Cycle time,<br>min<br>15<br>30 | Detector<br>FID<br>PID | Column:<br>Length, i.d.*, film thickness<br>Operational conditions<br>MXT30CE 30 m, 0.28 mm, 1 μm<br>44°C,2°C/min, 45°C,15°C/min, 165°C(360s)<br>RESTEK #80129<br>5% RT1200 / 5% Bentone on | Adsorbent, Sampled volume<br>Desorption conditions<br>Carbopack B, 470 ml<br>80°C for 120 s<br>Tenax GR<br>200 °C for 210 s at 20 ml/min |
|--------------------------|------------------------------------------------------------------------------------------|--------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| DLI                      | Chromatotec<br>airmoVOC (BTEX)                                                           | 15                             | FID                    | 100/120 Silcoport, 2 m, 2 mm i.d. T=80°C<br>MX T30 ce , 30 m, 0.28 mm i.d., 1 μm<br>45-165 °C                                                                                               | Tenax GR, Carbopack B, X & C, 782.35<br>ml<br>380 °C for 120 s                                                                           |
| GIOS                     | SYNSPEC Analyser GC 955, Ver<br>601 (2018)                                               | <sup>'S.</sup> 15              | PID                    | SY-5: 12 m, 0.32 mm, 1 μm<br>50°C (3 min), 10°C/min,70°C (7 min)                                                                                                                            | Tenax GR, 35 ml<br>180°C for 26 s, 1.5 ml/min                                                                                            |
| VMM                      | Airmo BTEX Mcerts-A2102<br>(2018)                                                        | 22 <sup>15</sup>               | FID                    | MXT30CE: 30 m, 0.28 mm, 1 μm<br>43-45°C (2°C/min) 45-165°C (15°C/min)                                                                                                                       | 2-phases C6, 450 ml<br>380°C for 120 s, 3-4 ml/min                                                                                       |
| EPA                      | SYNTECH Analyser GC 955, Ver<br>600, 2008                                                | <sup>'S.</sup> 15              | PID                    | AT-5, 13 m, 0.32 mm, 1μm<br>45°C (240 s),14°C/min, 80°C (1 min)                                                                                                                             | Tenax GR 35/60, 210 ml<br>180°C for 60 s, 1.5 ml/min                                                                                     |
| REE                      | Environment S.A.<br>VOC71M (2005)                                                        | 15                             | PID                    | SPB-624: 13 m, 0.32 mm, 1.8 μm<br>34°C (115 s),20°C/min,150°C (155 s)                                                                                                                       | Carbopack-X, 900 ml<br>350°C for 180 s, 1 ml/min                                                                                         |
| LIKZ                     | Chromatotec GC866 Fl<br>airmoVOC                                                         | D <sub>15</sub>                | FID                    | MXT 30 XE: 30 m, 0.28 mm i.d. 1 μm<br>                                                                                                                                                      | Carbotrap, 425 ml<br>350°C for 180 s                                                                                                     |
| AAA                      | AMA Instrument, CG5000 BTX FII<br>2017                                                   | <sup>D,</sup> 30               | FID                    | AMAsep1, 30 m, 0.32 mm, 1.5 μm<br>50°C (180 s),8°C/min,130°C (5′)                                                                                                                           | Carbotrap, 300 ml<br>230°C for 180 s, 2 ml/min                                                                                           |
| DCMR                     | Environment S.A. ENVEA)<br>VOC72M (2017)                                                 | 15                             | PID                    | aplar: 15 m, 0.25 mm, 1 μm<br>20°C - 170°C                                                                                                                                                  | Carbotrap, 220 ml<br>380°C for 380 s                                                                                                     |
| DCMR2                    | AMA instruments GmbH GC500<br>BTX, 2017                                                  | <sup>00</sup> 20               | FID                    | AMAsep-1 : 30 m, 0.32 mm, 1.5 μm<br>30°C-210°C                                                                                                                                              | Tenax, 300 ml<br>350°C for 9 s                                                                                                           |
| АРРА                     | Syntech Spectras GC955-600 ver<br>2 2008                                                 | <sup>'S.</sup> 30              | PID                    | AT-5, 13 m, 0.32 mm i.d., 1 μm<br>50°C-70°C                                                                                                                                                 | Tenax GR 35-60 mesh,<br>175°C for 1.5 s                                                                                                  |
| SHMU                     | Syntech Spectras GC955 Mod<br>601, 2015                                                  | <sup>el</sup> 15               | PID                    | Synspec SY-1, 15 m, .32 mm i.d., 1 μm<br>50°C (3 min),10°C/min,70°C (7 min),<br>10°C/min,50°C                                                                                               | Tenax GR<br>-<br>175°C                                                                                                                   |
| IPH                      | SYNTECH SPECTRAS Analyser G<br>955, 2009                                                 | 6C <sub>15</sub>               | PID                    | AT-624: 15 m, 0.32 mm, 1 μm<br>50°C (3 min),10°C/min,70°C (7 min),<br>10°C/min,50°C                                                                                                         | Tenax GR, 210 ml<br>-<br>180°C for 60 s, 1.5 ml/min                                                                                      |
| JRC                      | GC6890N Agilent<br>ATD-50 Perkin Elmer                                                   | 30                             | FID                    | Dean switch double column<br>DB-1, 50 m 0.32 mm i.d. 1.2 μm<br>Al2O3 KCl 50 m 0.32 mm i.d. 8 μm<br>40°C (5 min),6°C/min,200°C (15 min)                                                      | Air Toxic trap, 600 ml.<br>300 °C 10 min                                                                                                 |

# Table 2. Instrumentation used by the participants during the inter-laboratory comparison exercise

\* i.d.: internal diameter \*\* n.a.: not available

| Laboratoria | Defense Material                         | Benzene           | Toluene     | Ethyl-benzene | m-Xylene    | p-Xylene    | o-Xylene     | Daadusaa                        | Certified by                    | Certification |
|-------------|------------------------------------------|-------------------|-------------|---------------|-------------|-------------|--------------|---------------------------------|---------------------------------|---------------|
| Laboratory  | Reference Material                       | ppb(m/m)          | ppb(m/m)    | ppb(m/m)      | ppb(m/m)    | ppb(m/m)    | ppb(m/m)     | Producer                        | Certified by                    | date          |
| EKONERG     | Press. Cyl.<br>D.D.                      | 1380±75           | 1319±72     | 1255±69       | 2699±146    |             | 1326±73      | Hungary<br>meteorogy<br>service | Hungary<br>meteorogy<br>service | 12/09/2019    |
|             | Press. Cyl.                              | 9.98 ± 0.20       | 9.98 ± 0.20 | 9.98 ± 0.28   | 10.01± 0.41 | 9.99 ± 0.37 | 10.00 ± 0.38 |                                 | CLAD                            | 22/05/2010    |
| ISPRA       | D.D. Orion OGD2000                       | 410±32            | 395±31      | 409±32        | 392±31      | 391±31      | 395±31       | SIAD S.P.A                      | SIAD                            | 23/05/2019    |
| DLI         | Press. Cyl.<br>D.D. (Dilutor Sabio 4010) | 681±20            | 683±20      | 693±21        | 665±20      | 662±20      | 686±21       | VSL                             | VSL                             | 27/11/2017    |
| GIOS        | Press. Cyl.<br>D.D. MCZ CGM200           | 1142±57           | 1184±118    | 1274±127      | 1200±120    | 1218±122    | 1232±123     | AirLiquid                       | AirLiquid                       | 11/08/2017    |
| VMM         | Press. Cyl.<br>D.D. (AirQrate)           | 4.89±             | 4.89±       | 4.917±        | 4.846±      | 4.917±      | -            | NPL                             | NPL                             | 17/01/2018    |
| EPA         | Press. Cyl.                              | 9.88±0.20         | 9.614±0.25  | 10.39±0.26    | 20.2±0.60   |             | 9.34±0.25    | NPL                             | NPL                             | 21/05/2019    |
| REE         | Press. Cyl<br>VOC 30 HC.                 | 4.00 ± 0.08       | 4.00±0.08   | 4.00±0.08     | 8.00±0.16   |             | 4.03± 0.08   | NPL                             | NPL                             | 08/03/2019    |
| LIKZ        | Press. Cyl.                              | 12.18±0.25        | 11.85±0.30  | 12.81±0.33    | 24.90±0.70  |             | 12.26±0.31   | NPL                             | NPL                             | 26/6/2018     |
| AAA         | Press. Cyl.<br>DD. (Umwelttechnik MCZ)   | 4830±130          | 4670± 120   | -             | -           | -           | -            | NPL                             | NPL                             | 06/02/2019    |
| DCMR        | Press. Cyl.                              | 12.00 ± 0.50      | 12.00±0.50  | 12.10±0.50    | 24.00±0.50  |             | 11.80 ±0.50  | VSL                             | VSL                             | 12/09/2017    |
| ΑΡΡΑ        | Press. Cyl.<br>P.T. (Horiba 360)         | 189.8 ±3.8        | 189.7±3.8   | 190.1 ±59     | 190.7 ± 4.2 |             |              | SIAD                            | ACCREDIA                        |               |
| SHMU        | Press. Cyl.                              | 1.000±0.021, 5.00 | ±0.10, 10±  |               |             |             |              | NPL                             | NPL                             | 21/11/2017    |
| IPH         | Press. Cyl.<br>D.D. (ASGU 370 P)         | 2000              |             |               |             |             |              | MESSER                          | MESSER                          | 22/06/2019    |
| IPC         | Press. Cyl.                              | 4                 | 4           | 4             | 4           |             | 4            | NPL                             | NPL                             | 20/06/2016    |
| JUC         | D.D.                                     | 200               | 200         | 200           | 200         |             | 200          | AirLiquid                       | AirLiquid                       | 29/00/2010    |

Press. Cyl.: Pressurised cylinder; D.D.: Dynamic Dilution; n.a.: not available; P.T.: Permeation Tubes; ppb(m/m): concentration in part per billion with respect to molar fraction ± its expanded uncertainty (k=2)

# 2.2 Reference values and uncertainties

Based on the experience from previous inter-laboratory comparison exercise, the robust average value calculated according to ISO 13528 has been shown as an appropriate estimator of the reference value (see Annex 3.- Robust Analysis: Estimation of robust average and standard ). Therefore, the robust average has been adopted as the reference value of the comparison.

It is noted that in the calculation of the robust average, those laboratories identified by the h statistic with more than 50 % of outliers in their results were, a priori, excluded from the calculation of the robust average. This was the case of REE and SHMU for benzene and IPH for m,p-xylene (see Figure A 7).

In line with ISO 13528, the standard uncertainty assigned to the robust value of the proficiency test, upt, was estimated as:

$$u_{pt} = \frac{1.25 \cdot s^*}{\sqrt{p}}$$

Eq. 1

Where  $s^*$  is the robust standard deviation of the robust analysis, p the number of participants and 1.25 is, a conservative nongaussian behaviour correction factor.

The reference concentrations and corresponding uncertainties are given in Table 4.

Table 4. Reference values and associated uncertainties of the exercise

| Level                                                                                           | Benzene                                                                                                                   | uncertainty (1o)                                                                                       | Toluene                                                                                                                  | uncertainty (1o)                                                                                               | Ethylbenzene | uncertainty (1o) |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------|------------------|
|                                                                                                 | Conc., μg/m³                                                                                                              | %                                                                                                      | Conc., μg/m <sup>3</sup>                                                                                                 | %                                                                                                              | Conc., μg/m³ | %                |
| 1ST-A                                                                                           | 0.43                                                                                                                      | 15.54                                                                                                  | 2.08                                                                                                                     | 3.08                                                                                                           | 0.30         | 21.77            |
| 2ND-A                                                                                           | 2.56                                                                                                                      | 2.88                                                                                                   | 10.01                                                                                                                    | 2.92                                                                                                           | 1.62         | 5.26             |
| 3RD-A                                                                                           | 5.22                                                                                                                      | 1.88                                                                                                   | 19.91                                                                                                                    | 1.09                                                                                                           | 3.26         | 3.36             |
| 4TH-A                                                                                           | 10.79                                                                                                                     | 1.12                                                                                                   | 40.68                                                                                                                    | 1.08                                                                                                           | 7.25         | 1.57             |
| 5TH-A                                                                                           | 15.62                                                                                                                     | 1.12                                                                                                   | 59.71                                                                                                                    | 1.15                                                                                                           | 10.76        | 1.32             |
| 6TH-A                                                                                           | 21.66                                                                                                                     | 0.88                                                                                                   | 81.09                                                                                                                    | 1.33                                                                                                           | 14.77        | 1.05             |
| 5TH-B                                                                                           | 15.46                                                                                                                     | 2.05                                                                                                   | 59.54                                                                                                                    | 1.93                                                                                                           | 10.87        | 1.23             |
| 4TH-B                                                                                           | 10.37                                                                                                                     | 2.07                                                                                                   | 39.10                                                                                                                    | 1.63                                                                                                           | 7.28         | 1.47             |
| 3RD-B                                                                                           | 4.90                                                                                                                      | 2.32                                                                                                   | 18.73                                                                                                                    | 3.10                                                                                                           | 3.36         | 2.82             |
| 2ND-B                                                                                           | 2.74                                                                                                                      | 3.12                                                                                                   | 10.67                                                                                                                    | 4.02                                                                                                           | 1.94         | 4.82             |
| 1ST-B                                                                                           | 0.62                                                                                                                      | 10.61                                                                                                  | 2.80                                                                                                                     | 4.58                                                                                                           | 0.43         | 20.03            |
|                                                                                                 |                                                                                                                           |                                                                                                        |                                                                                                                          |                                                                                                                |              |                  |
|                                                                                                 |                                                                                                                           |                                                                                                        |                                                                                                                          |                                                                                                                |              |                  |
| Level                                                                                           | m,p-Xylene                                                                                                                | uncertainty (1o)                                                                                       | o-Xylene                                                                                                                 | uncertainty (1o)                                                                                               |              |                  |
| Level                                                                                           | m,p-Xylene<br>Conc., μg/m³                                                                                                | uncertainty (1ơ)<br>%                                                                                  | o-Xylene<br>Conc., μg/ m³                                                                                                | uncertainty (1σ)<br>%                                                                                          |              |                  |
| Level<br>1ST-A                                                                                  | m,p-Xylene<br>Conc., μg/m <sup>3</sup><br>0.34                                                                            | uncertainty (1ơ)<br>%<br>19.25                                                                         | o-Xylene<br>Conc., µg/ m <sup>3</sup><br>0.39                                                                            | uncertainty (1ơ)<br>%<br>16.44                                                                                 |              |                  |
| Level<br>1ST-A<br>2ND-A                                                                         | m,p-Xylene<br>Conc., μg/m <sup>3</sup><br>0.34<br>2.02                                                                    | uncertainty (1ơ)<br>%<br>19.25<br>5.15                                                                 | o-Xylene<br>Conc., μg/ m <sup>3</sup><br>0.39<br>1.84                                                                    | uncertainty (10)<br>%<br>16.44<br>3.94                                                                         |              |                  |
| Level<br>1ST-A<br>2ND-A<br>3RD-A                                                                | m,p-Xylene<br>Conc., μg/m <sup>3</sup><br>0.34<br>2.02<br>3.65                                                            | uncertainty (1σ)<br>%<br>19.25<br>5.15<br>2.45                                                         | o-Xylene<br>Conc., μg/ m <sup>3</sup><br>0.39<br>1.84<br>3.46                                                            | uncertainty (10)<br>%<br>16.44<br>3.94<br>2.28                                                                 |              |                  |
| Level<br>1ST-A<br>2ND-A<br>3RD-A<br>4TH-A                                                       | m,p-Xylene<br>Conc., μg/m <sup>3</sup><br>0.34<br>2.02<br>3.65<br>7.82                                                    | uncertainty (10)<br>%<br>19.25<br>5.15<br>2.45<br>1.38                                                 | o-Xylene<br>Conc., μg/ m <sup>3</sup><br>0.39<br>1.84<br>3.46<br>7.78                                                    | uncertainty (10)<br>%<br>16.44<br>3.94<br>2.28<br>1.28                                                         |              |                  |
| Level<br>1ST-A<br>2ND-A<br>3RD-A<br>4TH-A<br>5TH-A                                              | m,p-Xylene<br>Conc., μg/m <sup>3</sup><br>0.34<br>2.02<br>3.65<br>7.82<br>11.54                                           | uncertainty (10)<br>%<br>19.25<br>5.15<br>2.45<br>1.38<br>1.03                                         | o-Xylene<br>Conc., μg/ m <sup>3</sup><br>0.39<br>1.84<br>3.46<br>7.78<br>11.75                                           | uncertainty (10)<br>%<br>16.44<br>3.94<br>2.28<br>1.28<br>1.09                                                 |              |                  |
| Level<br>1ST-A<br>2ND-A<br>3RD-A<br>4TH-A<br>5TH-A<br>6TH-A                                     | m,p-Xylene<br>Conc., μg/m <sup>3</sup><br>0.34<br>2.02<br>3.65<br>7.82<br>11.54<br>15.88                                  | uncertainty (10)<br>%<br>19.25<br>5.15<br>2.45<br>1.38<br>1.03<br>0.96                                 | o-Xylene<br>Conc., μg/ m <sup>3</sup><br>0.39<br>1.84<br>3.46<br>7.78<br>11.75<br>15.87                                  | uncertainty (10)<br>%<br>16.44<br>3.94<br>2.28<br>1.28<br>1.09<br>0.94                                         |              |                  |
| Level<br>1ST-A<br>2ND-A<br>3RD-A<br>4TH-A<br>5TH-A<br>6TH-A<br>5TH-B                            | m,p-Xylene<br>Conc., μg/m <sup>3</sup><br>0.34<br>2.02<br>3.65<br>7.82<br>11.54<br>15.88<br>11.68                         | uncertainty (10)<br>%<br>19.25<br>5.15<br>2.45<br>1.38<br>1.03<br>0.96<br>1.39                         | o-Xylene<br>Conc., μg/ m <sup>3</sup><br>0.39<br>1.84<br>3.46<br>7.78<br>11.75<br>15.87<br>11.62                         | uncertainty (10)<br>%<br>16.44<br>3.94<br>2.28<br>1.28<br>1.09<br>0.94<br>1.52                                 |              |                  |
| Level<br>1ST-A<br>2ND-A<br>3RD-A<br>4TH-A<br>5TH-A<br>6TH-A<br>5TH-B<br>4TH-B                   | m,p-Xylene<br>Conc., μg/m <sup>3</sup><br>0.34<br>2.02<br>3.65<br>7.82<br>11.54<br>15.88<br>11.68<br>7.80                 | uncertainty (10)<br>%<br>19.25<br>5.15<br>2.45<br>1.38<br>1.03<br>0.96<br>1.39<br>1.47                 | o-Xylene<br>Conc., μg/ m <sup>3</sup><br>0.39<br>1.84<br>3.46<br>7.78<br>11.75<br>15.87<br>11.62<br>7.68                 | uncertainty (10)<br>%<br>16.44<br>3.94<br>2.28<br>1.28<br>1.09<br>0.94<br>1.52<br>1.70                         |              |                  |
| Level<br>1ST-A<br>2ND-A<br>3RD-A<br>4TH-A<br>5TH-A<br>6TH-A<br>5TH-B<br>4TH-B<br>3RD-B          | m,p-Xylene<br>Conc., μg/m <sup>3</sup><br>0.34<br>2.02<br>3.65<br>7.82<br>11.54<br>15.88<br>11.68<br>7.80<br>3.61         | uncertainty (10)<br>%<br>19.25<br>5.15<br>2.45<br>1.38<br>1.03<br>0.96<br>1.39<br>1.47<br>2.75         | o-Xylene<br>Conc., μg/ m <sup>3</sup><br>0.39<br>1.84<br>3.46<br>7.78<br>11.75<br>15.87<br>11.62<br>7.68<br>3.49         | uncertainty (10)<br>%<br>16.44<br>3.94<br>2.28<br>1.28<br>1.09<br>0.94<br>1.52<br>1.70<br>2.76                 |              |                  |
| Level<br>1ST-A<br>2ND-A<br>3RD-A<br>4TH-A<br>5TH-A<br>6TH-A<br>5TH-B<br>4TH-B<br>3RD-B<br>2ND-B | m,p-Xylene<br>Conc., μg/m <sup>3</sup><br>0.34<br>2.02<br>3.65<br>7.82<br>11.54<br>15.88<br>11.68<br>7.80<br>3.61<br>1.94 | uncertainty (10)<br>%<br>19.25<br>5.15<br>2.45<br>1.38<br>1.03<br>0.96<br>1.39<br>1.47<br>2.75<br>4.07 | o-Xylene<br>Conc., μg/ m <sup>3</sup><br>0.39<br>1.84<br>3.46<br>7.78<br>11.75<br>15.87<br>11.62<br>7.68<br>3.49<br>2.08 | uncertainty (10)<br>%<br>16.44<br>3.94<br>2.28<br>1.28<br>1.28<br>1.09<br>0.94<br>1.52<br>1.70<br>2.76<br>3.56 |              |                  |

# 2.3 Statistical considerations

#### 2.3.1 Reported concentration and uncertainty

Laboratories were requested to provide for each level at least three concentration values and the corresponding average concentration and uncertainty. Average values and associated uncertainties were used as input values for the statistical evaluation of the exercise.

# 2.3.2 Linearity test

Linearity of the analysers was tested according to EN14662-3 by comparing at each concentration level, the average value,  $\overline{C}$ , with its respective reference value,  $C_{ref}$ , for which the residual,  $R_c$ , is calculated according to the following expression:

$$R_c = \overline{C} - (a + b \cdot C_{ref})$$

Eq. 2

where a and b are the correlation coefficients of the linear regression ( $\overline{C}$  vs  $C_{ref}$ ). As a criterion of linearity, residuals higher than 10 % were highlighted in red, while values lower than 5 % were acceptable.

# 2.3.3 Repeatability, reproducibility and robustness of the method

The repeatability and reproducibility derived from the inter-laboratory comparison exercise results were calculated after the elimination of outliers identified by converging Mandel's h and k statistic (see Annex 7.- h and k statistic results of the inter-laboratory comparison).

The inter-laboratory consistency is determined by the statistic h, which represents the ratio between the bias of the measure with respect to the average value,  $\overline{C_i}$ , and the standard deviation of the average inter-laboratory values,  $S_{\bar{c}_i}$ .

The intra-laboratory consistency is determined by the statistic k, which is defined by the ratio between the laboratory standard deviation of the sample, *s<sub>i</sub>*, and the pooled within-laboratory standard deviations:

$$k_i = \frac{s_i}{\sqrt{\frac{\sum s_i^2}{p}}}$$

Eq. 3

Indicators for Mandel's statistics at the 1 and 5 % level of significance are given in the Annex: Indicators of Mandel's statistics. These values determine the outliers and stragglers, respectively.

As a result, the uncertainty of the inter-laboratory average value,  $\overline{C}$ , is determined by the combination of the inter-laboratory variance,  $s_{L}^{2}$ , and the intra-laboratory variance (repeatability variance),  $s_{r}^{2}$ . The addition of both variances represents the reproducibility variance,  $s_{R}^{2}$ , in this case being the variance associated with the uncertainty of the method [ISO 5725 Part 1, Part 2, 1994]:

$$u = \sqrt{s_L^2 + s_r^2} = s_R$$

Eq. 4

being

$$s_r^2 = \frac{1}{p} \sum_{i}^p s_i^2$$
  
$$s_R^2 = \frac{1}{p-1} \sum_{i}^p \left(\overline{C}_i - \overline{C}\right)^2 + \left(1 - \frac{1}{n}\right) \cdot s_r^2$$

where p is the number of laboratories; n is the number of replicated analyses done by each laboratory; 's' and ' $\overline{C_i}$ ' are the standard deviation and average value corresponding to the laboratory 'i'.

The null hypothesis for equivalence between the inter-laboratory averages can be used as a criterion for the robustness of the method tested. Such an hypothesis assumes a F-distribution with *p*-1 and *p*(*n*-1) degrees of freedom for the statistic F defined by the ratio:  $\frac{s_L^2}{s_r^2}$  This unilateral test for the F-distribution statistic depends on the degrees of freedom (experimental design: number of participating laboratories and replicated samples) and the accepted significance level. As a conservative approach, the ratio between reproducibility and repeatability standard deviations, i.e. gamma value,  $\gamma = s_R/s_r$ , can be adopted as indicator of robustness of the method, being robust ratios those lower than 2 [P. Pérez Ballesta et al., 2001].

# 2.3.4 Repeatability score

Following the AQUILA N37 recommendations, the standard deviation for the proficiency assessment,  $\sigma_{N37}$ , is calculated as a function of the concentration level in  $\mu$ g/m<sup>3</sup>, *C*, by the following equation:

$$\hat{\sigma}_{N37} = 0.128 + 0.057 \cdot C$$

Eq. 7

To evaluate the performance criterion as established by EN 14662-3 for benzene automatic analysers, a repeatability scores has been derived from the k-statistic. Therefore, from a minimum value of repeatability standard deviation of 5 %, at concentrations over the limit value (i.e. 0.25  $\mu$ g/m<sup>3</sup>), until 0.2  $\mu$ g/m<sup>3</sup> for values lower than 0.1 x LV by considering a linear decrease of the absolute value of the standard deviation in between was considered (see Figure 2). Therefore, the pooled-within-laboratory standard deviation is replaced by the corresponding maximum accepted repeatability value or, alternatively by the associated uncertainty of the reference value, when this value is limiting the repeatability test. Repeatability scores values follows the k statistic indicators, as a thumb approach, values lower than  $\sqrt{2}$  are considered as acceptable, while values between  $\sqrt{2}$  and  $\sqrt{3}$ are questionable and higher than  $\sqrt{3}$ , i.e. outside the 99 % confidence level interval, are considered as poor performers.





### 2.3.5 Z-scores and minimum standard deviation of the proficiency assessment

In agreement with ISO 13528, the ratio between the between-laboratory standard deviation of the inter-laboratory comparison,  $s_L$ , and that derived from the prescribed standard deviation for the proficiency assessment,  $s_{LN37}$ , should be lower than 2 to represent a realistic choice. Therefore, as the inter-laboratory standard deviation from the prescribed conditions of proficiency assessment is calculated according to the following expression:

$$s_{L_{N37}} = \sqrt{\hat{\sigma}_{N37}^2 - \frac{s_r^2}{n}}$$

Eq. 8

the minimum standard deviation of proficiency assessment coherent with method reproducibility,  $\hat{\sigma}_m$ , can be calculated by the following equation (ISO 13528):

$$\hat{\sigma}_m = \sqrt{(0.5 \cdot s_L)^2 + \frac{s_r^2}{n}}$$

Eq. 9

Therefore, when  $\hat{\sigma}_{N37}$  is higher than  $\hat{\sigma}_{M}$  the AQUILA N37 proposed value for the standard deviation for proficiency assessment is coherent with the reproducibility of the measurements. Otherwise, the corresponding expected reproducibility standard deviations cannot be achieved in practice.

Furthermore, for single laboratories, in the framework of the AQUILA N37 requirements, it is possible to identify outliers by means of a Z-scores statistic derived from the minimum standard deviation of the proficiency assessment,  $\hat{\sigma}_m$ . This statistic would provide a criterion for identification of outliers independent of the comparison exercise performance:

$$Z = \frac{C_{lab} - C_{ref}}{\hat{\sigma}_m}$$

Eq. 10

As indicators for this statistic, the h values for the 95 % and 99 % confidence level interval can be adopted.

It is noted that the Z-scores and the repeatability scores previously described provide a statistic for comparison independent of the results of the comparison exercise, as these scores are delimited by the standard deviation of the proficiency assessment defined in AQUILA N37.

#### 2.3.6 E<sub>n</sub> scores

As laboratories were requested to report uncertainty values for each concentration level, the evaluation of the laboratory performance was based on the  $E_n$  scores as recommended by ISO 13528 (2005). This number is calculated according to the following equation:

$$E_n = \frac{C_{lab} - C_{ref}}{\sqrt{U_{lab}^2 + U_{ref}^2}}$$

Eq. 11

where  $U_{lab}$  and  $U_{ref}$  are the expanded uncertainties for the laboratory and reference value, respectively.  $E_n$  scores evaluate the compatibility between bias and expanded uncertainty for each result. The critical value for  $E_n$  scores is 1.  $E_n$  scores higher than 1 identify results that are incompatible with the reference value after allowing for the stated uncertainties. The overall evaluation of the laboratory results should consider both bias and  $E_n$  scores because a low  $E_n$  scores could be due to a large stated uncertainty.

# **3** RESULTS AND DISCUSSION

# 3.1 Data reporting

Laboratories were requested to report for each concentration level and compound, three concentration values and the corresponding average value and associated uncertainty representing the whole concentration step. Laboratories were also requested to describe the instrument used in the exercise, the analytical method, the use of certified reference material for calibration and the calculation of the reported uncertainties.

Although this was not a common trend, some laboratories limited the number of reported compounds: REE and SHMU reported only benzene, while AAA reported only benzene and toluene.

# 3.2 Linearity test

Table 5 to Table 7 show the results of the linearity test for the correlation between reported and reference values. Residuals were calculated by Eq.3. In these tables, the percentage of residuals was indicated for those values higher than 5 %. Values were highlighted in red when these were higher than 10 %. Linearity problems were frequently identified at the lowest concentration levels, eventually with higher incidence on the heaviest compounds (i.e. m,p-xylene) and those instruments using Tenax GR. No clear conclusion could however be drawn for the use of FID or PID detector (see Figure 3).



Figure 3.- number of non-linear cases per adsorbent or detector

Ratio: Residuals > 5 % / number of instruments with the evaluated factor

Outliers laboratories are excluded from the analysis

| Table 5. Linearity | tests for | benzene and | d toluene |
|--------------------|-----------|-------------|-----------|

| benzene                                                                                                  | EKONERG                                            | ISPRA                                              | EPA                                                | GIOS                                               | REE | VMM                                          | LIKZ                                         | SHMU    | DLI                                        | IPH_S                                                     | AAA                                                       | DCMR                                               | DCMR2                                                    | APPA BZ                                                 | ERLAP                                                    |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-----|----------------------------------------------|----------------------------------------------|---------|--------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|
| 1st -A                                                                                                   | 10                                                 | 6                                                  | 29                                                 | -8                                                 | 21  | ОК                                           | 8                                            | -7      | 7                                          | -14                                                       | 8                                                         | 72                                                 | -6                                                       | 14                                                      | -27                                                      |
| 2nd -A                                                                                                   | ОК                                                 | ОК                                                 | ОК                                                 | ОК                                                 | -11 | 7                                            | ОК                                           | ОК      | 6                                          | -10                                                       | -6                                                        | ОК                                                 | 8                                                        | ОК                                                      | ОК                                                       |
| 3rd -A                                                                                                   | ОК                                                 | ОК                                                 | -8                                                 | ОК                                                 | ОК  | ОК                                           | ОК                                           | ОК      | ОК                                         | ОК                                                        | ОК                                                        | -12                                                | ОК                                                       | -5                                                      | 6                                                        |
| 4th -A                                                                                                   | ОК                                                 | ОК                                                 | ОК                                                 | ОК                                                 | ОК  | ОК                                           | ОК                                           | ОК      | ОК                                         | ОК                                                        | OK                                                        | ОК                                                 | ОК                                                       | ОК                                                      | ОК                                                       |
| 5th -A                                                                                                   | ОК                                                 | ОК                                                 | ОК                                                 | ОК                                                 | ОК  | ОК                                           | ОК                                           | ОК      | ОК                                         | ОК                                                        | OK                                                        | ОК                                                 | ОК                                                       | ОК                                                      | ОК                                                       |
| 6th                                                                                                      | ОК                                                 | ОК                                                 | ОК                                                 | ОК                                                 | ОК  | ОК                                           | ОК                                           | ОК      | ОК                                         | ОК                                                        | OK                                                        | ОК                                                 | ОК                                                       | ОК                                                      | ОК                                                       |
| 5th -B                                                                                                   | ОК                                                 | ОК                                                 | ОК                                                 | ОК                                                 | ОК  | ОК                                           | ОК                                           | ОК      | OK                                         | ОК                                                        | OK                                                        | ОК                                                 | ОК                                                       | ОК                                                      | ОК                                                       |
| 4th -B                                                                                                   | ОК                                                 | ОК                                                 | ОК                                                 | OK                                                 | OK  | ОК                                           | ОК                                           | ОК      | OK                                         | ОК                                                        | ОК                                                        | ОК                                                 | ОК                                                       | ОК                                                      | ОК                                                       |
| 3rd -B                                                                                                   | ОК                                                 | ОК                                                 | ОК                                                 | ОК                                                 | ОК  | ОК                                           | ОК                                           | ОК      | ОК                                         | 7                                                         | ОК                                                        | -11                                                | ОК                                                       | ОК                                                      | ОК                                                       |
| 2nd -B                                                                                                   | ОК                                                 | 7                                                  | ОК                                                 | ОК                                                 | ОК  | ОК                                           | ОК                                           | ОК      | ОК                                         | ОК                                                        | ОК                                                        | -6                                                 | ОК                                                       | ОК                                                      | ОК                                                       |
| 1st -B                                                                                                   | 8                                                  | 26                                                 | 19                                                 | -8                                                 | 21  | -6                                           | ОК                                           | 13      | ОК                                         | ОК                                                        | ОК                                                        | 59                                                 | -8                                                       | 17                                                      | -15                                                      |
|                                                                                                          | FRONEDC                                            |                                                    | 504                                                | CLOS                                               | DEE | \/N 4 N 4                                    | 111/7                                        | CLINALL | DU                                         |                                                           |                                                           | DCMD                                               |                                                          |                                                         |                                                          |
| toluene                                                                                                  | EKONERG                                            | ISPRA                                              | EPA                                                | GIOS                                               | KEE | VIVIIVI                                      | LIKZ                                         | SHIVIU  | DLI                                        | IPH_S                                                     | AAA                                                       | DCIVIR                                             | DCIVIRZ                                                  | APPA BZ                                                 | ENLAP                                                    |
| toluene<br>1st -A                                                                                        | OK                                                 | ISPRA                                              | 48                                                 | -18                                                | REE | OK                                           | -5                                           | SHIVIU  | 5                                          | -24                                                       | OK                                                        | -21                                                | -22                                                      | OK                                                      | -13                                                      |
| 1st -A<br>2nd -A                                                                                         | OK<br>OK                                           | 50<br>0K                                           | ера<br>48<br>ОК                                    | -18<br>5                                           | KEE | OK<br>OK                                     | -5<br>OK                                     | SHIMU   | 5<br>5                                     | -24<br>-10                                                | ааа<br>ОК<br>-7                                           | -21<br>8                                           | -22<br>9                                                 | OK<br>OK                                                | -13<br>OK                                                |
| toluene<br>1st -A<br>2nd -A<br>3rd -A                                                                    | OK<br>OK<br>OK                                     | 50<br>OK<br>-5                                     | ера<br>48<br>ОК<br>-6                              | -18<br>5<br>OK                                     | REE | ОК<br>ОК<br>ОК                               | -5<br>OK<br>OK                               | SHINU   | 5<br>5<br>0K                               | -24<br>-10<br>OK                                          | ада<br>ОК<br>-7<br>ОК                                     | -21<br>8<br>OK                                     | -22<br>9<br>OK                                           | OK<br>OK<br>OK                                          | -13<br>OK<br>8                                           |
| 1st -A<br>2nd -A<br>3rd -A<br>4th -A                                                                     | OK<br>OK<br>OK<br>OK                               | 50<br>OK<br>-5<br>OK                               | 48<br>ОК<br>-6<br>ОК                               | -18<br>5<br>OK<br>OK                               | REE | ОК<br>ОК<br>ОК<br>ОК                         | -5<br>OK<br>OK<br>OK                         | SHIND   | 5<br>5<br>ОК<br>ОК                         | -24<br>-10<br>OK<br>OK                                    | ок<br>-7<br>ок<br>ок                                      | -21<br>8<br>OK<br>OK                               | -22<br>9<br>OK<br>OK                                     | OK<br>OK<br>OK<br>OK                                    | -13<br>OK<br>8<br>OK                                     |
| 1st -A<br>2nd -A<br>3rd -A<br>4th -A<br>5th -A                                                           | OK<br>OK<br>OK<br>OK<br>OK                         | 50<br>OK<br>-5<br>OK<br>OK                         | ерд<br>48<br>ОК<br>-6<br>ОК<br>ОК                  | -18<br>5<br>OK<br>OK<br>OK                         | KEE | OK<br>OK<br>OK<br>OK<br>OK                   | -5<br>ОК<br>ОК<br>ОК<br>ОК                   | SHMU    | 5<br>5<br>ОК<br>ОК<br>ОК                   | -24<br>-10<br>ОК<br>ОК<br>ОК                              | OK<br>-7<br>OK<br>OK<br>OK                                | -21<br>8<br>ОК<br>ОК<br>ОК                         | -22<br>9<br>OK<br>OK<br>-5                               | OK<br>OK<br>OK<br>OK                                    | -13<br>OK<br>8<br>OK<br>OK                               |
| toluene<br>1st -A<br>2nd -A<br>3rd -A<br>4th -A<br>5th -A<br>6th                                         | OK<br>OK<br>OK<br>OK<br>OK<br>OK                   | 50<br>OK<br>-5<br>OK<br>OK<br>OK                   | 48<br>OK<br>-6<br>OK<br>OK<br>OK                   | -18<br>5<br>0K<br>0K<br>0K<br>0K                   | KEE | ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК             | -5<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК             | SHMU    | 5<br>5<br>0K<br>0K<br>0K<br>0K             | -24<br>-10<br>ОК<br>ОК<br>ОК<br>ОК                        | ОК<br>-7<br>ОК<br>ОК<br>ОК<br>ОК                          | -21<br>8<br>ОК<br>ОК<br>ОК<br>ОК                   | -22<br>9<br>OK<br>OK<br>-5<br>OK                         | OK<br>OK<br>OK<br>OK<br>OK                              | -13<br>OK<br>8<br>OK<br>OK<br>OK                         |
| toluene<br>1st -A<br>2nd -A<br>3rd -A<br>4th -A<br>5th -A<br>6th<br>5th -B                               | OK<br>OK<br>OK<br>OK<br>OK<br>OK<br>OK             | 50<br>OK<br>-5<br>OK<br>OK<br>OK                   | 48<br>OK<br>-6<br>OK<br>OK<br>OK                   | -18<br>5<br>OK<br>OK<br>OK<br>OK                   | KEE | ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК             | -5<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК             | SHMU    | 5<br>5<br>ОК<br>ОК<br>ОК<br>ОК             | -24<br>-10<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК                  | ОК<br>-7<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК                    | -21<br>8<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК             | -22<br>9<br>OK<br>OK<br>-5<br>OK<br>OK                   | OK<br>OK<br>OK<br>OK<br>OK<br>OK                        | -13<br>OK<br>8<br>OK<br>OK<br>OK<br>OK                   |
| toluene<br>1st -A<br>2nd -A<br>3rd -A<br>4th -A<br>5th -A<br>6th<br>5th -B<br>4th -B                     | OK<br>OK<br>OK<br>OK<br>OK<br>OK<br>OK             | 50<br>ОК<br>-5<br>ОК<br>ОК<br>ОК<br>ОК             | ерд<br>48<br>ОК<br>-6<br>ОК<br>ОК<br>ОК<br>ОК      | -18<br>5<br>0K<br>0K<br>0K<br>0K<br>0K             | REE | ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК       | -5<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК       | SHMU    | 5<br>5<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК       | -24<br>-10<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК                  | ОК<br>-7<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК                    | -21<br>8<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК             | -22<br>9<br>OK<br>OK<br>-5<br>OK<br>OK<br>OK             | АРРА 62<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК       | -13<br>OK<br>8<br>OK<br>OK<br>OK<br>OK<br>OK             |
| toluene<br>1st -A<br>2nd -A<br>3rd -A<br>4th -A<br>5th -A<br>6th<br>5th -B<br>4th -B<br>3rd -B           | OK<br>OK<br>OK<br>OK<br>OK<br>OK<br>OK<br>OK       | 50<br>OK<br>-5<br>OK<br>OK<br>OK<br>OK<br>OK       | 48<br>OK<br>-6<br>OK<br>OK<br>OK<br>OK<br>OK       | -18<br>5<br>0K<br>0K<br>0K<br>0K<br>0K<br>0K       | KEE | ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК       | -5<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК | SHMU    | 5<br>5<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК | -24<br>-10<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК            | ОК<br>-7<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК              | -21<br>8<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК       | -22<br>9<br>OK<br>OK<br>-5<br>OK<br>OK<br>OK             | OK<br>OK<br>OK<br>OK<br>OK<br>OK<br>OK<br>OK            | -13<br>OK<br>8<br>OK<br>OK<br>OK<br>OK<br>OK             |
| toluene<br>1st -A<br>2nd -A<br>3rd -A<br>4th -A<br>5th -A<br>6th<br>5th -B<br>4th -B<br>3rd -B<br>2nd -B | OK<br>OK<br>OK<br>OK<br>OK<br>OK<br>OK<br>OK<br>OK | 50<br>ОК<br>-5<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК | 48<br>ОК<br>-6<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК | -18<br>5<br>0K<br>0K<br>0K<br>0K<br>0K<br>0K<br>0K | REE | ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК | -5<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК | SHMU    | 5<br>5<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК | -24<br>-10<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>7 | ААА<br>ОК<br>-7<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК | -21<br>8<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК | -22<br>9<br>0K<br>0K<br>-5<br>0K<br>0K<br>0K<br>0K<br>0K | АРРА 62<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК | -13<br>OK<br>8<br>OK<br>OK<br>OK<br>OK<br>OK<br>OK<br>-5 |

(\*) Residual values in percentage

| ethyl-benzene                                                                                               | EKONERG                                                                         | ISPRA                                                            | EPA                                                 | GIOS                                                                           | REE | VMM                                                        | LIKZ                                                       | SHMU | DLI                                                     | IPH_S                                                        | AAA | DCMR                                                         | DCMR2                                                            | APPA BZ                                                              | ERLAP                                                             |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------|-----|------------------------------------------------------------|------------------------------------------------------------|------|---------------------------------------------------------|--------------------------------------------------------------|-----|--------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|
| 1st -A                                                                                                      | -32                                                                             | 50                                                               | 30                                                  | -44                                                                            |     | 8                                                          | -8                                                         |      | -13                                                     | OK                                                           |     | 101                                                          | -20                                                              | -8                                                                   | -36                                                               |
| 2nd -A                                                                                                      | 5                                                                               | -19                                                              | ОК                                                  | 6                                                                              |     | ОК                                                         | ОК                                                         |      | ОК                                                      | -21                                                          |     | 17                                                           | 12                                                               | ОК                                                                   | ОК                                                                |
| 3rd -A                                                                                                      | ОК                                                                              | ОК                                                               | ОК                                                  | ОК                                                                             |     | -6                                                         | ОК                                                         |      | ОК                                                      | -7                                                           |     | -10                                                          | ОК                                                               | ОК                                                                   | OK                                                                |
| 4th -A                                                                                                      | ОК                                                                              | ОК                                                               | ОК                                                  | ОК                                                                             |     | OK                                                         | ОК                                                         |      | ОК                                                      | ОК                                                           |     | -7                                                           | ОК                                                               | ОК                                                                   | ОК                                                                |
| 5th -A                                                                                                      | ОК                                                                              | ОК                                                               | ОК                                                  | ОК                                                                             |     | OK                                                         | ОК                                                         |      | ОК                                                      | ОК                                                           |     | ОК                                                           | -5                                                               | ОК                                                                   | ОК                                                                |
| 6th                                                                                                         | ОК                                                                              | ОК                                                               | ОК                                                  | ОК                                                                             |     | OK                                                         | ОК                                                         |      | OK                                                      | ОК                                                           |     | ОК                                                           | ОК                                                               | ОК                                                                   | ОК                                                                |
| 5th -B                                                                                                      | ОК                                                                              | ОК                                                               | ОК                                                  | ОК                                                                             |     | OK                                                         | ОК                                                         |      | ОК                                                      | ОК                                                           |     | ОК                                                           | ОК                                                               | ОК                                                                   | ОК                                                                |
| 4th -B                                                                                                      | ОК                                                                              | ОК                                                               | ОК                                                  | ОК                                                                             |     | OK                                                         | ОК                                                         |      | OK                                                      | ОК                                                           |     | -8                                                           | ОК                                                               | ОК                                                                   | ОК                                                                |
| 3rd -B                                                                                                      | ОК                                                                              | ОК                                                               | ОК                                                  | ОК                                                                             |     | -7                                                         | ОК                                                         |      | OK                                                      | ОК                                                           |     | -12                                                          | ОК                                                               | ОК                                                                   | ОК                                                                |
| 2nd -B                                                                                                      | ОК                                                                              | ОК                                                               | ОК                                                  | ОК                                                                             |     | OK                                                         | ОК                                                         |      | -6                                                      | ОК                                                           |     | ОК                                                           | ОК                                                               | ОК                                                                   | ОК                                                                |
| 1 ct D                                                                                                      | 20                                                                              | 10                                                               | 17                                                  | -25                                                                            |     | 8                                                          | -9                                                         |      | -19                                                     | 34                                                           |     | 74                                                           | -17                                                              | ОК                                                                   | -26                                                               |
| 1SL-B                                                                                                       | -29                                                                             | 15                                                               | 17                                                  | 23                                                                             |     | 0                                                          | •                                                          |      |                                                         |                                                              |     |                                                              |                                                                  |                                                                      |                                                                   |
| m,p-xylene                                                                                                  | EKONERG                                                                         | ISPRA                                                            | EPA                                                 | GIOS                                                                           | REE | VMM                                                        | LIKZ                                                       | SHMU | DLI                                                     | IPH_S                                                        | AAA | DCMR                                                         | DCMR2                                                            | APPA BZ                                                              | ERLAP                                                             |
| n,p-xylene                                                                                                  | EKONERG                                                                         | ISPRA<br>22                                                      | EPA<br>21                                           | GIOS<br>-19                                                                    | REE | VMM<br>31                                                  | LIKZ                                                       | SHMU | DLI<br>OK                                               | IPH_S<br>10                                                  | AAA | DCMR                                                         | DCMR2<br>-18                                                     | APPA BZ<br>-10                                                       | ERLAP<br>-38                                                      |
| m,p-xylene<br>1st -A<br>2nd -A                                                                              | -29<br>EKONERG<br>-47<br>OK                                                     | ISPRA<br>22<br>OK                                                | ЕРА<br>21<br>ОК                                     | GIOS<br>-19<br>OK                                                              | REE | VMM<br>31<br>OK                                            | -7<br>-8                                                   | SHMU | DLI<br>OK<br>OK                                         | IPH_S<br>10<br>-13                                           | AAA | DCMR<br>63<br>OK                                             | DCMR2<br>-18<br>8                                                | APPA BZ<br>-10<br>-8                                                 | ERLAP<br>-38<br>16                                                |
| n,p-xylene<br>1st -A<br>2nd -A<br>3rd -A                                                                    | -29<br>EKONERG<br>-47<br>OK<br>6                                                | ISPRA<br>22<br>OK<br>-5                                          | ЕРА<br>21<br>ОК<br>ОК                               | GIOS<br>-19<br>OK<br>OK                                                        | REE | VMM<br>31<br>OK<br>-10                                     | LIKZ<br>-7<br>-8<br>OK                                     | SHMU | DLI<br>OK<br>OK<br>5                                    | IPH_S<br>10<br>-13<br>OK                                     | AAA | DCMR<br>63<br>OK<br>-10                                      | DCMR2<br>-18<br>8<br>5                                           | APPA BZ<br>-10<br>-8<br>OK                                           | ERLAP<br>-38<br>16<br>9                                           |
| m,p-xylene<br>1st -A<br>2nd -A<br>3rd -A<br>4th -A                                                          | -25<br>EKONERG<br>-47<br>OK<br>6<br>OK                                          | ISPRA<br>22<br>OK<br>-5<br>-8                                    | ЕРА<br>21<br>ОК<br>ОК<br>ОК                         | GIOS<br>-19<br>OK<br>OK<br>OK                                                  | REE | VMM<br>31<br>OK<br>-10<br>OK                               | LIKZ<br>-7<br>-8<br>OK<br>OK                               | SHMU | DLI<br>OK<br>OK<br>5<br>OK                              | IPH_S<br>10<br>-13<br>OK<br>OK                               | AAA | DCMR<br>63<br>OK<br>-10<br>OK                                | DCMR2<br>-18<br>8<br>5<br>OK                                     | APPA BZ<br>-10<br>-8<br>OK<br>OK                                     | ERLAP<br>-38<br>16<br>9<br>OK                                     |
| Ist -B<br>m,p-xylene<br>1st -A<br>2nd -A<br>3rd -A<br>4th -A<br>5th -A                                      | -29<br>EKONERG<br>-47<br>OK<br>6<br>OK<br>OK                                    | ISPRA<br>22<br>OK<br>-5<br>-8<br>OK                              | ЕРА<br>21<br>ОК<br>ОК<br>ОК<br>ОК                   | GIOS<br>-19<br>OK<br>OK<br>OK<br>OK                                            | REE | VMM<br>31<br>OK<br>-10<br>OK<br>OK                         | LIKZ<br>-7<br>-8<br>OK<br>OK<br>OK                         | SHMU | DLI<br>OK<br>OK<br>5<br>OK<br>OK                        | IPH_S<br>10<br>-13<br>ОК<br>ОК<br>ОК                         | AAA | DCMR<br>63<br>OK<br>-10<br>OK<br>OK                          | DCMR2<br>-18<br>8<br>5<br>OK<br>-6                               | APPA BZ<br>-10<br>-8<br>OK<br>OK<br>OK                               | ERLAP<br>-38<br>16<br>9<br>OK<br>OK                               |
| Ist -B<br>m,p-xylene<br>Ist -A<br>2nd -A<br>3rd -A<br>4th -A<br>5th -A<br>6th                               | -25<br>EKONERG<br>-47<br>OK<br>6<br>OK<br>OK<br>OK                              | ISPRA<br>22<br>OK<br>-5<br>-8<br>OK<br>OK                        | ЕРА<br>21<br>ОК<br>ОК<br>ОК<br>ОК                   | GIOS<br>-19<br>ОК<br>ОК<br>ОК<br>ОК                                            | REE | VMM<br>31<br>ОК<br>-10<br>ОК<br>ОК<br>ОК                   | LIKZ<br>-7<br>-8<br>OK<br>OK<br>OK<br>OK                   | SHMU | DLI<br>OK<br>OK<br>5<br>OK<br>OK<br>OK                  | IPH_S<br>10<br>-13<br>ОК<br>ОК<br>ОК<br>ОК                   | AAA | DCMR<br>63<br>OK<br>-10<br>OK<br>OK<br>OK                    | DCMR2<br>-18<br>8<br>5<br>OK<br>-6<br>OK                         | APPA BZ<br>-10<br>-8<br>OK<br>OK<br>OK<br>OK                         | ERLAP<br>-38<br>16<br>9<br>OK<br>OK<br>OK                         |
| Ist -B<br>m,p-xylene<br>Ist -A<br>2nd -A<br>3rd -A<br>4th -A<br>5th -A<br>6th<br>5th -B                     | EKONERG<br>-47<br>OK<br>6<br>OK<br>OK<br>OK<br>OK                               | 15<br>ISPRA<br>22<br>ОК<br>-5<br>-8<br>ОК<br>ОК<br>ОК            | ЕРА<br>21<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК             | GIOS<br>-19<br>OK<br>OK<br>OK<br>OK<br>OK                                      | REE | VMM<br>31<br>ОК<br>-10<br>ОК<br>ОК<br>ОК<br>ОК             | LIKZ<br>-7<br>-8<br>OK<br>OK<br>OK<br>OK<br>OK             | SHMU | DLI<br>OK<br>OK<br>5<br>OK<br>OK<br>OK                  | IPH_S<br>10<br>-13<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК             | ΑΑΑ | DCMR<br>63<br>OK<br>-10<br>OK<br>OK<br>OK                    | DCMR2<br>-18<br>8<br>5<br>OK<br>-6<br>OK<br>OK                   | APPA BZ<br>-10<br>-8<br>OK<br>OK<br>OK<br>OK<br>OK                   | ERLAP<br>-38<br>16<br>9<br>0K<br>0K<br>0K<br>0K                   |
| Ist -B<br>m,p-xylene<br>Ist -A<br>2nd -A<br>3rd -A<br>4th -A<br>5th -A<br>6th<br>5th -B<br>4th -B           | -25<br>EKONERG<br>-47<br>OK<br>6<br>OK<br>OK<br>OK<br>OK<br>OK                  | ISPRA<br>22<br>OK<br>-5<br>-8<br>OK<br>OK<br>OK                  | ЕРА<br>21<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК       | Сіо<br>Сіо<br>Сіо<br>Сіо<br>Сіо<br>Сіо<br>Сіо<br>Сіо                           | REE | VMM<br>31<br>ОК<br>-10<br>ОК<br>ОК<br>ОК<br>ОК             | LIKZ<br>-7<br>-8<br>OK<br>OK<br>OK<br>OK<br>OK             | SHMU | DLI<br>OK<br>OK<br>5<br>OK<br>OK<br>OK<br>OK            | IPH_S<br>10<br>-13<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК             | AAA | DCMR<br>63<br>OK<br>-10<br>OK<br>OK<br>OK<br>OK              | DCMR2<br>-18<br>8<br>5<br>OK<br>-6<br>OK<br>OK<br>OK             | APPA BZ<br>-10<br>-8<br>OK<br>OK<br>OK<br>OK<br>OK                   | ERLAP<br>-38<br>16<br>9<br>0K<br>0K<br>0K<br>0K<br>0K             |
| n,p-xylene<br>1st -A<br>2nd -A<br>3rd -A<br>4th -A<br>5th -A<br>6th<br>5th -B<br>4th -B<br>3rd -B           | -25<br>EKONERG<br>-47<br>OK<br>6<br>OK<br>OK<br>OK<br>OK<br>OK<br>OK<br>OK<br>6 | 15<br>ISPRA<br>22<br>ОК<br>-5<br>-8<br>ОК<br>ОК<br>ОК<br>ОК      | ЕРА<br>21<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК       | GIOS<br>-19<br>OK<br>OK<br>OK<br>OK<br>OK<br>OK                                | REE | VMM<br>31<br>ОК<br>-10<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>-9 | LIKZ<br>-7<br>-8<br>OK<br>OK<br>OK<br>OK<br>OK<br>OK       | SHMU | DLI<br>OK<br>OK<br>S<br>OK<br>OK<br>OK<br>OK<br>S       | IPH_S<br>10<br>-13<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК       | ΑΑΑ | DCMR<br>63<br>OK<br>-10<br>OK<br>OK<br>OK<br>OK<br>OK<br>-9  | DCMR2<br>-18<br>8<br>5<br>0K<br>-6<br>0K<br>0K<br>0K<br>0K       | APPA BZ<br>-10<br>-8<br>OK<br>OK<br>OK<br>OK<br>OK<br>OK             | ERLAP<br>-38<br>16<br>9<br>0K<br>0K<br>0K<br>0K<br>0K<br>0K       |
| n,p-xylene<br>1st -A<br>2nd -A<br>3rd -A<br>4th -A<br>5th -A<br>6th<br>5th -B<br>4th -B<br>3rd -B<br>2nd -B | -25<br>EKONERG<br>-47<br>OK<br>6<br>OK<br>OK<br>OK<br>OK<br>OK<br>OK<br>6<br>6  | ISPRA<br>22<br>OK<br>-5<br>-8<br>OK<br>OK<br>OK<br>OK<br>OK<br>6 | ЕРА<br>21<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК | С (0)<br>GIOS<br>-19<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>С<br>5 | REE | VMM<br>31<br>ОК<br>-10<br>ОК<br>ОК<br>ОК<br>ОК<br>-9<br>ОК | LIKZ<br>-7<br>-8<br>OK<br>OK<br>OK<br>OK<br>OK<br>OK<br>OK | SHMU | DLI<br>OK<br>5<br>OK<br>OK<br>OK<br>OK<br>OK<br>5<br>-7 | IPH_S<br>10<br>-13<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК<br>ОК | AAA | DCMR<br>63<br>OK<br>-10<br>OK<br>OK<br>OK<br>OK<br>-9<br>-12 | DCMR2<br>-18<br>8<br>5<br>0K<br>-6<br>0K<br>0K<br>0K<br>0K<br>0K | APPA BZ<br>-10<br>-8<br>OK<br>OK<br>OK<br>OK<br>OK<br>OK<br>OK<br>OK | ERLAP<br>-38<br>16<br>9<br>0K<br>0K<br>0K<br>0K<br>0K<br>0K<br>0K |

Table 6. Linearity test for ethyl-benzene and m,p-xylene

(\*) Residual values in percentage

| o-xylene | EKONERG | ISPRA | EPA | GIOS | REE | VMM | LIKZ | SHMU | DLI | IPH_S | AAA | DCMR | DCMR2 | APPA BZ | ERLAP |
|----------|---------|-------|-----|------|-----|-----|------|------|-----|-------|-----|------|-------|---------|-------|
| 1st -A   | -19     | 27    | -18 | -28  |     | -10 | -17  |      | -20 | -22   |     | 80   | -23   | 23      | -22   |
| 2nd -A   | ОК      | -12   | 10  | ОК   |     | ОК  | -6   |      | 7   | -30   |     | 6    | 10    | ОК      | 8     |
| 3rd -A   | ОК      | ОК    | OK  | ОК   |     | ОК  | ОК   |      | ОК  | ОК    |     | -8   | ОК    | ОК      | ОК    |
| 4th -A   | ОК      | OK    | OK  | ОК   |     | ОК  | ОК   |      | OK  | ОК    |     | OK   | ОК    | ОК      | ОК    |
| 5th -A   | ОК      | ОК    | OK  | ОК   |     | ОК  | ОК   |      | ОК  | ОК    |     | ОК   | ОК    | ОК      | ОК    |
| 6th      | ОК      | ОК    | OK  | ОК   |     | ОК  | ОК   |      | ОК  | ОК    |     | ОК   | ОК    | ОК      | ОК    |
| 5th -B   | ОК      | ОК    | OK  | ОК   |     | ОК  | ОК   |      | ОК  | ОК    |     | ОК   | ОК    | ОК      | ОК    |
| 4th -B   | ОК      | ОК    | OK  | ОК   |     | ОК  | ОК   |      | ОК  | 6     |     | ОК   | ОК    | ОК      | ОК    |
| 3rd -B   | ОК      | OK    | 5   | ОК   |     | ОК  | ОК   |      | OK  | 10    |     | -9   | ОК    | ОК      | ОК    |
| 2nd -B   | ОК      | 17    | OK  | ОК   |     | ОК  | ОК   |      | OK  | -11   |     | -11  | ОК    | ОК      | ОК    |
| 1st -B   | -9      | ОК    | -17 | -12  |     | ОК  | -10  |      | -20 | 21    |     | 49   | -18   | 33      | -13   |

(\*) Residual values in percentage

# 3.3 Blank levels

Figure 4 shows the concentrations reported by the participants during the zero air concentration steps (Zero-A and Zero-B). The inter-laboratory median of the measured blank values ranged from 4.3 % to 16.5 % of the reference concentrations at the 1<sup>st</sup> level of concentration, being approximately the same percentage of their corresponding uncertainties.



Figure 4. Reported blank levels

ZERO-A, ZZERO-B |-----| uncertainty (1 σ)

# 3.4 Outliers, repeatability, reproducibility and robustness of the method

As indicated in the previous section, repeatability and reproducibility standard deviation were calculated on the converged results of elimination of outliers based on the k and h statistics (see Annex 7.- h and k statistic results of the inter-laboratory comparison). The values of repeatability, reproducibility standard deviation are represented in Figure 5, while Figure 6 shows the corresponding robustness derived for each concentration level and compound. It is noted that the repeatability values are representing the average of the uncertainties reported by the participating laboratories at each level, while the reproducibility is associated with the uncertainty of the method for this exercise shows how the values of repeatability and reproducibility increase with the decrease in the concentration. In less extension, such an increase is also observed for the gamma values (Figure 6).



### Figure 5. Repeatability and reproducibility of the inter-laboratory exercise



CONCENTRATION, UG/M

Figure 6. Robustness of the inter-laboratory exercise



Compared to the previous inter-laboratory exercise (EUR 28692 EN), a slight increase in the reproducibility and repeatability values is noted. This is probably due to the decrease by half of the concentration level tested during the exercise. Nevertheless, such variations did not affect the robustness of the method (gamma value), which did not differ significantly from the previous inter-laboratory comparison (see Table 8).

Table 8. Average repeatability, reproducibility and  $\gamma$  values of the inter-laboratory exercise

|               | Repeatability, % | Reproducibility, % | Robustness (γ) |
|---------------|------------------|--------------------|----------------|
| Benzene       | 5.62             | 13.51              | 2.15           |
| Toluene       | 6.23             | 11.96              | 1.91           |
| Ethyl-benzene | 8.91             | 21.62              | 2.48           |
| m,p-Xylene    | 9.38             | 21.04              | 2.13           |
| o-Xylene      | 8.94             | 18.80              | 2.15           |

Outliers excluded in the analysis.

Repeatability, reproducibility and robustness values of previous inter-laboratory exercises are provided in Annex 4.

# 3.5 Standard deviation of the proficiency assessment N37

The minimum relative standard deviation compatible with the reproducibility of the exercise,  $\sigma_m$ , and the relative standard deviation for proficiency assessment  $\sigma_{N37}$  are represented in Figure 7. Repeatability and reproducibility values for the method were those calculated after excluding outliers by the converging k and h statistics, as described in section 3.4. As shown in the Figure 7, the minimum relative standard deviations of the proficiency test fulfil the N37 criteria for all compounds and concentrations.



Figure 7. Minimum standard deviation compatible with reproducibility of the tests and standard deviation for proficiency assessment N37

— Relative standard deviation from AQUILA N37 proposal,  $rac{\hat{\sigma}_{N37}}{c_{ref}}$ . 100

---• Minimum relative standard deviation compatible with the reproducibility of the exercise,  $\frac{\hat{\sigma}_m}{c_{ref}}$ . 100

#### 3.6 Repeatability-score, Z-scores and En scores

The individual evaluation of the laboratory test performance was carried out by means of the previously defined repeatability scores, Z-scores and En scores. Results of the corresponding statistics are shown in Figure 8, Figure 9 and Figure 10.



Figure 8. Repeatability-scores (N37) for the inter-laboratory comparison exercise

- 99 % confidence level interval: outlier identification ------- 95 % confidence level interval: straggler identification



Figure 9.- Z-scores ( $\sigma_m$ ) for the inter-laboratory comparison exercise

------ 99 % confidence level interval: outlier identification ------ 95 % confidence level interval: straggler identification

\*Under N37 AQUILA proficiency test criteria with S\_L= 2 S\_{LN37} ( $\sigma_m \lesssim \sigma_{N37}$ )



Figure 10.- E<sub>n</sub> scores for the inter-laboratory comparison exercise

The results of the inter-laboratory comparison are given in Table 9 to Table 13, providing for each laboratory and concentration level, the reported concentrations and expanded uncertainties, biases, repeatability scores N37, Z-scores ( $\sigma_m$ ) and  $E_n$  scores.  $E_n$  scores equal or higher than 1 are highlighted in red, repeatability scores and Z-scores over the limit at 95 % confidence level interval are highlighted in blu, while those at 99 % confidence level interval are highlighted in red. The results of the laboratory comparison are shown in terms of deviation (%) in the Annex 6: Scattering of Laboratory Results. Figure A 1.

Repeatability scores and  $E_n$  scores can be considered as complementary tests in the evaluation of the results. As a relatively high reported uncertainty could compensate a high bias and, consequently, pass the  $E_n$  scores test, the repeatability scores test can, in such cases, identify this problem. In this regard, Z-scores ( $\sigma_m$ ) is not affected by the reported uncertainty of the laboratory, because the  $\sigma_m$  is used to relativize the scores. Therefore, Z-scores ( $\sigma_m$ ) could also be used to identify possible cases where high biases have been compensated by a high reported uncertainty value and, consequently, misidentified by the  $E_n$  scores statistic.

Therefore, under this criterion the below tables provide a clear overview of the instrument performance of each participant. The interpretation and actions to be addressed because of the results are responsibility of each laboratory and are outside the scope of this report.

# Table 9.- En score, bias and reported expanded uncertainty of the participants: benzene

| Compound |                      |       |         | EKONER   | G    |                    |                      |                      |       |         | ISPRA  |       |                    |                      |                      |       |         | EPA      |      |                    |                      |
|----------|----------------------|-------|---------|----------|------|--------------------|----------------------|----------------------|-------|---------|--------|-------|--------------------|----------------------|----------------------|-------|---------|----------|------|--------------------|----------------------|
| benzene  | Concentration, µg/m3 | U, %  | bias, % | State    | En   | Z-scores (sigma m) | Repeatability scores | Concentration, µg/m3 | U, %  | bias, % | State  | En    | Z-scores (sigma m) | Repeatability scores | Concentration, µg/m3 | U, %  | bias, % | State    | En   | Z-scores (sigma m) | Repeatability scores |
| 1st-A    | 0.89                 | 18.2  | -5.2    | OK       | -0.2 | -0.26              | 0.19                 | 0.94                 | 57.8  | 0.5     | OK     | 0.0   | 0.02               | 0.64                 | 0.62                 | 4.2   | -34.0   | Check    | -1.7 | -1.71              | 0.03                 |
| 2nd-A    | 2.66                 | 9.7   | -4.3    | OK       | -0.4 | -0.10              | 0.25                 | 2.83                 | 17.8  | 10.4    | OK     | 0.5   | 0.31               | 0.54                 | 2.24                 | 4.6   | -22.1   | Check    | -2.7 | -1.17              | 0.12                 |
| 3rd-A    | 4.79                 | 8.1   | -6.1    | OK       | -0.7 | -0.49              | 0.30                 | 5.18                 | 12.6  | 1.5     | OK     | 0.1   | 0.12               | 0.51                 | 4.14                 | 4.4   | -18.8   | Check    | -3.7 | -1.52              | 0.14                 |
| 4th-A    | 10.57                | 6.8   | 0.4     | OK       | 0.1  | 0.04               | 0.42                 | 10.98                | 8.7   | 4.3     | OK     | 0.4   | 0.37               | 0.56                 | 9.89                 | 4.4   | -6.1    | Check    | -1.1 | -0.52              | 0.25                 |
| 5th-A    | 15.97                | 6.5   | 0.9     | OK       | 0.1  | 0.08               | 0.51                 | 16.79                | 7.9   | 6.1     | OK     | 0.7   | 0.54               | 0.65                 | 15.31                | 4.4   | -3.2    | OK       | -0.6 | -0.28              | 0.33                 |
| 6th-A    | 21.81                | 6.3   | 1.2     | OK       | 0.2  | 0.11               | 0.59                 | 23.53                | 7.5   | 9.2     | Check  | 1.0   | 0.83               | 0.76                 | 21.09                | 4.3   | -2.1    | OK       | -0.4 | -0.19              | 0.39                 |
| 5th-B    | 16.13                | 6.5   | 1.2     | OK       | 0.2  | 0.11               | 0.51                 | 17.10                | 7.8   | 7.3     | OK     | 0.8   | 0.66               | 0.66                 | 15.47                | 4.7   | -2.9    | OK       | -0.4 | -0.26              | 0.36                 |
| 4th-B    | 10.60                | 6.8   | -0.1    | OK       | 0.0  | -0.01              | 0.42                 | 11.30                | 8.6   | 6.5     | OK     | 0.6   | 0.57               | 0.57                 | 10.06                | 4.4   | -5.2    | OK       | -0.9 | -0.46              | 0.26                 |
| 3rd-B    | 4.97                 | 8.0   | -1.9    | OK       | -0.2 | -0.15              | 0.31                 | 5.18                 | 12.6  | 2.3     | OK     | 0.2   | 0.19               | 0.51                 | 4.24                 | 4.4   | -16.3   | Check    | -2.4 | -1.33              | 0.15                 |
| 2nd-B    | 2.86                 | 9.7   | -4.3    | OK       | -0.4 | -0.33              | 0.25                 | 3.30                 | 17.8  | 10.4    | OK     | 0.5   | 0.80               | 0.54                 | 2.32                 | 4.6   | -22.1   | Check    | -2.7 | -1.71              | 0.10                 |
| 1st-B    | 0.98                 | 17.0  | -5.3    | OK       | -0.2 | -0.30              | 0.19                 | 1.26                 | 43.5  | 21.6    | OK     | 0.4   | 1.23               | 0.63                 | 0.64                 | 9.4   | -38.1   | Check    | -1.9 | -2.16              | 0.07                 |
| Compound |                      |       |         | GIOS     |      |                    |                      |                      |       |         | REE    |       |                    |                      |                      |       |         | VMM      |      |                    |                      |
| benzene  | Concentration, µg/m3 | U, %  | bias, % | State    | En   | Z-scores (sigma m) | Repeatability scores | Concentration, µg/m3 | U, %  | bias, % | State  | En    | Z-scores (sigma m) | Repeatability scores | Concentration, µg/m3 | U, %  | bias, % | State    | En   | Z-scores (sigma m) | Repeatability scores |
| 1st-A    | 1.00                 | 20.1  | 6.2     | OK       | 0.2  | 0.31               | 0.23                 | 0.61                 | 13.2  | -35.2   | Check  | -1.7  | -1.77              | 0.09                 | 1.05                 | 14.5  | 12.1    | OK       | 0.5  | 0.61               | 0.18                 |
| 2nd-A    | 2.83                 | 13.6  | 1.8     | OK       | 0.1  | 0.32               | 0.36                 | 1.19                 | 13.1  | -40.8   | Check  | -3.8  | -3.83              | 0.15                 | 3.23                 | 14.5  | 11.1    | OK       | 0.6  | 1.34               | 0.44                 |
| 3rd-A    | 5.03                 | 13.6  | -1.4    | OK       | -0.1 | -0.11              | 0.53                 | 2.82                 | 13.1  | -44.7   | Check  | -5.5  | -3.62              | 0.29                 | 5.59                 | 14.6  | 9.7     | OK       | 0.6  | 0.79               | 0.63                 |
| 4th-A    | 10.47                | 13.6  | -0.6    | OK       | 0.0  | -0.05              | 0.83                 | 6.00                 | 13.1  | -43.0   | Check  | -5.2  | -3.72              | 0.46                 | 11.75                | 14.6  | 11.6    | OK       | 0.7  | 1.01               | 1.00                 |
| 5th-A    | 15.41                | 13.6  | -2.6    | OK       | -0.2 | -0.23              | 1.03                 | 9.14                 | 13.1  | -42.2   | Check  | -5.0  | -3.72              | 0.59                 | 17.56                | 14.6  | 11.0    | OK       | 0.7  | 0.97               | 1.26                 |
| 6th-A    | 21.05                | 13.6  | -2.3    | OK       | -0.2 | -0.21              | 1.23                 | 13.18                | 13.1  | -38.8   | Check  | -4.3  | -3.52              | 0.74                 | 23.91                | 14.6  | 11.0    | OK       | 0.7  | 0.99               | 1.50                 |
| 5th-B    | 15.43                | 13.6  | -3.1    | OK       | -0.2 | -0.28              | 1.03                 | 10.09                | 26.2  | -36.7   | Check  | -2.1  | -3.31              | 1.30                 | 17.60                | 14.6  | 10.5    | OK       | 0.6  | 0.95               | 1.26                 |
| 4th-B    | 10.53                | 13.6  | -0.8    | OK       | -0.1 | -0.07              | 0.84                 | 6.51                 | 13.1  | -38.7   | Check  | -4.3  | -3.41              | 0.50                 | 11.82                | 14.6  | 11.4    | OK       | 0.7  | 1.01               | 1.01                 |
| 3rd-B    | 5.21                 | 13.6  | 2.9     | OK       | 0.2  | 0.23               | 0.55                 | 2.93                 | 13.1  | -42.0   | Check  | -4.4  | -3.44              | 0.30                 | 5.61                 | 14.6  | 10.9    | OK       | 0.6  | 0.89               | 0.63                 |
| 2nd-B    | 3.04                 | 13.6  | 1.8     | OK       | 0.1  | 0.14               | 0.38                 | 1.77                 | 13.1  | -40.8   | Check  | -3.8  | -3.15              | 0.21                 | 3.31                 | 14.5  | 11.1    | OK       | 0.6  | 0.85               | 0.44                 |
| 1st-B    | 1.07                 | 18.7  | 3.9     | OK       | 0.1  | 0.22               | 0.23                 | 0.69                 | 13.0  | -33.1   | Check  | -1.6  | -1.88              | 0.10                 | 1.13                 | 14.6  | 9.2     | OK       | 0.4  | 0.52               | 0.19                 |
| Compound |                      |       |         | LIKZ     |      |                    |                      |                      |       |         | SHMU   |       |                    |                      |                      |       |         | DLI      |      |                    |                      |
| benzene  | Concentration, µg/m3 | U, %  | bias, % | State    | En   | Z-scores (sigma m) | Repeatability scores | Concentration, µg/m3 | U, %  | bias, % | State  | En    | Z-scores (sigma m) | Repeatability scores | Concentration, µg/m3 | U, %  | bias, % | State    | En   | Z-scores (sigma m) | Repeatability scores |
| 1st-A    | 1.11                 | 11.0  | 18.0    | OK       | 0.8  | 0.90               | 0.14                 | 0.14                 | 308.8 | -85.5   | Check  | -1.7  | -4.29              | 0.49                 | 1.22                 | 18.5  | 30.4    | ОК       | 1.0  | 1.52               | 0.27                 |
| 2nd-A    | 2.73                 | 5.8   | 0.6     | ОК       | 0.1  | 0.07               | 0.15                 | 0.65                 | 45.5  | -69.4   | Check  | -4.4  | -5.20              | 0.40                 | 3.02                 | 11.9  | 4.9     | ОК       | 0.3  | 0.81               | 0.34                 |
| 3rd-A    | 5.04                 | 4.9   | -1.1    | OK       | -0.2 | -0.09              | 0.19                 | 1.22                 | 34.1  | -76.1   | Check  | -8.5  | -6.15              | 0.32                 | 5.02                 | 10.8  | -1.6    | OK       | -0.1 | -0.13              | 0.42                 |
| 4th-A    | 10.65                | 4.5   | 1.2     | OK       | 0.2  | 0.10               | 0.28                 | 2.76                 | 14.9  | -73.8   | Check  | -14.1 | -6.39              | 0.24                 | 10.33                | 10.2  | -1.9    | OK       | -0.2 | -0.17              | 0.61                 |
| 5th-A    | 15.78                | 4.5   | -0.3    | OK       | 0.0  | -0.02              | 0.35                 | 4.25                 | 9.6   | -/3.1   | Спеск  | -16.0 | -6.45              | 0.20                 | 15.34                | 10.1  | -3.0    | OK       | -0.3 | -0.27              | 0.76                 |
| 6th-A    | 21.36                | 4.4   | -0.9    | OK       | -0.1 | -0.08              | 0.41                 | 6.03                 | 6.8   | - /2.0  | Check  | -16.3 | -6.52              | 0.18                 | 21.24                | 10.1  | -1.4    | OK       | -0.1 | -0.13              | 0.92                 |
| Sth-B    | 15.89                | 4.5   | -0.2    | OK       | 0.0  | -0.02              | 0.35                 | 4.37                 | 9.3   | - /2.6  | Check  | -14.0 | -6.54              | 0.20                 | 15.40                | 10.1  | -3.3    | OK       | -0.3 | -0.30              | 0.76                 |
| 4th-B    | 10.75                | 4.5   | 1.3     | UK<br>OK | 0.2  | 0.11               | 0.28                 | 2.82                 | 14.6  | -/3.5   | Спеск  | -13.2 | -6.49              | 0.24                 | 10.41                | 10.1  | -1.9    | OK<br>OK | -0.2 | -0.17              | 0.62                 |
| 3rd-B    | 5.13                 | 4.9   | 1.4     | UK<br>OK | 0.2  | 0.11               | 0.20                 | 1.42                 | 29.2  | -72.0   | Спеск  | -7.2  | -5.88              | 0.32                 | 5.11                 | 10.8  | 0.9     | UK<br>OK | 0.1  | 0.07               | 0.43                 |
| 2nd-B    | 3.00                 | 5.8   | 0.6     | OK       | 0.1  | 0.05               | 0.16                 | 0.91                 | 45.5  | -69.4   | Спеск  | -4.4  | -5.35              | 0.38                 | 3.13                 | 11.9  | 4.9     | OK       | 0.3  | 0.37               | 0.34                 |
| ISI-B    | 1.11                 | 11.0  | 7.5     |          | 0.5  | 0.42               | 0.14                 | 0.57                 | 115.9 | -04.4   | CHECK  | -1.4  | -3.00              | 0.46                 | 1.20                 | 17.9  | 24.Z    | DCM      | 0.8  | 1.57               | 0.27                 |
| benzene  | Concentration ug/m3  | 11.%  | hias %  | State    | En   | Z-scores (sigma m) | Reneatability scores | Concentration ug/m3  | 11 %  | hias %  | State  | En    | Z-scores (sigma m) | Repeatability scores | Concentration ug/m3  | 11.94 | hias %  | State    | En   | Z-scores (sigma m) | Reneatability scores |
| 1st-A    | 0.95                 | 0, /0 | 1 5     | OK       | 0.0  | 0.08               | 1.03                 | 1.06                 | 75    | 13.3    | OK     | 0.6   | 0.67               | 0.09                 | 0.52                 | 63.6  | -11 3   | Check    | -11  | -2 22              | 0.39                 |
| 2nd-A    | 2 57                 | 33.7  | 4.1     | OK       | 0.0  | -0.35              | 0.95                 | 2.46                 | 4.0   | -2.8    | OK     | -0.3  | -0.61              | 0.05                 | 1 57                 | 31.3  | -46.7   | Check    | -2.6 | -2.87              | 0.35                 |
| 3rd-A    | 5.30                 | 23.1  | 4.0     | OK       | 0.2  | 0.32               | 0.95                 | 4.77                 | 3.5   | -6.4    | Check  | -1.3  | -0.52              | 0.13                 | 3.14                 | 23.4  | -38.4   | Check    | -2.6 | -3.11              | 0.57                 |
| Ath-A    | 10.55                | 15.6  | 0.2     | OK       | 0.0  | 0.02               | 0.96                 | 9.94                 | 3.5   | -5.6    | Check  | -12   | -0.49              | 0.19                 | 8.65                 | 18.3  | -17.8   | Check    | -12  | -1.54              | 0.93                 |
| 5th-A    | 16.10                | 13.0  | 1.8     | OK       | 0.1  | 0.16               | 1.03                 | 14.83                | 3.1   | -6.3    | Check  | -1.3  | -0.55              | 0.23                 | 13.97                | 17.2  | -11 7   | OK       | -0.7 | -1.03              | 1.18                 |
| 6th-A    | 21.28                | 11.8  | -1.3    | OK       | -0.1 | -0.11              | 1.07                 | 19.98                | 3.1   | -7.3    | Check  | -1.5  | -0.66              | 0.25                 | 19.67                | 16.7  | -8.7    | OK       | -0.6 | -0.79              | 1.41                 |
| 5th-B    | 16.38                | 12.9  | 2.8     | OK       | 0.2  | 0.25               | 1.04                 | 14.75                | 3.1   | -7.4    | Check  | -1.4  | -0.67              | 0.23                 | 14.03                | 17.2  | -11.9   | OK       | -0.8 | -1.08              | 1.18                 |
| 4th-B    | 10.73                | 15.5  | 1.1     | ОК       | 0.1  | 0.09               | 0.97                 | 9.90                 | 3.2   | -6.7    | Check  | -1.3  | -0.59              | 0.18                 | 8.70                 | 18.3  | -18.0   | Check    | -1.2 | -1.59              | 0.93                 |
| 3rd-B    | 5.55                 | 22.4  | 9.7     | OK       | 0.4  | 0.79               | 0.96                 | 4.79                 | 3.5   | -5.3    | OK     | -0.8  | -0.43              | 0.13                 | 3.19                 | 23.3  | -36.9   | Check    | -2.3 | -3.02              | 0.58                 |
| 2nd-B    | 3.11                 | 33.7  | 4.1     | ОК       | 0.1  | 0.32               | 0.96                 | 2.90                 | 4.0   | -2.8    | ОК     | -0.3  | -0.22              | 0.11                 | 1.59                 | 31.3  | -46.7   | Check    | -2.6 | -3.60              | 0.46                 |
| 1st-B    | 1.19                 | 75.4  | 14.8    | ОК       | 0.2  | 0.84               | 1.03                 | 1.09                 | 7.3   | 6.0     | ОК     | 0.3   | 0.34               | 0.09                 | 0.54                 | 62.0  | -47.5   | Check    | -1.3 | -2.70              | 0.39                 |
| Compound |                      |       |         | DCMR2    |      |                    |                      |                      |       |         | APPA B | Z     |                    |                      |                      |       |         | ERLAP    |      |                    |                      |
| benzene  | Concentration, µg/m3 | U, %  | bias, % | State    | En   | Z-scores (sigma m) | Repeatability scores | Concentration, µg/m3 | U, %  | bias, % | State  | En    | Z-scores (sigma m) | Repeatability scores | Concentration, µg/m3 | U, %  | bias, % | State    | En   | Z-scores (sigma m) | Repeatability scores |
| 1st-A    | 1.26                 | 32.1  | 34.2    | OK       | 0.7  | 1.72               | 0.47                 | 0.99                 | 12.1  | 5.7     | OK     | 0.2   | 0.29               | 0.14                 | 0.43                 | 31.1  | -53.9   | Check    | -2.2 | -2.71              | 0.16                 |
| 2nd-A    | 3.28                 | 26.2  | 11.1    | ОК       | 0.4  | 1.47               | 0.81                 | 2.61                 | 9.4   | 3.2     | OK     | 0.3   | -0.24              | 0.23                 | 2.56                 | 6.2   | -8.3    | OK       | -0.9 | -0.37              | 0.14                 |
| 3rd-A    | 5.31                 | 24.8  | 4.1     | ОК       | 0.2  | 0.33               | 1.02                 | 4.96                 | 9.2   | -2.7    | OK     | -0.3  | -0.22              | 0.35                 | 5.22                 | 3.8   | 2.3     | ОК       | 0.4  | 0.19               | 0.15                 |
| 4th-A    | 10.97                | 23.7  | 4.2     | ОК       | 0.2  | 0.37               | 1.52                 | 10.67                | 9.1   | 1.3     | OK     | 0.1   | 0.12               | 0.57                 | 10.79                | 2.2   | 2.5     | OK       | 0.6  | 0.22               | 0.14                 |
| 5th-A    | 16.25                | 23.3  | 2.7     | OK       | 0.1  | 0.24               | 1.87                 | 16.62                | 9.1   | 5.1     | OK     | 0.5   | 0.45               | 0.74                 | 15.62                | 2.2   | -1.3    | OK       | -0.3 | -0.11              | 0.17                 |
| 6th-A    | 21.81                | 23.1  | 1.2     | OK       | 0.1  | 0.11               | 2.16                 | 22.33                | 9.1   | 3.6     | OK     | 0.4   | 0.33               | 0.87                 | 21.66                | 1.8   | 0.5     | OK       | 0.1  | 0.05               | 0.16                 |
| 5th-B    | 16.27                | 23.3  | 2.1     | ОК       | 0.1  | 0.19               | 1.86                 | 16.96                | 9.1   | 6.5     | OK     | 0.6   | 0.58               | 0.76                 | 15.46                | 4.1   | -3.0    | OK       | -0.5 | -0.27              | 0.31                 |
| 4th-B    | 11.08                | 23.6  | 4.4     | OK       | 0.2  | 0.39               | 1.53                 | 11.01                | 9.1   | 3.8     | OK     | 0.4   | 0.33               | 0.58                 | 10.37                | 4.1   | -2.3    | OK       | -0.4 | -0.20              | 0.25                 |
| 3rd-B    | 5.43                 | 24.8  | 7.3     | ОК       | 0.3  | 0.59               | 1.04                 | 5.11                 | 9.2   | 1.0     | OK     | 0.1   | 0.08               | 0.36                 | 4.90                 | 4.6   | -3.2    | OK       | -0.4 | -0.26              | 0.18                 |
| 2nd-B    | 3.32                 | 26.2  | 11.1    | ОК       | 0.4  | 0.86               | 0.79                 | 3.08                 | 9.4   | 3.2     | OK     | 0.3   | 0.25               | 0.27                 | 2.74                 | 6.2   | -8.3    | OK       | -0.9 | -0.64              | 0.16                 |
| 1st-B    | 1.32                 | 31.6  | 28.1    | OK       | 0.6  | 1.59               | 0.48                 | 1.13                 | 11.3  | 9.5     | OK     | 0.4   | 0.54               | 0.15                 | 0.62                 | 21.2  | -39.7   | Check    | -1.7 | -2.25              | 0.15                 |

# Table 10.- En scores, bias and reported expanded uncertainty of the participants: toluene

| Compound |                        |       |         | EKONER | RG   |                      |                       |                      |       |         | ISPRA    |          |                      |                       |                      |       |            | EPA      |      |                      |                       |
|----------|------------------------|-------|---------|--------|------|----------------------|-----------------------|----------------------|-------|---------|----------|----------|----------------------|-----------------------|----------------------|-------|------------|----------|------|----------------------|-----------------------|
| toluene  | Concentration, µg/m3   | U, %  | bias, % | State  | En   | Z-scores (sigma m)   | Repeatability scores  | Concentration, µg/m3 | U, %  | bias, % | State    | En       | Z-scores (sigma m)   | Repeatability scores  | Concentration, µg/m3 | U, %  | bias, %    | State    | En   | Z-scores (sigma m)   | Repeatability scores  |
| 1st-A    | 1.98                   | 11.3  | -16.7   | OK     | -1.0 | -1.49                | 0.22                  | 1.57                 | 8.8   | -33.9   | Check    | -2.2     | -3.03                | 0.13                  | 1.77                 | 5.7   | -25.5      | Check    | -1.7 | -2.27                | 0.10                  |
| 2nd-A    | 8.70                   | 6.9   | -11.9   | Check  | -1.3 | -1.75                | 0.37                  | 9.28                 | 7.3   | 0.0     | ОК       | 0.0      | -0.83                | 0.41                  | 9.09                 | 5.4   | -6.0       | ОК       | -0.7 | -1.14                | 0.50                  |
| 3rd-A    | 16.45                  | 6.5   | -10.9   | Check  | -1.3 | -2.07                | 0.49                  | 19.44                | 7.3   | 5.4     | ОК       | 0.6      | 1.02                 | 0.65                  | 17.86                | 5.5   | -3.2       | ОК       | -0.4 | -0.61                | 0.46                  |
| 4th-A    | 35.07                  | 6.1   | -11.4   | Check  | -1.3 | -2.01                | 0.69                  | 46.09                | 7.3   | 16.4    | Check    | 1.5      | 2.89                 | 1.08                  | 41.83                | 5.5   | 5.7        | ОК       | 0.6  | 1.00                 | 0.75                  |
| 5th-A    | 53.06                  | 6.0   | -10.5   | Check  | -1.0 | -1.64                | 0.85                  | 70.97                | 7.3   | 19.7    | Check    | 1.6      | 3.07                 | 1.38                  | 65.38                | 5.5   | 10.3       | OK       | 1.0  | 1.60                 | 0.96                  |
| 6th-A    | 72.29                  | 6.0   | -10.8   | Check  | -1.1 | -1.65                | 0.99                  | 99.89                | 7.3   | 23.3    | Check    | 1.9      | 3.56                 | 1.67                  | 91.87                | 5.4   | 13.4       | Check    | 1.3  | 2.05                 | 1.15                  |
| 5th-B    | 53.36                  | 6.0   | -11.4   | Check  | -1.3 | -1.91                | 0.85                  | 71.67                | 7.3   | 19.0    | Check    | 1.7      | 3.18                 | 1.38                  | 67.04                | 5.7   | 11.3       | Check    | 1.2  | 1.89                 | 1.00                  |
| 4th-B    | 35.72                  | 6.1   | -10.8   | Check  | -1.1 | -1.79                | 0.70                  | 47.14                | 7.3   | 17.7    | Check    | 1.5      | 2.93                 | 1.10                  | 43.92                | 5.4   | 9.7        | ОК       | 1.0  | 1.61                 | 0.77                  |
| 3rd-B    | 16.84                  | 6.5   | -11.8   | Check  | -1.4 | -2.19                | 0.49                  | 20.67                | 7.3   | 8.3     | OK       | 0.8      | 1.54                 | 0.68                  | 19.53                | 5.5   | 2.3        | ОК       | 0.3  | 0.43                 | 0.49                  |
| 2nd-B    | 9.88                   | 6.9   | -11.9   | Check  | -1.3 | -2.05                | 0.39                  | 11.21                | 7.3   | 0.0     | OK       | 0.0      | 0.00                 | 0.47                  | 10.53                | 5.4   | -6.0       | ОК       | -0.7 | -1.04                | 0.33                  |
| 1st-B    | 2.42                   | 10.3  | -17.8   | Check  | -1.2 | -1.60                | 0.23                  | 2.27                 | 8.0   | -23.0   | Check    | -1.7     | -2.06                | 0.17                  | 2.33                 | 23.1  | -20.9      | ОК       | -0.9 | -1.88                | 0.49                  |
| Compound |                        |       |         | GIOS   |      |                      |                       |                      |       |         | REE      |          |                      |                       |                      |       |            | VMM      |      |                      |                       |
| toluene  | Concentration, µg/m3   | U, %  | bias, % | State  | En   | Z-scores (sigma m)   | Repeatability scores  | Concentration, µg/m3 | U, %  | bias, % | State    | En       | Z-scores (sigma m)   | Repeatability scores  | Concentration, µg/m3 | U, %  | bias, %    | State    | En   | Z-scores (sigma m)   | Repeatability scores  |
| 1st-A    | 2.98                   | 16.2  | 25.4    | Check  | 1.0  | 2.27                 | 0.47                  |                      |       |         |          |          |                      |                       | 2.92                 | 14.6  | 23.0       | Check    | 1.0  | 2.05                 | 0.42                  |
| 2nd-A    | 11.76                  | 16.2  | 15.3    | ОК     | 0.8  | 3.09                 | 1.15                  |                      |       |         |          |          |                      |                       | 11.63                | 14.6  | 15.2       | ОК       | 0.8  | 2.87                 | 1.03                  |
| 3rd-A    | 20.46                  | 16.2  | 10.9    | ОК     | 0.6  | 2.07                 | 1.53                  |                      |       |         |          |          |                      |                       | 21.32                | 14.6  | 15.5       | ОК       | 0.9  | 2.95                 | 1.43                  |
| 4th-A    | 42.64                  | 16.2  | 7.7     | OK     | 0.4  | 1.36                 | 2.24                  |                      |       |         |          |          |                      |                       | 45.90                | 14.6  | 15.9       | ОК       | 0.9  | 2.81                 | 2.17                  |
| 5th-A    | 63.66                  | 16.2  | 7.4     | OK     | 0.4  | 1.15                 | 2.75                  |                      |       |         |          |          |                      |                       | 68.99                | 14.6  | 16.4       | ОК       | 0.9  | 2.55                 | 2.68                  |
| 6th-A    | 86.09                  | 16.2  | 6.3     | ОК     | 0.3  | 0.96                 | 3.20                  |                      |       |         |          |          |                      |                       | 92.91                | 14.6  | 14.7       | ОК       | 0.8  | 2.25                 | 3.12                  |
| 5th-B    | 64.08                  | 16.2  | 6.4     | OK     | 0.3  | 1.07                 | 2.75                  |                      |       |         |          |          |                      |                       | 69.07                | 14.6  | 14.7       | ОК       | 0.8  | 2.46                 | 2.68                  |
| 4th-B    | 43.28                  | 16.2  | 8.1     | ОК     | 0.4  | 1.34                 | 2.26                  |                      |       |         |          |          |                      |                       | 46.20                | 14.6  | 15.4       | ОК       | 0.8  | 2.54                 | 2.18                  |
| 3rd-B    | 21.11                  | 16.2  | 10.6    | OK     | 0.6  | 1.97                 | 1.55                  |                      |       |         |          |          |                      |                       | 21.83                | 14.6  | 14.4       | OK       | 0.8  | 2.67                 | 1.45                  |
| 2nd-B    | 12.92                  | 16.2  | 15.3    | OK     | 0.8  | 2.65                 | 1.19                  |                      |       |         |          |          |                      |                       | 12.91                | 14.6  | 15.2       | ОК       | 0.8  | 2.63                 | 1.08                  |
| 1st-B    | 3.47                   | 16.2  | 17.8    | ОК     | 0.8  | 1.60                 | 0.52                  |                      |       |         |          |          |                      |                       | 3.50                 | 14.6  | 18.8       | OK       | 0.9  | 1.69                 | 0.47                  |
| Compound |                        |       |         | LIKZ   |      |                      |                       |                      |       |         | SHMU     |          |                      |                       |                      |       |            | DLI      |      |                      |                       |
| toluene  | Concentration, µg/m3   | U, %  | bias, % | State  | En   | Z-scores (sigma m)   | Repeatability scores  | Concentration, µg/m3 | U, %  | bias, % | State    | En       | Z-scores (sigma m)   | Repeatability scores  | Concentration, µg/m3 | U, %  | bias, %    | State    | En   | Z-scores (sigma m)   | Repeatability scores  |
| 1st-A    | 2.54                   | 7.6   | 7.3     | OK     | 0.4  | 0.65                 | 0.19                  |                      |       |         |          |          |                      |                       | 2.78                 | 28.7  | 17.1       | OK       | 0.5  | 1.53                 | 0.78                  |
| 2nd-A    | 9.89                   | 7.6   | 2.9     | OK     | 0.3  | 0.13                 | 0.45                  |                      |       |         |          |          |                      |                       | 10.46                | 13.0  | 1.3        | OK       | 0.1  | 1.04                 | 0.85                  |
| 3rd-A    | 18.90                  | 7.6   | 2.4     | ОК     | 0.2  | 0.45                 | 0.66                  |                      |       |         |          |          |                      |                       | 18.29                | 11.6  | -0.9       | OK       | -0.1 | -0.17                | 0.98                  |
| 4th-A    | 39.60                  | 7.6   | 0.0     | OK     | 0.0  | 0.00                 | 0.97                  |                      |       |         |          |          |                      |                       | 38.97                | 10.7  | -1.6       | ОК       | -0.1 | -0.27                | 1.35                  |
| 5th-A    | 59.49                  | 7.6   | 0.3     | OK     | 0.0  | 0.05                 | 1.20                  |                      |       |         |          |          |                      |                       | 58.88                | 10.5  | -0.7       | OK       | -0.1 | -0.11                | 1.65                  |
| 6th-A    | 80.73                  | 7.6   | -0.4    | OK     | 0.0  | -0.05                | 1.40                  |                      |       |         |          |          |                      |                       | 80.41                | 10.4  | -0.8       | ОК       | -0.1 | -0.12                | 1.92                  |
| 5th-B    | 59.74                  | 7.6   | -0.8    | ОК     | -0.1 | -0.14                | 1.20                  |                      |       |         |          |          |                      |                       | 59.27                | 10.5  | -1.6       | OK       | -0.1 | -0.27                | 1.65                  |
| 4th-B    | 40.19                  | 7.6   | 0.4     | OK     | 0.0  | 0.06                 | 0.98                  |                      |       |         |          |          |                      |                       | 39.54                | 10.7  | -1.2       | OK       | -0.1 | -0.20                | 1.37                  |
| 3rd-B    | 19.45                  | 7.6   | 1.9     | OK     | 0.2  | 0.35                 | 0.67                  |                      |       |         |          |          |                      |                       | 18.97                | 11.6  | -0.6       | OK       | 0.0  | -0.11                | 1.00                  |
| 2nd-B    | 11.53                  | 7.6   | 2.9     | OK     | 0.3  | 0.50                 | 0.50                  |                      |       |         |          |          |                      |                       | 11.35                | 13.0  | 1.3        | OK       | 0.1  | 0.22                 | 0.84                  |
| 1st-B    | 3.05                   | 7.6   | 3.6     | OK     | 0.2  | 0.32                 | 0.21                  |                      |       |         |          |          |                      |                       | 3.16                 | 25.7  | 7.3        | OK       | 0.2  | 0.65                 | 0.75                  |
| Compound |                        |       |         | IPH_S  |      |                      |                       |                      |       |         | AAA      |          |                      |                       |                      |       |            | DCMR     |      |                      |                       |
| toluene  | Concentration, µg/m3   | U, %  | bias, % | State  | En   | Z-scores (sigma m)   | Repeatability scores  | Concentration, µg/m3 | U, %  | bias, % | State    | En       | Z-scores (sigma m)   | Repeatability scores  | Concentration, µg/m3 | U, %  | bias, %    | State    | En   | Z-scores (sigma m)   | Repeatability scores  |
| 1st-A    | 2.33                   | 53.0  | -2.0    | OK     | 0.0  | -0.18                | 1.20                  | 2.58                 | 6.8   | 8.7     | OK       | 0.5      | 0.77                 | 0.17                  | 2.22                 | 26.8  | -6.4       | OK       | -0.2 | -0.57                | 0.58                  |
| 2nd-A    | 9.14                   | 18.3  | 8.6     | OK     | 0.4  | -1.05                | 1.11                  | 8.85                 | 4.4   | -3.3    | OK       | -0.4     | -1.51                | 0.24                  | 9.99                 | 17.9  | -9.9       | OK       | -0.6 | 0.30                 | 1.08                  |
| 3rd-A    | 17.74                  | 15.6  | -3.9    | ОК     | -0.2 | -0.73                | 1.27                  | 17.91                | 4.2   | -3.0    | ОК       | -0.4     | -0.56                | 0.35                  | 16.86                | 16.9  | -8.7       | ОК       | -0.5 | -1.65                | 1.31                  |
| 4th-A    | 37.97                  | 12.6  | -4.1    | OK     | -0.3 | -0.72                | 1.55                  | 37.73                | 4.2   | -4.7    | OK       | -0.6     | -0.83                | 0.51                  | 35.52                | 16.1  | -10.3      | OK       | -0.6 | -1.81                | 1.85                  |
| 5th-A    | 57.47                  | 11.7  | -3.1    | OK     | -0.2 | -0.48                | 1.79                  | 56.12                | 4.2   | -5.3    | OK       | -0.6     | -0.83                | 0.63                  | 52.61                | 15.9  | -11.3      | OK       | -0.7 | -1.75                | 2.23                  |
| 6th-A    | 78.89                  | 11.3  | -2.6    | OK     | -0.2 | -0.40                | 2.04                  | 75.80                | 4.2   | -6.4    | UK       | -0.7     | -0.99                | 0.73                  | 70.39                | 15.7  | -13.1      | OK       | -0.8 | -2.01                | 2.54                  |
| Stn-B    | 59.22                  | 11.7  | -1.7    | UK     | -0.1 | -0.28                | 1.84                  | 56.24                | 4.2   | -6.6    | UK       | -0.8     | -1.11                | 0.62                  | 52.71                | 15.9  | -12.5      | UK       | -0.8 | -2.09                | 2.22                  |
| 4th-B    | 39.79                  | 12.5  | -0.6    | OK     | 0.0  | -0.10                | 1.61                  | 37.81                | 4.2   | -5.6    | OK       | -0.6     | -0.92                | 0.51                  | 35.74                | 16.1  | -10.7      | OK       | -0.7 | -1./8                | 1.85                  |
| 21/0-B   | 19.92                  | 15.1  | 4.4     | UK     | 0.3  | 0.82                 | 1.30                  | 18.1/                | 4.2   | -4.8    | UK<br>OK | -0.6     | -0.89                | 0.35                  | 17.30                | 10.8  | -9.0       | UK<br>OK | -0.5 | -1.08                | 1.33                  |
| 2na-B    | 12.17                  | 18.3  | 8.0     | OK     | 0.4  | 1.49                 | 1.27                  | 10.84                | 4.4   | -3.3    | UK<br>OK | -0.4     | -0.57                | 0.27                  | 10.10                | 17.9  | -9.9       | OK       | -0.6 | -1./1                | 1.03                  |
| ISI-D    | 4.24                   | 54.5  | 45.9    | DCM    | 0.9  | 3.94                 | 1.54                  | 5.12                 | 0.1   | 5.6     |          | 0.4      | 0.52                 | 0.17                  | 2.55                 | 25.4  | -14.1      |          | -0.6 | -1.27                | 0.59                  |
| Compound | Concentration us/m2    | 11.9/ | bios 9/ | Choto  | 50   | 7 seeres (sigma m)   | Depentability searces | Concentration us/m2  | 11.0/ | bios 0/ | APPA B   | <u>۲</u> | 7 coores (sigma m)   | Depentability searces | Concentration us/m2  | 11.9/ | bios 0/    | ERLAP    | 50   | 7 seeres (sigma m)   | Depentability searces |
| 1ct A    | ο concentration, μg/m3 | 0,70  | 12 F    | OK     | EII  | 2-500185 (Sigirid M) |                       | 2 2E                 | 0,70  | ulds, % | OK       | EII 0.1  | 2-300163 (SIBIIIA M) | nepeatability scores  | 2 00                 | 67    | 12 DIdS, % | OK       | EII  | 2-500185 (Sigilia M) | nepeatability scores  |
| 2nd A    | 2.0/                   | 27.1  | 12.5    | OK     | 0.4  | 1.11                 | 0.70                  | 2.35                 | 9.0   | -0.9    | OK       | -0.1     | -U.U8                | 0.22                  | 2.08                 | 0.2   | -12.2      | OK       | -0.8 | -1.09                | 0.12                  |
| ard A    | 10.55                  | 23.7  | -0.4    | OK     | -0.3 | 0.67                 | 1.40                  | 9.15                 | 9.1   | 0.6     | OK       | 0.1      | -1.07                | 0.50                  | 10.01                | 0.0   | -4.8       | Chock    | -0.5 | 1.52                 | 0.55                  |
| Ath-A    | 36 37                  | 23.3  | -0.1    | OK     | -0.5 | -1.10                | 2 70                  | 37.22                | 9.1   | -2.4    | OK       | -0.2     | -0.45                | 1.09                  | 40.68                | 2.2   | 7.3        | OK       | 1.3  | 1.50                 | 0.20                  |
| 5th-A    | 48.09                  | 22.3  | -18 9   | OK     | -0.4 | -7.94                | 2.93                  | 56.79                | 9.1   | -4.2    | OK       | -0.3     | -1.05                | 1.05                  | 59.71                | 2.2   | 2.0        | OK       | 0.4  | 0.45                 | 0.25                  |
| 6th-A    | 69.26                  | 22.0  | -14 5   | OK     | -0.5 | -2.34                | 2.55                  | 78.09                | 0.1   | -3.6    | OK       | -0.5     | -0.00                | 1.57                  | 81.09                | 2.3   | 0.7        | OK       | 0.1  | 0.11                 | 0.57                  |
| 5th-B    | 55.05                  | 22.7  | -14.5   | OK     | -0.7 | -1 //                | 3 27                  | 57.82                | 0.1   | -3.0    | OK       | -0.5     | -0.55                | 1 30                  | 59 54                | 2./   | _1 2       | OK       | _0.0 | _0.01                | 0.50                  |
| 4th-B    | 34 15                  | 22.0  | -14 7   | OK     | -0.7 | -2.43                | 2.52                  | 38.24                | 9.1   | -45     | OK       | -0.4     | -0.74                | 1.55                  | 39.10                | 3.5   | -2 2       | OK       | -0.2 | -0.39                | 0.41                  |
| 3rd-B    | 16 98                  | 22.5  | -11 0   | OK     | -0.5 | -2.05                | 1.79                  | 18.68                | 9.1   | -2.1    | OK       | -0.2     | -0.39                | 0.77                  | 18 73                | 6.2   | -19        | OK       | -0.2 | -0.35                | 0.53                  |
| 2nd-B    | 10.49                  | 23.5  | -6.4    | OK     | -0.3 | -1 10                | 1 42                  | 11 30                | 9.1   | 0.8     | OK       | 0.2      | 0.55                 | 0.59                  | 10.67                | 80    | -4.8       | OK       | -0.5 | -0.83                | 0.49                  |
| 1st-B    | 2.96                   | 26.6  | 0.6     | OK     | 0.0  | 0.05                 | 0.72                  | 2.95                 | 9.4   | 0.2     | OK       | 0.0      | 0.01                 | 0.26                  | 2.80                 | 9.2   | -5.1       | OK       | -0.3 | -0.46                | 0.24                  |

# Table 11.- En scores, bias and reported expanded uncertainty of the participants: ethyl-benzene

| Compound      |                        |       |              | EKONEF | G           |                        |                                 |                      |       |          | ISPRA  |      |                     |                        |                      |       |          | EPA   |      |                    |                      |
|---------------|------------------------|-------|--------------|--------|-------------|------------------------|---------------------------------|----------------------|-------|----------|--------|------|---------------------|------------------------|----------------------|-------|----------|-------|------|--------------------|----------------------|
| ethyl-benzene | Concentration, µg/m3   | U, %  | bias, %      | State  | En          | Z-scores (sigma m)     | Repeatability scores            | Concentration, µg/m3 | U, %  | bias, %  | State  | En   | Z-scores (sigma m)  | Repeatability scores   | Concentration, µg/m3 | U, %  | bias, %  | State | En   | Z-scores (sigma m) | Repeatability scores |
| 1st-A         | 0.32                   | 40.0  | -32.2        | OK     | -0.8        | -1.11                  | 0.16                            | 0.57                 | 18.5  | 21.4     | OK     | 0.5  | 0.74                | 0.13                   | 0.31                 | 5.2   | -34.5    | Check | -1.0 | -1.19              | 0.02                 |
| 2nd-A         | 1.53                   | 11.1  | -6.1         | ОК     | -0.3        | -0.20                  | 0.21                            | 1.34                 | 8.4   | 10.9     | OK     | 0.6  | -1.03               | 0.15                   | 1.21                 | 5.4   | -28.7    | Check | -1.7 | -1.58              | 0.11                 |
| 3rd-A         | 2.90                   | 9.6   | -7.2         | OK     | -0.4        | -0.66                  | 0.25                            | 3.48                 | 7.6   | 11.3     | OK     | 0.7  | 1.04                | 0.24                   | 2.46                 | 5.7   | -21.2    | Check | -1.4 | -1.96              | 0.13                 |
| 4th-A         | 6.35                   | 7.5   | -10.1        | OK     | -0.7        | -1.20                  | 0.33                            | 8.12                 | 7.1   | 14.8     | Check  | 1.0  | 1.77                | 0.40                   | 5.99                 | 5.7   | -15.2    | Check | -1.2 | -1.82              | 0.23                 |
| 5th-A         | 9.58                   | 7.0   | -10.7        | OK     | -0.8        | -1.39                  | 0.39                            | 12.37                | 7.1   | 15.2     | Check  | 1.1  | 1.96                | 0.51                   | 9.05                 | 5.6   | -15.7    | Check | -1.3 | -2.02              | 0.29                 |
| 6th-A         | 13.05                  | 6.6   | -12.4        | Check  | -1.1        | -1.77                  | 0.44                            | 17.58                | 7.1   | 18.1     | Check  | 1.4  | 2.58                | 0.63                   | 13.30                | 5.5   | -10.7    | OK    | -1.0 | -1.52              | 0.37                 |
| 5th-B         | 9.66                   | 6.9   | -11.8        | Check  | -1.0        | -1.65                  | 0.39                            | 12.37                | 7.1   | 12.9     | Check  | 1.0  | 1.80                | 0.50                   | 9.27                 | 6.0   | -15.4    | Check | -1.4 | -2.15              | 0.32                 |
| 4th-B         | 6.44                   | 7.5   | -10.9        | OK     | -0.8        | -1.32                  | 0.33                            | 8.12                 | 7.1   | 12.3     | OK     | 0.9  | 1.50                | 0.39                   | 6.21                 | 5.6   | -14.0    | Check | -1.1 | -1.71              | 0.24                 |
| 3rd-B         | 3.05                   | 9.4   | -8.3         | ОК     | -0.5        | -0.79                  | 0.25                            | 3.67                 | 7.5   | 10.5     | ОК     | 0.7  | 1.00                | 0.24                   | 2.62                 | 5.8   | -21.0    | Check | -1.5 | -2.01              | 0.13                 |
| 2nd-B         | 1.80                   | 11.1  | -6.1         | OK     | -0.3        | -0.48                  | 0.21                            | 2.13                 | 8.4   | 10.9     | OK     | 0.6  | 0.86                | 0.18                   | 1.37                 | 5.4   | -28.7    | Check | -1.7 | -2.25              | 0.08                 |
| 1st-B         | 0.40                   | 333.3 | -31.3        | OK     | -0.1        | -1.04                  | 1.67                            | 0.58                 | 18.3  | -0.9     | OK     | 0.0  | -0.03               | 0.13                   | 0.37                 | 20.1  | -37.1    | Check | -1.3 | -1.23              | 0.09                 |
| Compound      | Concentration or local | 11.0/ | hine 0/      | GIOS   | <b>F</b> -1 | 7                      | De a controla lilita a controla | Constantion we had   | 11.0/ | hine 0/  | REE    | 5.   | 7                   | De an atabilita ana an | C                    | 11.0/ | hire 0/  | VMM   |      | 7                  | Descentelality       |
| ethyl-benzene | Concentration, µg/m3   | 0, %  | bias, %      | State  | En          | Z-scores (sigma m)     | Repeatability scores            | Concentration, µg/m3 | 0, %  | bias, %  | State  | En   | Z-scores (sigma m)  | Repeatability scores   | Concentration, µg/m3 | 0,%   | bias, %  | State | En   | Z-scores (sigma m) | Repeatability scores |
| IST-A         | 0.70                   | 28.7  | 47.9         | Charle | 0.9         | 1.65                   | 0.25                            |                      |       |          |        |      |                     |                        | 0.63                 | 14.6  | 33.1     | OK    | 0.9  | 1.14               | 0.12                 |
| 2rd A         | 2.20                   | 16.2  | 34.1<br>30.0 | Check  | 1.2         | 2.92                   | 0.59                            |                      |       |          |        |      |                     |                        | 1.91                 | 14.0  | 15.1     | OK    | 0.0  | 1.41               | 0.50                 |
| STU-A         | 4.02                   | 16.2  | 20.0         | OK     | 1.1         | 2.00                   | 0.59                            |                      |       |          |        |      |                     |                        | 3.40                 | 14.0  | 11.5     | OK    | 0.5  | 1.06               | 0.46                 |
| 4th-A         | 0.52                   | 16.2  | 20.0         | OK     | 0.9         | 2.45                   | 1.20                            |                      |       |          |        |      |                     |                        | 0.47<br>12.65        | 14.0  | 19.6     | OK    | 0.9  | 2.30               | 1.09                 |
| 6th-A         | 17.74                  | 16.2  | 15.7         | OK     | 0.8         | 2.41                   | 1.20                            |                      |       |          |        |      |                     |                        | 17.10                | 14.0  | 1/.5     | OK    | 0.9  | 2.30               | 1.08                 |
| 5th-B         | 12.81                  | 16.2  | 16.9         | OK     | 0.8         | 2.36                   | 1.20                            |                      |       |          |        |      |                     |                        | 12.77                | 14.6  | 16.6     | OK    | 0.8  | 2.31               | 1.08                 |
| 4th-B         | 8.73                   | 16.2  | 20.8         | OK     | 0.9         | 2.53                   | 0.96                            |                      |       |          |        |      |                     |                        | 8,63                 | 14.6  | 19.4     | OK    | 0.9  | 2.36               | 0.86                 |
| 3rd-B         | 4.26                   | 16.2  | 28.3         | Check  | 1.2         | 2.70                   | 0.61                            |                      |       |          |        |      |                     |                        | 3.67                 | 14.6  | 10.3     | OK    | 0.5  | 0.99               | 0.48                 |
| 2nd-B         | 2.57                   | 16.2  | 34.1         | Check  | 1.2         | 2.67                   | 0.43                            |                      |       |          |        |      |                     |                        | 2.21                 | 14.6  | 15.1     | ОК    | 0.6  | 1.19               | 0.33                 |
| 1st-B         | 0.89                   | 22.4  | 52.2         | Check  | 1.2         | 1.73                   | 0.25                            |                      |       |          |        |      |                     |                        | 0.77                 | 14.6  | 31.2     | ОК    | 1.0  | 1.03               | 0.14                 |
| Compound      |                        |       |              | LIKZ   |             |                        |                                 |                      |       |          | SHMU   |      |                     |                        |                      |       |          | DLI   |      | -                  |                      |
| ethyl-benzene | Concentration, µg/m3   | U, %  | bias, %      | State  | En          | Z-scores (sigma m)     | Repeatability scores            | Concentration, µg/m3 | U, %  | bias, %  | State  | En   | Z-scores (sigma m)  | Repeatability scores   | Concentration, µg/m3 | U, %  | bias, %  | State | En   | Z-scores (sigma m) | Repeatability scores |
| 1st-A         | 0.63                   | 33.0  | 33.5         | OK     | 0.6         | 1.16                   | 0.26                            |                      |       |          |        |      |                     |                        | 0.75                 | 33.7  | 59.6     | OK    | 0.9  | 2.06               | 0.32                 |
| 2nd-A         | 1.76                   | 10.8  | 11.1         | OK     | 0.5         | 0.77                   | 0.24                            |                      |       |          |        |      |                     |                        | 1.92                 | 15.9  | 10.7     | OK    | 0.4  | 1.47               | 0.35                 |
| 3rd-A         | 3.33                   | 7.9   | 6.5          | OK     | 0.4         | 0.60                   | 0.24                            |                      |       |          |        |      |                     |                        | 3.45                 | 12.9  | 10.5     | OK    | 0.5  | 0.97               | 0.40                 |
| 4th-A         | 7.26                   | 5.7   | 2.8          | OK     | 0.2         | 0.33                   | 0.28                            |                      |       |          |        |      |                     |                        | 7.37                 | 10.8  | 4.3      | OK    | 0.3  | 0.51               | 0.55                 |
| 5th-A         | 10.95                  | 5.3   | 2.0          | ОК     | 0.2         | 0.26                   | 0.33                            |                      |       |          |        |      |                     |                        | 10.95                | 10.3  | 2.0      | ОК    | 0.1  | 0.26               | 0.65                 |
| 6th-A         | 14.92                  | 5.1   | 0.2          | OK     | 0.0         | 0.03                   | 0.39                            |                      |       |          |        |      |                     |                        | 14.77                | 10.1  | -0.8     | OK    | -0.1 | -0.12              | 0.75                 |
| 5th-B         | 11.04                  | 5.3   | 0.7          | OK     | 0.1         | 0.10                   | 0.33                            |                      |       |          |        |      |                     |                        | 11.03                | 10.3  | 0.6      | OK    | 0.0  | 0.09               | 0.65                 |
| 4th-B         | 7.39                   | 5.6   | 2.3          | OK     | 0.2         | 0.28                   | 0.28                            |                      |       |          |        |      |                     |                        | 7.48                 | 10.7  | 3.5      | OK    | 0.2  | 0.43               | 0.55                 |
| 3rd-B         | 3.50                   | 1.1   | 5.2          | OK     | 0.3         | 0.50                   | 0.24                            |                      |       |          |        |      |                     |                        | 3.74                 | 12.6  | 12.4     | OK    | 0.7  | 1.19               | 0.42                 |
| 2nd-B         | 2.13                   | 10.8  | 11.1         | OK     | 0.5         | 0.87                   | 0.24                            |                      |       |          |        |      |                     |                        | 2.12                 | 15.9  | 10.7     | OK    | 0.4  | 0.84               | 0.35                 |
| IST-B         | 0.73                   | 28.7  | 24.0         |        | 0.5         | 0.80                   | 0.26                            | -                    |       |          |        |      |                     |                        | 0.82                 | 31.Z  | 39.2     | UK    | 0.8  | 1.30               | 0.32                 |
| othyl bonzono | Concontration ug/m2    | 11.9/ | biac %       | State  | En          | 7 scoros (sigma m)     | Popostshility scores            | Concontration ug/m2  | 11.9/ | biac %   | Stato  | En   | 7 scoros (sigma m)  | Popostability scores   | Concontration ug/m2  | 11.9/ | biac %   | Stato | En   | 7 scoros (sigma m) | Popostability scores |
| 1st-A         | 0 18                   | 565.6 | -61.9        | OK     | -03         | 2-3001e3 (Sigilia III) | 1 20                            | concentration, µg/ms | 0, %  | Dias, 70 | State  | LII  | 2-scores (signa in) | Repeatability scores   | 0 29                 | 102 / | Jias, /0 | OK    | -0.5 |                    | 0.38                 |
| 2nd-A         | 0.85                   | 78.1  | -23.4        | OK     | -0.4        | -3.12                  | 1.16                            |                      |       |          |        |      |                     |                        | 1.08                 | 38.5  | -43.0    | Check | -1.6 | -2.15              | 0.45                 |
| 3rd-A         | 2.38                   | 52.1  | -23.9        | OK     | -0.6        | -2.21                  | 1.12                            |                      |       |          |        |      |                     |                        | 1.90                 | 28.7  | -39.1    | Check | -1.7 | -3.61              | 0.49                 |
| 4th-A         | 6.17                   | 26.2  | -12.7        | OK     | -0.5        | -1.51                  | 1.11                            |                      |       |          |        |      |                     |                        | 5.27                 | 20.2  | -25.4    | Check | -1.3 | -3.03              | 0.73                 |
| 5th-A         | 9.73                   | 20.3  | -9.4         | OK     | -0.4        | -1.21                  | 1.15                            |                      |       |          |        |      |                     |                        | 9.18                 | 18.1  | -14.5    | ОК    | -0.8 | -1.86              | 0.97                 |
| 6th-A         | 13.15                  | 17.6  | -11.7        | ОК     | -0.6        | -1.67                  | 1.17                            |                      |       |          |        |      |                     |                        | 13.38                | 17.3  | -10.2    | ОК    | -0.6 | -1.45              | 1.17                 |
| 5th-B         | 10.16                  | 19.8  | -7.3         | OK     | -0.3        | -1.02                  | 1.16                            |                      |       |          |        |      |                     |                        | 9.23                 | 18.1  | -15.8    | ОК    | -0.9 | -2.20              | 0.96                 |
| 4th-B         | 6.67                   | 25.1  | -7.7         | ОК     | -0.3        | -0.93                  | 1.14                            |                      |       |          |        |      |                     |                        | 5.33                 | 20.1  | -26.2    | Check | -1.4 | -3.19              | 0.73                 |
| 3rd-B         | 2.91                   | 44.4  | -12.5        | OK     | -0.3        | -1.19                  | 1.14                            |                      |       |          |        |      |                     |                        | 1.97                 | 28.2  | -40.6    | Check | -1.9 | -3.88              | 0.49                 |
| 2nd-B         | 1.47                   | 78.1  | -23.4        | OK     | -0.4        | -1.83                  | 1.18                            |                      |       |          |        |      |                     |                        | 1.09                 | 38.5  | -43.0    | Check | -1.6 | -3.37              | 0.43                 |
| 1st-B         | 4.24                   | 225.9 | -20.9        | OK     | -0.1        | -0.69                  | 1.30                            |                      |       |          |        |      |                     |                        | 0.35                 | 86.7  | -39.7    | OK    | -0.7 | -1.31              | 0.38                 |
| Compound      |                        |       |              | DCMR2  |             |                        |                                 |                      |       |          | APPA B | z    |                     |                        |                      |       |          | ERLAP |      |                    |                      |
| ethyl-benzene | Concentration, µg/m3   | U, %  | bias, %      | State  | En          | Z-scores (sigma m)     | Repeatability scores            | Concentration, µg/m3 | U, %  | bias, %  | State  | En   | Z-scores (sigma m)  | Repeatability scores   | Concentration, µg/m3 | U, %  | bias, %  | State | En   | Z-scores (sigma m) | Repeatability scores |
| 1st-A         | 0.56                   | 44.0  | 18.5         | ОК     | 0.3         | 0.64                   | 0.31                            | 0.42                 | 20.5  | -11.0    | ОК     | -0.3 | -0.38               | 0.11                   | 0.30                 | 43.5  | -36.1    | ОК    | -0.8 | -1.25              | 0.17                 |
| 2nd-A         | 1.78                   | 29.0  | -3.3         | OK     | -0.1        | 0.87                   | 0.56                            | 1.64                 | 9.7   | 12.7     | OK     | 0.6  | 0.27                | 0.18                   | 1.62                 | 9.6   | 1.3      | OK    | 0.1  | 0.17               | 0.18                 |
| 3rd-A         | 3.06                   | 26.5  | -2.1         | OK     | -0.1        | -0.20                  | 0.73                            | 3.47                 | 9.3   | 11.1     | OK     | 0.6  | 1.02                | 0.29                   | 3.26                 | 6.7   | 4.4      | OK    | 0.3  | 0.40               | 0.20                 |
| 4th-A         | 6.34                   | 24.5  | -10.4        | ОК     | -0.4        | -1.23                  | 1.06                            | 7.66                 | 9.1   | 8.4      | ОК     | 0.5  | 1.00                | 0.48                   | 7.25                 | 3.1   | 2.6      | ОК    | 0.2  | 0.31               | 0.16                 |
| Sth-A         | 8.82                   | 23.9  | -17.8        | OK     | -0.8        | -2.30                  | 1.23                            | 12.04                | 9.1   | 12.2     | OK     | 0.8  | 1.57                | 0.64                   | 10.76                | 2.6   | 0.2      | OK    | 0.0  | 0.03               | 0.17                 |
| oth-A         | 12.98                  | 23.5  | -12.8        | OK     | -0.6        | -1.83                  | 1.54                            | 15.4/                | 9.1   | 10.6     | OK     | 0.8  | 1.51                | 0.76                   | 14.//                | 2.1   | -0.8     | OK    | -0.1 | -0.11              | 0.16                 |
| Stn-B         | 10.00                  | 23.7  | -8.8         | OK     | -0.4        | -1.22                  | 1.3/                            | 12.28                | 9.1   | 12.1     | OK     | 0.8  | 1.69                | 0.64                   | 10.8/                | 2.5   | -0.8     | OK    | -0.1 | -0.11              | 0.15                 |
| 3rd-B         | 3.03                   | 24.4  | -86          | OK     | -0.5        | -1.45                  | 0.71                            | 7.69                 | 9.1   | 9.2      | OK     | 0.0  | 1.12                | 0.49                   | 7.20                 | 2.9   | 0.7      | OK    | 0.1  | 0.08               | 0.15                 |
| 2nd-B         | 1.85                   | 20.0  | -0.9         | OK     | -0.5        | -0.05                  | 0.71                            | 2 16                 | 9.3   | 12.7     | OK     | 0.7  | 1.00                | 0.31                   | 1 94                 | 9.0   | 12       | OK    | 0.1  | 0.10               | 0.17                 |
| 1st-B         | 0.65                   | 41.1  | 10.5         | OK     | 0.2         | 0.35                   | 0.33                            | 0.58                 | 16.2  | -0.9     | OK     | 0.0  | -0.03               | 0.12                   | 0.43                 | 40.1  | -26.2    | OK    | -0.7 | -0.87              | 0.22                 |

# Table 12.- En scores, bias and reported expanded uncertainty of the participants: m,p-xylene

| Compound               |                      |       |             | EKONE | RG   |                       |                      |                      |             |          | ISPRA   |      |                    |                      |                      |       |         | EPA   |      |                    |                      |
|------------------------|----------------------|-------|-------------|-------|------|-----------------------|----------------------|----------------------|-------------|----------|---------|------|--------------------|----------------------|----------------------|-------|---------|-------|------|--------------------|----------------------|
| m.p-xylene             | Concentration, ug/m3 | U. %  | bias. %     | State | Fn   | 7-scores (sigma m)    | Repeatability scores | Concentration, ug/m3 | U. %        | bias. %  | State   | Fn   | Z-scores (sigma m) | Repeatability scores | Concentration, ug/m3 | U. %  | bias. % | State | Fn   | Z-scores (sigma m) | Repeatability scores |
| 1st-A                  | 0.34                 | 38.5  | -38.4       | OK    | -1.0 | -1.27                 | 0.16                 | 0.53                 | 11.3        | -3.2     | OK      | -0.1 | -0.11              | 0.08                 | 0.50                 | 15.6  | -8.8    | OK    | -0.3 | -0.29              | 0.10                 |
| 2nd-A                  | 1.75                 | 10.7  | 3.5         | OK    | 0.2  | 0.03                  | 0.22                 | 1.59                 | 9.6         | 3.3      | OK      | 0.2  | -0.53              | 0.16                 | 1.40                 | 7.0   | -23.5   | Check | -1.7 | -1.17              | 0.15                 |
| 3rd-A                  | 3.42                 | 9.0   | 1.5         | OK    | 0.1  | 0.12                  | 0.27                 | 3.19                 | 9.5         | -5.4     | OK      | -0.4 | -0.42              | 0.27                 | 2.75                 | 6.6   | -18.4   | Check | -1.4 | -1.44              | 0.16                 |
| 4th-A                  | 7.24                 | 7.3   | -5.5        | OK    | -0.5 | -0.53                 | 0.35                 | 7.26                 | 9.5         | -5.3     | OK      | -0.4 | -0.51              | 0.46                 | 6.15                 | 6.8   | -19.8   | Check | -1.9 | -1.88              | 0.28                 |
| 5th-A                  | 10.93                | 6.8   | -5.4        | OK    | -0.5 | -0.54                 | 0.42                 | 11.69                | 9.5         | 1.2      | OK      | 0.1  | 0.12               | 0.63                 | 9.71                 | 6.5   | -15.9   | Check | -1.6 | -1.60              | 0.36                 |
| 6th-A                  | 14.76                | 6.5   | -7.3        | OK    | -0.7 | -0.74                 | 0.47                 | 17.17                | 9.5         | 7.9      | OK      | 0.6  | 0.80               | 0.80                 | 13.20                | 6.5   | -17.1   | Check | -1.7 | -1.73              | 0.42                 |
| 5th-B                  | 11.03                | 6.8   | -6.7        | OK    | -0.7 | -0.69                 | 0.42                 | 12.04                | 9.5         | 1.9      | ОК      | 0.1  | 0.19               | 0.64                 | 9.93                 | 6.7   | -16.0   | Check | -1.6 | -1.65              | 0.37                 |
| 4th-B                  | 7.44                 | 7.3   | -5.5        | OK    | -0.5 | -0.55                 | 0.36                 | 7.97                 | 9.5         | 1.2      | ОК      | 0.1  | 0.12               | 0.50                 | 6.45                 | 6.5   | -18.1   | Check | -1.8 | -1.82              | 0.28                 |
| 3rd-B                  | 3.60                 | 8.8   | 1.6         | ОК    | 0.1  | 0.14                  | 0.28                 | 3.54                 | 9.5         | 0.0      | ОК      | 0.0  | 0.00               | 0.29                 | 2.97                 | 6.9   | -16.2   | Check | -1.4 | -1.40              | 0.18                 |
| 2nd-B                  | 2.13                 | 10.7  | 3.5         | OK    | 0.2  | 0.24                  | 0.23                 | 2.12                 | 9.6         | 3.3      | ОК      | 0.2  | 0.22               | 0.21                 | 1.57                 | 7.0   | -23.5   | Check | -1.7 | -1.59              | 0.11                 |
| 1st-B                  | 0.45                 | 30.4  | -35.4       | OK    | -0.9 | -1.37                 | 0.17                 | 1.06                 | 10.0        | 52.9     | Check   | 1.5  | 2.04               | 0.13                 | 0.46                 | 29.8  | -34.1   | ОК    | -0.9 | -1.32              | 0.17                 |
| Compound               |                      |       |             | GIOS  |      |                       |                      |                      |             |          | REE     |      |                    |                      |                      |       |         | VMM   |      |                    |                      |
| m,p-xylene             | Concentration, µg/m3 | U, %  | bias, %     | State | En   | Z-scores (sigma m)    | Repeatability scores | Concentration, µg/m3 | U, %        | bias, %  | State   | En   | Z-scores (sigma m) | Repeatability scores | Concentration, µg/m3 | U, %  | bias, % | State | En   | Z-scores (sigma m) | Repeatability scores |
| 1st-A                  | 1.01                 | 19.7  | 84.9        | Check | 1.8  | 2.82                  | 0.25                 |                      |             |          |         |      |                    |                      | 0.60                 | 14.7  | 9.4     | ОК    | 0.3  | 0.31               | 0.11                 |
| 2nd-A                  | 2.43                 | 16.2  | 41.7        | Check | 1.6  | 2.35                  | 0.41                 |                      |             |          |         |      |                    |                      | 1.76                 | 14.6  | 5.0     | OK    | 0.3  | 0.06               | 0.27                 |
| 3rd-A                  | 4.38                 | 16.2  | 30.1        | Check | 1.3  | 2.36                  | 0.63                 |                      |             |          |         |      |                    |                      | 3.35                 | 14.6  | -0.7    | ОК    | 0.0  | -0.05              | 0.43                 |
| 4th-A                  | 9.03                 | 16.2  | 17.7        | OK    | 0.8  | 1.68                  | 0.97                 |                      |             |          |         |      |                    |                      | 8.78                 | 14.6  | 14.5    | ОК    | 0.8  | 1.37               | 0.85                 |
| 5th-A                  | 13.56                | 16.2  | 17.4        | OK    | 0.8  | 1.74                  | 1.24                 |                      |             |          |         |      |                    |                      | 13.16                | 14.6  | 14.0    | ОК    | 0.7  | 1.40               | 1.08                 |
| 6th-A                  | 18.16                | 16.2  | 14.1        | OK    | 0.7  | 1.43                  | 1.45                 |                      |             |          |         |      |                    |                      | 17.93                | 14.6  | 12.6    | ОК    | 0.7  | 1.29               | 1.29                 |
| 5th-B                  | 13.74                | 16.2  | 16.2        | OK    | 0.8  | 1.67                  | 1.24                 |                      |             |          |         |      |                    |                      | 13.37                | 14.6  | 13.1    | ОК    | 0.7  | 1.35               | 1.09                 |
| 4th-B                  | 9.16                 | 16.2  | 16.3        | OK    | 0.8  | 1.64                  | 0.98                 |                      |             |          |         |      |                    |                      | 9.04                 | 14.6  | 14.7    | OK    | 0.8  | 1.48               | 0.87                 |
| 3rd-B                  | 4.60                 | 16.2  | 29.9        | Check | 1.3  | 2.58                  | 0.65                 |                      |             |          |         |      |                    |                      | 3.56                 | 14.6  | 0.5     | OK    | 0.0  | 0.04               | 0.45                 |
| 2nd-B                  | 2.91                 | 16.2  | 41.7        | Check | 1.6  | 2.83                  | 0.48                 |                      |             |          |         |      |                    |                      | 2.16                 | 14.6  | 5.0     | OK    | 0.3  | 0.34               | 0.32                 |
| IST-B                  | 1.13                 | 17.7  | 63.6        | Спеск | 1.5  | 2.46                  | 0.24                 |                      |             |          | CLIBALL |      |                    |                      | 0.75                 | 14.6  | 9.0     | UK    | 0.2  | 0.35               | 0.13                 |
| Compound<br>m n vylono | Concontration ug/m2  | 11.9/ | biac %      | State | En   | 7 scoros (sigma m)    | Popostability scores | Concentration un/m2  | 11.9/       | biac %   | SHIVIU  | En   | 7 scoros (sigma m) | Popostshility scores | Concontration ug/m2  | 11.9/ | biac %  | State | En   | 7 scoros (sigma m) | Ronostability scores |
| 1st-A                  | 0.63                 | 50.1  | 15.0        | OK    | 0.2  | 2-scores (sigina iii) |                      | concentration, µg/m3 | 0, //       | Dias, 70 | State   | LII  | 2-scores (signa m) | Repeatability scores | 0 77                 | 0, /6 | /0.0    | OK    | 0.6  | 1 33               |                      |
| 2nd-A                  | 1.72                 | 15.4  | 77          | OK    | 0.2  | -0.07                 | 0.35                 |                      |             |          |         |      |                    |                      | 1.92                 | 20.4  | 40.0    | OK    | 0.0  | 1.55               | 0.45                 |
| 3rd-A                  | 3.45                 | 10.9  | 24          | OK    | 0.4  | 0.07                  | 0.33                 |                      |             |          |         |      |                    |                      | 3 79                 | 15.6  | 12.4    | OK    | 0.2  | 0.00               | 0.52                 |
| 4th-A                  | 7.91                 | 7.2   | 3.1         | OK    | 0.3  | 0.29                  | 0.38                 |                      |             |          |         |      |                    |                      | 7.95                 | 13.0  | 3.7     | OK    | 0.2  | 0.35               | 0.69                 |
| 5th-A                  | 11.76                | 6.5   | 1.8         | OK    | 0.2  | 0.19                  | 0.43                 |                      |             |          |         |      |                    |                      | 11.91                | 12.4  | 3.1     | OK    | 0.2  | 0.31               | 0.83                 |
| 6th-A                  | 15.83                | 6.3   | -0.5        | OK    | -0.1 | -0.05                 | 0.49                 |                      |             |          |         |      |                    |                      | 16.11                | 12.1  | 1.2     | ОК    | 0.1  | 0.12               | 0.96                 |
| 5th-B                  | 11.83                | 6.5   | 0.0         | OK    | 0.0  | 0.00                  | 0.43                 |                      |             |          |         |      |                    |                      | 11.99                | 12.4  | 1.4     | ОК    | 0.1  | 0.15               | 0.83                 |
| 4th-B                  | 8.10                 | 7.1   | 2.9         | OK    | 0.3  | 0.29                  | 0.38                 |                      |             |          |         |      |                    |                      | 8.10                 | 13.0  | 2.9     | ОК    | 0.2  | 0.29               | 0.69                 |
| 3rd-B                  | 3.68                 | 10.4  | 3.9         | OK    | 0.3  | 0.34                  | 0.33                 |                      |             |          |         |      |                    |                      | 3.97                 | 15.4  | 12.1    | ОК    | 0.6  | 1.04               | 0.53                 |
| 2nd-B                  | 2.21                 | 15.4  | 7.7         | OK    | 0.4  | 0.53                  | 0.34                 |                      |             |          |         |      |                    |                      | 2.14                 | 20.4  | 4.2     | ОК    | 0.2  | 0.29               | 0.44                 |
| 1st-B                  | 0.80                 | 39.7  | 14.9        | OK    | 0.3  | 0.58                  | 0.39                 |                      |             |          |         |      |                    |                      | 0.79                 | 45.1  | 14.2    | ОК    | 0.2  | 0.55               | 0.43                 |
| Compound               |                      |       |             | IPH_S |      |                       |                      |                      |             |          | AAA     |      |                    |                      |                      |       |         | DCMR  |      |                    |                      |
| m,p-xylene             | Concentration, µg/m3 | U, %  | bias, %     | State | En   | Z-scores (sigma m)    | Repeatability scores | Concentration, µg/m3 | U, %        | bias, %  | State   | En   | Z-scores (sigma m) | Repeatability scores | Concentration, µg/m3 | U, %  | bias, % | State | En   | Z-scores (sigma m) | Repeatability scores |
| 1st-A                  | 0.13                 | 893.7 | -77.0       | OK    | -0.4 | -2.56                 | 1.41                 |                      |             |          |         |      |                    |                      | 0.30                 | 101.0 | -46.2   | ОК    | -0.7 | -1.53              | 0.37                 |
| 2nd-A                  | 0.42                 | 156.6 | -60.8       | OK    | -1.0 | -4.56                 | 1.24                 |                      |             |          |         |      |                    |                      | 1.21                 | 34.5  | -35.7   | Check | -1.4 | -1.83              | 0.46                 |
| Ath A                  | 1.25                 | 52.0  | -02.6       | Check | -1.5 | -4.92                 | 1.19                 |                      |             |          |         |      |                    |                      | 2.07                 | 19.6  | -20.8   | OK    | -0.9 | -1.65              | 0.59                 |
| 5th-A                  | 5.35                 | 10 F  | -53.9       | Check | -2.3 | -5.05                 | 1.10                 |                      |             |          |         |      |                    |                      | 12.05                | 17 5  | 1.4     | OK    | 0.1  | 0.14               | 1 10                 |
| 6th-A                  | 7 37                 | 35.0  | -54.0       | Check | -2.0 | -5.49                 | 1.22                 |                      |             |          |         |      |                    |                      | 16.45                | 16 9  | 4.4     | OK    | 0.2  | 0.44               | 1 37                 |
| 5th-B                  | 5.62                 | 39.6  | -52.5       | Check | -2.6 | -5.41                 | 1.24                 |                      |             |          |         |      |                    |                      | 12.10                | 17.5  | 2.3     | OK    | 0.1  | 0.24               | 1.18                 |
| 4th-B                  | 3.73                 | 49.5  | -52.6       | Check | -2.1 | -5.30                 | 1.22                 |                      |             |          |         |      |                    |                      | 7.87                 | 18.6  | -0.1    | OK    | 0.0  | -0.01              | 0.96                 |
| 3rd-B                  | 1.60                 | 89.0  | -55.0       | Check | -1.3 | -4.74                 | 1.24                 |                      |             |          |         |      |                    |                      | 2.88                 | 24.1  | -18.8   | ОК    | -0.9 | -1.62              | 0.60                 |
| 2nd-B                  | 0.81                 | 156.6 | -60.8       | ОК    | -1.0 | -4.13                 | 1.27                 |                      |             |          |         |      |                    |                      | 1.32                 | 34.5  | -35.7   | Check | -1.4 | -2.42              | 0.46                 |
| 1st-B                  | 0.29                 | 399.3 | -58.1       | OK    | -0.3 | -2.25                 | 1.41                 |                      |             |          |         |      |                    |                      | 0.37                 | 84.2  | -46.8   | ОК    | -0.8 | -1.81              | 0.38                 |
| Compound               |                      |       |             | DCMR2 |      |                       |                      |                      |             |          | APPA B  | 3Z   |                    |                      |                      |       |         | ERLAP |      |                    |                      |
| m,p-xylene             | Concentration, µg/m3 | U, %  | bias, %     | State | En   | Z-scores (sigma m)    | Repeatability scores | Concentration, µg/m3 | U, %        | bias, %  | State   | En   | Z-scores (sigma m) | Repeatability scores | Concentration, µg/m3 | U, %  | bias, % | State | En   | Z-scores (sigma m) | Repeatability scores |
| 1st-A                  | 0.75                 | 38.7  | 36.7        | OK    | 0.6  | 1.22                  | 0.36                 | 0.40                 | 21.5        | -27.1    | ОК      | -0.8 | -0.90              | 0.11                 | 0.34                 | 38.5  | -38.8   | Check | -1.0 | -1.29              | 0.16                 |
| 2nd-A                  | 2.12                 | 27.7  | 12.3        | OK    | 0.4  | 1.29                  | 0.63                 | 1.36                 | 9.9         | -7.1     | ОК      | -0.4 | -1.32              | 0.15                 | 2.02                 | 8.1   | -5.5    | ОК    | -0.4 | 0.95               | 0.22                 |
| 3rd-A                  | 3.70                 | 25.8  | 10.0        | OK    | 0.3  | 0.78                  | 0.85                 | 2.95                 | 9.4         | -12.4    | ОК      | -0.9 | -0.97              | 0.25                 | 3.65                 | 4.9   | 8.4     | ОК    | 0.7  | 0.66               | 0.16                 |
| 4th-A                  | 7.69                 | 24.1  | 0.3         | OK    | 0.0  | 0.03                  | 1.23                 | 6.61                 | 9.1         | -13.8    | Check   | -1.1 | -1.31              | 0.40                 | 7.82                 | 2.8   | 2.0     | OK    | 0.2  | 0.19               | 0.14                 |
| 5th-A                  | 10.66                | 23.7  | -7.7        | OK    | -0.3 | -0.77                 | 1.42                 | 10.09                | 9.1         | -12.6    | Check   | -1.1 | -1.27              | 0.52                 | 11.54                | 2.1   | -0.1    | OK    | 0.0  | -0.01              | 0.13                 |
| 6th-A                  | 15.57                | 23.3  | -2.2        | OK    | -0.1 | -0.22                 | 1.78                 | 13.90                | 9.1         | -12.7    | Check   | -1.1 | -1.29              | 0.62                 | 15.88                | 1.9   | -0.2    | OK    | 0.0  | -0.02              | 0.15                 |
| Stn-B                  | 12.00                | 23.6  | 1.5         | OK    | 0.1  | 0.15                  | 1.58                 | 10.34                | 9.1         | -12.5    | Check   | -1.1 | -1.29              | 0.52                 | 11.68                | 2.8   | -1.2    | OK    | -0.1 | -0.12              | 0.18                 |
| Attn-B                 | 7.75                 | 24.1  | -1.6        | OK    | -0.1 | -0.16                 | 1.23                 | 0.80<br>2.20         | 9.1         | -12.9    | OK      | -1.1 | -1.30              | 0.41                 | 7.80                 | 2.9   | -1.0    | OK    | -0.1 | -0.10              | 0.15                 |
| 2nd-B                  | 5.75<br>2.31         | 25.8  | 5.4<br>12 2 | OK    | 0.2  | 0.47                  | 0.65                 | 5.20                 | 9.4         | -9.7     | OK      | -0.8 | -0.65              | 0.20                 | 3.01                 | 2.5   | 2.0     | OK    | -0.4 | -0.38              | 0.17                 |
| 1st-B                  | 0.84                 | 37.0  | 21.1        | OK    | 0.4  | 0.82                  | 0.38                 | 0.55                 | 5.5<br>16.7 | -20 5    | OK      | -0.4 | -0.48              | 0.15                 | 0.42                 | 31.2  | -3.5    | Check | -0.4 | -0.56              | 0.10                 |

# Table 13.- En scores, bias and reported expanded uncertainty of the participants: o-xylene

| Compound |                      |       |         | EKONE | RG   |                    |                      |                      |      |         | ISPRA |      |                    |                      |                      |              |         | EPA   |      |                    |                      |
|----------|----------------------|-------|---------|-------|------|--------------------|----------------------|----------------------|------|---------|-------|------|--------------------|----------------------|----------------------|--------------|---------|-------|------|--------------------|----------------------|
| o-xylene | Concentration, ug/m3 | U. %  | bias. % | State | Fn   | 7-scores (sigma m) | Repeatability scores | Concentration, ug/m3 | U. % | bias. % | State | Fn   | Z-scores (sigma m) | Repeatability scores | Concentration, ug/m3 | U. %         | bias. % | State | Fn   | Z-scores (sigma m) | Repeatability scores |
| 1st-A    | 0.36                 | 36.4  | -28.3   | OK    | -0.8 | -1.01              | 0.16                 | 0.57                 | 13.3 | 15.1    | OK    | 0.5  | 0.54               | 0.10                 | 0.50                 | 10.8         | 0.4     | OK    | 0.0  | 0.01               | 0.07                 |
| 2nd-A    | 1.32                 | 12.6  | -24.2   | Check | -1.4 | -1.54              | 0.20                 | 1.54                 | 11.8 | 21.6    | Check | 1.0  | -0.61              | 0.19                 | 1.82                 | 12.3         | -2.1    | OK    | -0.1 | 0.52               | 0.21                 |
| 3rd-A    | 2.60                 | 10.0  | -22.9   | Check | -1.6 | -2.53              | 0.23                 | 3.62                 | 11.7 | 7.3     | ОК    | 0.4  | 0.80               | 0.37                 | 3.25                 | 5.8          | -3.6    | OK    | -0.3 | -0.40              | 0.17                 |
| 4th-A    | 5.65                 | 7.8   | -25.3   | Check | -2.3 | -3.42              | 0.29                 | 7.95                 | 11.7 | 5.2     | OK    | 0.3  | 0.71               | 0.62                 | 6.62                 | 5.9          | -12.5   | Check | -1.2 | -1.69              | 0.26                 |
| 5th-A    | 8.57                 | 7.1   | -25.9   | Check | -2.4 | -3.51              | 0.34                 | 12.45                | 11.7 | 7.6     | ОК    | 0.5  | 1.03               | 0.82                 | 10.28                | 5.8          | -11.2   | Check | -1.0 | -1.52              | 0.34                 |
| 6th-A    | 11.67                | 6.7   | -27.0   | Check | -2.8 | -3.83              | 0.39                 | 17.64                | 11.7 | 10.4    | ОК    | 0.7  | 1.47               | 1.01                 | 14.51                | 5.8          | -9.2    | ОК    | -0.9 | -1.31              | 0.41                 |
| 5th-B    | 8.66                 | 7.1   | -26.8   | Check | -2.8 | -3.83              | 0.34                 | 12.62                | 11.7 | 6.7     | ОК    | 0.5  | 0.96               | 0.82                 | 10.54                | 6.1          | -10.9   | Check | -1.1 | -1.56              | 0.36                 |
| 4th-B    | 5.83                 | 7.7   | -24.7   | Check | -2.2 | -3.29              | 0.30                 | 8.30                 | 11.7 | 7.2     | ОК    | 0.5  | 0.96               | 0.64                 | 6.83                 | 5.8          | -11.8   | Check | -1.1 | -1.57              | 0.26                 |
| 3rd-B    | 2.77                 | 9.8   | -22.4   | Check | -1.6 | -2.49              | 0.23                 | 3.62                 | 11.7 | 1.3     | ОК    | 0.1  | 0.15               | 0.37                 | 3.49                 | 5.8          | -2.2    | OK    | -0.2 | -0.24              | 0.18                 |
| 2nd-B    | 1.62                 | 12.6  | -24.2   | Check | -1.4 | -2.02              | 0.20                 | 2.60                 | 11.8 | 21.6    | Check | 1.0  | 1.80               | 0.31                 | 2.10                 | 12.3         | -2.1    | ОК    | -0.1 | -0.18              | 0.26                 |
| 1st-B    | 0.50                 | 27.8  | -21.5   | ОК    | -0.7 | -1.00              | 0.17                 | 0.62                 | 13.0 | -2.5    | OK    | -0.1 | -0.12              | 0.10                 | 0.60                 | 20.9         | -4.8    | OK    | -0.2 | -0.22              | 0.16                 |
| Compound |                      |       |         | GIOS  |      |                    |                      |                      |      |         | REE   |      |                    |                      |                      |              |         | VMM   |      |                    |                      |
| o-xylene | Concentration, µg/m3 | U, %  | bias, % | State | En   | Z-scores (sigma m) | Repeatability scores | Concentration, µg/m3 | U, % | bias, % | State | En   | Z-scores (sigma m) | Repeatability scores | Concentration, µg/m3 | U, %         | bias, % | State | En   | Z-scores (sigma m) | Repeatability scores |
| 1st-A    | 0.75                 | 26.7  | 50.6    | Check | 1.1  | 1.81               | 0.25                 |                      |      |         |       |      |                    |                      | 0.66                 | 14.6         | 31.7    | OK    | 1.0  | 1.13               | 0.12                 |
| 2nd-A    | 2.29                 | 16.2  | 29.1    | Check | 1.1  | 2.49               | 0.39                 |                      |      |         |       |      |                    |                      | 2.08                 | 14.6         | 20.1    | OK    | 0.9  | 1.61               | 0.32                 |
| 3rd-A    | 4.23                 | 16.2  | 25.6    | Check | 1.1  | 2.82               | 0.61                 |                      |      |         |       |      |                    |                      | 3.96                 | 14.7         | 17.5    | OK    | 0.8  | 1.92               | 0.51                 |
| 4th-A    | 8.92                 | 16.2  | 18.1    | OK    | 0.9  | 2.45               | 0.97                 |                      |      |         |       |      |                    |                      | 8.83                 | 14.6         | 16.8    | OK    | 0.9  | 2.27               | 0.86                 |
| 5th-A    | 13.69                | 16.2  | 18.3    | ОК    | 0.9  | 2.48               | 1.25                 |                      |      |         |       |      |                    |                      | 13.46                | 14.6         | 16.3    | ОК    | 0.8  | 2.21               | 1.11                 |
| 6th-A    | 18.46                | 16.2  | 15.5    | ОК    | 0.8  | 2.20               | 1.47                 |                      |      |         |       |      |                    |                      | 18.32                | 14.6         | 14.6    | ОК    | 0.8  | 2.07               | 1.31                 |
| 5th-B    | 13.66                | 16.2  | 15.5    | ОК    | 0.8  | 2.22               | 1.23                 |                      |      |         |       |      |                    |                      | 13.65                | 14.6         | 15.4    | OK    | 0.8  | 2.21               | 1.12                 |
| 4th-B    | 9.17                 | 16.2  | 18.5    | ОК    | 0.9  | 2.46               | 0.98                 |                      |      |         |       |      |                    |                      | 9.07                 | 14.6         | 17.1    | ОК    | 0.9  | 2.28               | 0.88                 |
| 3rd-B    | 4.50                 | 16.2  | 26.0    | Check | 1.1  | 2.89               | 0.63                 |                      |      |         |       |      |                    |                      | 4.25                 | 14.7         | 19.0    | OK    | 0.9  | 2.11               | 0.54                 |
| 2nd-B    | 2.76                 | 16.2  | 29.1    | Check | 1.1  | 2.43               | 0.45                 |                      |      |         |       |      |                    |                      | 2.57                 | 14.6         | 20.1    | ОК    | 0.9  | 1.67               | 0.38                 |
| 1st-B    | 0.97                 | 20.6  | 53.2    | Check | 1.4  | 2.48               | 0.25                 |                      |      |         |       |      |                    |                      | 0.85                 | 14.7         | 33.5    | Check | 1.1  | 1.56               | 0.15                 |
| Compound |                      |       | 11 01   | LIKZ  | -    |                    |                      |                      |      | 11 01   | SHMU  | -    |                    |                      |                      |              |         | DLI   | -    | - /: >             |                      |
| o-xylene | Concentration, µg/m3 | 0, %  | bias, % | State | En   | Z-scores (sigma m) | Repeatability scores | Concentration, µg/m3 | U, % | bias, % | State | En   | Z-scores (sigma m) | Repeatability scores | Concentration, µg/m3 | 0, %         | bias, % | State | En   | Z-scores (sigma m) | Repeatability scores |
| 1st-A    | 0.60                 | 45.5  | 20.1    | OK    | 0.3  | 0.72               | 0.34                 |                      |      |         |       |      |                    |                      | 0.50                 | 42.9         | 1.0     | OK    | 0.0  | 0.04               | 0.27                 |
| 2nd-A    | 1.74                 | 13.9  | 3.5     | OK    | 0.2  | 0.19               | 0.31                 |                      |      |         |       |      |                    |                      | 1.96                 | 15.2         | 5.3     | OK    | 0.2  | 1.12               | 0.34                 |
| JIU-A    | 5.52                 | 10.5  | 4.5     | OK    | 0.5  | 0.49               | 0.52                 |                      |      |         |       |      |                    |                      | 3.05                 | 11.1         | 7.7     | OK    | 0.4  | 0.85               | 0.42                 |
| 5th-A    | 11 58                | 73    | 1.0     | OK    | 0.1  | 0.24               | 0.40                 |                      |      |         |       |      |                    |                      | 12 12                | 11.7         | 4.7     | OK    | 0.4  | 0.64               | 0.03                 |
| 6th-A    | 15.46                | 7.3   | -3.2    | OK    | -0.3 | -0.46              | 0.54                 |                      |      |         |       |      |                    |                      | 16.76                | 11.4         | 4.7     | OK    | 0.3  | 0.04               | 0.78                 |
| 5th-B    | 11.71                | 73    | -1.0    | OK    | -0.1 | -0.15              | 0.47                 |                      |      |         |       |      |                    |                      | 12.20                | 11.5         | 3.1     | OK    | 0.5  | 0.05               | 0.55                 |
| 4th-B    | 7.87                 | 7.7   | 1.6     | OK    | 0.1  | 0.22               | 0.40                 |                      |      |         |       |      |                    |                      | 8 22                 | 11.7         | 6.2     | OK    | 0.4  | 0.82               | 0.63                 |
| 3rd-B    | 3.74                 | 10.0  | 4.7     | OK    | 0.3  | 0.52               | 0.32                 |                      |      |         |       |      |                    |                      | 3.92                 | 12.9         | 9.8     | OK    | 0.5  | 1.09               | 0.44                 |
| 2nd-B    | 2.22                 | 13.9  | 3.6     | ОК    | 0.2  | 0.30               | 0.31                 |                      |      |         |       |      |                    |                      | 2.25                 | 15.2         | 5.3     | OK    | 0.2  | 0.44               | 0.34                 |
| 1st-B    | 0.75                 | 36.4  | 18.8    | ОК    | 0.4  | 0.88               | 0.34                 |                      |      |         |       |      |                    |                      | 0.62                 | 36.7         | -2.7    | ОК    | -0.1 | -0.13              | 0.28                 |
| Compound |                      |       |         | IPH_S |      |                    |                      |                      |      |         | AAA   |      |                    |                      |                      |              |         | DCMR  |      |                    |                      |
| o-xylene | Concentration, µg/m3 | U, %  | bias, % | State | En   | Z-scores (sigma m) | Repeatability scores | Concentration, µg/m3 | U, % | bias, % | State | En   | Z-scores (sigma m) | Repeatability scores | Concentration, µg/m3 | U, %         | bias, % | State | En   | Z-scores (sigma m) | Repeatability scores |
| 1st-A    | 0.00                 |       | -100.0  | ОК    | -0.5 | -3.57              | 1.26                 |                      |      |         |       |      |                    |                      | 0.32                 | 93.5         | -35.1   | OK    | -0.5 | -1.25              | 0.38                 |
| 2nd-A    | 0.84                 | 73.3  | -26.2   | OK    | -0.5 | -3.54              | 1.14                 |                      |      |         |       |      |                    |                      | 1.21                 | 34.5         | -38.5   | Check | -1.5 | -2.01              | 0.46                 |
| 3rd-A    | 3.09                 | 42.4  | -8.5    | ОК    | -0.2 | -0.93              | 1.16                 |                      |      |         |       |      |                    |                      | 2.49                 | 25.5         | -26.2   | Check | -1.2 | -2.89              | 0.56                 |
| 4th-A    | 7.56                 | 23.2  | 0.0     | OK    | 0.0  | 0.00               | 1.17                 |                      |      |         |       |      |                    |                      | 6.87                 | 19.1         | -9.1    | OK    | -0.5 | -1.24              | 0.87                 |
| Stn-A    | 11.69                | 18.6  | 1.0     | OK    | 0.0  | 0.13               | 1.22                 |                      |      |         |       |      |                    |                      | 11.05                | 17.7         | -4.5    | OK    | -0.2 | -0.61              | 1.10                 |
| oth-A    | 15.73                | 16.4  | -1.6    | UK    | -0.1 | -0.22              | 1.26                 |                      |      |         |       |      |                    |                      | 15.40                | 17.0         | -3.7    | UK    | -0.2 | -0.52              | 1.29                 |
| Sth-B    | 12.07                | 18.3  | 2.1     | OK    | 0.1  | 0.30               | 1.23                 |                      |      |         |       |      |                    |                      | 11.09                | 1/.7         | -6.2    | OK    | -0.3 | -0.89              | 1.09                 |
| 4th-B    | 8.12                 | 22.3  | 4.9     | OK    | 0.2  | 0.65               | 1.20                 |                      |      |         |       |      |                    |                      | 6.85                 | 19.1         | -11.5   | UK    | -0.6 | -1.53              | 0.87                 |
| and P    | 5.00                 | 37.4  | 2.5     | OK    | 0.1  | 0.28               | 1.19                 |                      |      |         |       |      |                    |                      | 2.04                 | 24.9         | -20.1   | Check | -1.2 | -2.90              | 0.57                 |
| 1st_B    | 1.50                 | 270 2 | -20.2   | OK    | -0.5 | -2.19              | 1.10                 |                      |      |         |       |      |                    |                      | 0.37                 | 34.5<br>84.0 | -36.5   | OK    | -1.5 | -3.21              | 0.45                 |
| Compound | 0.38                 | 270.3 | -39.3   | DCMR  | -0.2 | -1.04              | 1.20                 |                      |      |         |       | 17   |                    |                      | 0.37                 | 04.0         | -41.7   | FRIAD | -0.8 | -1.55              | 0.38                 |
| o-xylene | Concentration ug/m3  | 11.%  | hias %  | State | E Fn | 7-scores (sigma m) | Reneatability scores | Concentration ug/m3  | 11.% | hias %  | State | Fn   | 7-scores (sigma m) | Reneatability scores | Concentration ug/m3  | 11 %         | hias %  | State | En   | 7-scores (sigma m) | Reneatability scores |
| 1st-A    | 0.65                 | 41.1  | 29.9    | OK    | 0.5  | 1.07               | 0.34                 | 0.44                 | 0.1  | -11.6   | OK    | -0.4 | -0.42              | 0.11                 | 0.39                 | 32 9         | -21.2   | OK    | -0.6 | -0.76              | 0.16                 |
| 2nd-A    | 1.97                 | 28.3  | -1.8    | OK    | -0.1 | 1.15               | 0.60                 | 1.48                 | 0.2  | -4.7    | OK    | -0.3 | -0.88              | 0.16                 | 1.84                 | 7.1          | -2.6    | OK    | -0.2 | 0.60               | 0.15                 |
| 3rd-A    | 3.40                 | 26.1  | 0.8     | ОК    | 0.0  | 0.09               | 0.78                 | 3.19                 | 0.3  | -5.3    | OK    | -0.4 | -0.59              | 0.27                 | 3.46                 | 4.6          | 2.6     | OK    | 0.2  | 0.28               | 0.14                 |
| 4th-A    | 6.97                 | 24.3  | -7.8    | ОК    | -0.3 | -1.06              | 1.13                 | 7.33                 | 0.7  | -3.0    | ОК    | -0.2 | -0.41              | 0.45                 | 7.78                 | 2.6          | 2.9     | ОК    | 0.3  | 0.40               | 0.13                 |
| 5th-A    | 9.82                 | 23.8  | -15.1   | ОК    | -0.7 | -2.05              | 1.32                 | 11.67                | 1.1  | 0.8     | ОК    | 0.1  | 0.12               | 0.60                 | 11.75                | 2.2          | 1.5     | ОК    | 0.2  | 0.20               | 0.14                 |
| 6th-A    | 14.14                | 23.4  | -11.5   | ОК    | -0.5 | -1.63              | 1.62                 | 16.26                | 1.5  | 1.7     | ОК    | 0.1  | 0.25               | 0.72                 | 15.87                | 1.9          | -0.7    | ОК    | -0.1 | -0.10              | 0.15                 |
| 5th-B    | 10.94                | 23.7  | -7.5    | ОК    | -0.3 | -1.08              | 1.44                 | 11.96                | 1.1  | 1.1     | ОК    | 0.1  | 0.16               | 0.61                 | 11.62                | 3.0          | -1.7    | ОК    | -0.2 | -0.25              | 0.20                 |
| 4th-B    | 7.07                 | 24.3  | -8.7    | ОК    | -0.4 | -1.16              | 1.14                 | 7.53                 | 0.7  | -2.7    | ОК    | -0.2 | -0.37              | 0.45                 | 7.68                 | 3.4          | -0.9    | ОК    | -0.1 | -0.11              | 0.17                 |
| 3rd-B    | 3.38                 | 26.1  | -5.3    | ОК    | -0.2 | -0.58              | 0.77                 | 3.38                 | 0.3  | -5.3    | ОК    | -0.4 | -0.59              | 0.27                 | 3.49                 | 5.5          | -2.1    | ОК    | -0.2 | -0.24              | 0.17                 |
| 2nd-B    | 2.10                 | 28.3  | -1.8    | ОК    | -0.1 | -0.15              | 0.59                 | 2.04                 | 0.2  | -4.7    | ОК    | -0.3 | -0.39              | 0.20                 | 2.08                 | 7.1          | -2.6    | ОК    | -0.2 | -0.22              | 0.15                 |
| 1st-B    | 0.76                 | 38.2  | 20.7    | ОК    | 0.4  | 0.96               | 0.36                 | 0.67                 | 0.1  | 5.8     | ОК    | 0.2  | 0.27               | 0.12                 | 0.56                 | 25.2         | -12.0   | ОК    | -0.4 | -0.56              | 0.17                 |

In this exercise, 7 of the 13 laboratories were also participating in the last inter-laboratory comparison (EUR 28692 EN, 2017). With respect to the last comparison, there is a general improvement of the  $E_n$  scores, more evident for the heaviest aromatic compounds (see Figure 11).

In the case of benzene, the improvement in the  $E_n$  scores may not reflect a general improvement in the quality of the measurement, as the 20 % decrease in the number of results with  $E_n$  scores  $\geq 1$  could be due to the average increase of 20 % in the value of the reported uncertainties. In contrast, in this exercise the average absolute bias for benzene is double that obtained in the previous inter-laboratory comparison.

The results for toluene showed a real improvement in the results reflected in a reduction by a half of the  $E_n$  scores cases  $\geq 1$ . Note that the average reported uncertainties as the average absolute bias remained similar in both exercises. Such an improvement is explained by the reduction of the concentration level to a half in order to fit with a more realistic scenario, avoiding at the same time, a possible sampling overload for toluene.

The increase of circa 40 % in the average reported uncertainty value for the xylenes (excluding o-xylene that did not change) cannot explain the reduction to a half of the number of  $E_n$  scores cases  $\geq 1$ , which reported similar average absolute bias in both comparison, reducing to a half the sum of average absolute residuals. Consequently, a proper improvement in analytical method for these compounds is evident.



Figure 11.- Comparison of proficiency test exercises 2016 and 2019

$$\sum_{i} \overline{|Residuals|} = \sum_{i}^{Levels} (\overline{|bias|_{i}} \cdot C_{ref_{i}}/100)$$

# 4 Conclusions

The reproducibility values of the comparison exercise fulfilled the criteria established by the N37 AQUILA report agreed for proficiency assessment.

In comparison to the previous inter-laboratory exercise (EUR 28692 EN), a slight increase of the reproducibility and the repeatability values were observed. Such an increase was explained by the decrease in the levels of concentration used for comparison. No significant variations in the robustness of the method were, however, observed. Therefore, the average benzene repeatability and reproducibility standard deviation of the exercise were of about 6 % and 14 %, respectively. While ethyl-benzene, m,p-xylene and o-xylene showed higher repeatability and reproducibility standard deviations of around 9 % and 20 %, respectively. The repeatability/reproducibility ratio was describing a robust method for all the considered compounds (with  $\gamma \leq 2$ ).

When statistic scores are compared to those from the previous inter-laboratory exercise, an improvement in the proficiency tests results of the heavier aromatic compounds, i.e. from toluene to o-xylene, was observed.

It is noted that those laboratories using Tenax GR, as a trapping adsorbent, showed a poorer performance in the linearity tests when compared to other adsorbent of higher capacity.

The combined use of the bias, uncertainty and  $E_n$  scores brings a better understanding of the individual laboratory performance within the exercise. On the other hand, Z-scores ( $\sigma_m$ ) and the repeatability scores provide independent criteria for comparison based on AQUILA N37 protocol and out of the context of the exercise.

# References

AQUILA N37: 2008. Protocol for inter-laboratory comparison exercise. Organization of inter-laboratory comparison exercises for gaseous air pollutants for EU National Air Quality Reference Laboratories and laboratories of the WHO Euro Region. http://ies.jrc.ec.europa.eu/aquila-project/role-and-tasks-of-national-reference-laboratories.html.

EC directive 2008/50/EC of the European Parliament of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. OJ L152/1 of 11.6.2008.

ENV 13005 1999. Guide to the Expression of Uncertainty in Measurement.

EN14662-3: 2015. Ambient Air Quality - Standard method for the measurement of benzene concentrations - Part 3: Automated pumped sampling within situ gas chromatography.

Pérez Ballesta, P., Field, R.A., Connolly, R., Lagler, F., Nikolova, I., Cao, N. First EC-JRC aromatic (BTEX) compounds interlaboratory comparison with automatic analysers —EUR 22523 EN, Publications Office of the European Union, Luxembourg, 2006, ISBN 97-79-03671-8.

Pérez Ballesta, P., Connolly, R., Cao, N., Lagler, F., Kapus Dukaric, M., Second EC-JRC aromatic compounds inter-comparison with automatic analysers — EUR 23792 EN, Publications Office of the European Union, Luxembourg, 2009, ISBN 978-92-79-12024-4.

Pérez Ballesta, P., Connolly, R., Duane, M., and Lagler, F., Third EC-JRC aromatic compounds inter-laboratory comparison with automatic analysers — EUR 27012 EN, Publications Office of the European Union, Luxembourg, 2014, doi:10.2788/05280.

Pérez Ballesta, P., Field, R. A., De Saeger, E., Inter-laboratory exercises for volatile organic compound determination. Atmospheric Environment. 35, 2001, 5729-5740 pp.

Pérez Ballesta P., Connolly R., Barbiere M., Lagler F., Fourth EC-JRC aromatic compounds inter-laboratory comparison with automatic analysers, EUR 28692 EN, Publications Office, Luxembourg, 2017, ISBN 978-92-79-70668-4, doi:10.2760/536056, JRC106391

ISO 5725-1: 1994. Accuracy (trueness and precision) of measurement methods and results. Part 1. General principles and definition.

ISO 5725-2: 1994. Accuracy (trueness and precision) of measurement methods and results. Part 2. Basic method for the determination of repeatability and reproducibility of a standard measurement method.

ISO 6143: 1999. Gas analysis – Determination of the composition of calibration gas mixtures – Comparison methods.

ISO 13528: 2005. Statistical methods for use in proficiency testing by inter-laboratory comparison.

# Annexes:

# Annex 1.- Work schedule for the inter-laboratory comparison exercise

Sept. 23rd: Arrival of participants and installation of equipment: 14:00 to 17:30
Sept. 24th: Calibration and Synchronization: 9:00 – 13:30 / Measurements starting: 14:30
Sept. 25th: End of measurements: 15:30 / Calibration 15:30 – 17:30
Sept.26th: Dismantling of equipment and departure of participants.

# Annex 2.- Indicators of Mandel's statistic

Table A 1.- k and h values

| Number of Laboratories | k values at of | s.l. * |              |      | h values at s.l | . *  |
|------------------------|----------------|--------|--------------|------|-----------------|------|
|                        | 3 replicants   |        | 5 replicants |      |                 |      |
| р                      | 1%             | 5 %    | 1%           | 5 %  | 1%              | 5 %  |
| 3                      | 1.64           | 1.53   | 1.53         | 1.4  | 1.15            | 1.15 |
| 4                      | 1.77           | 1.59   | 1.6          | 1.44 | 1.49            | 1.42 |
| 5                      | 1.85           | 1.62   | 1.65         | 1.46 | 1.72            | 1.57 |
| 6                      | 1.9            | 1.64   | 1.68         | 1.48 | 1.87            | 1.66 |
| 7                      | 1.94           | 1.66   | 1.7          | 1.49 | 1.98            | 1.71 |
| 8                      | 1.97           | 1.67   | 1.71         | 1.5  | 2.06            | 1.75 |
| 9                      | 1.99           | 1.68   | 1.73         | 1.5  | 2.13            | 1.78 |
| 10                     | 2              | 1.68   | 1.74         | 1.5  | 2.18            | 1.8  |
| 11                     | 2.01           | 1.69   | 1.74         | 1.51 | 2.22            | 1.82 |
| 12                     | 2.02           | 1.69   | 1.75         | 1.51 | 2.25            | 1.83 |
| 13                     | 2.03           | 1.69   | 1.76         | 1.51 | 2.27            | 1.84 |
| 14                     | 2.04           | 1.7    | 1.76         | 1.52 | 2.3             | 1.85 |
| 15                     | 2.05           | 1.7    | 1.76         | 1.52 | 2.32            | 1.86 |
| 16                     | 2.05           | 1.7    | 1.77         | 1.52 | 2.33            | 1.86 |
| 17                     | 2.06           | 1.7    | 1.77         | 1.52 | 2.35            | 1.87 |
| 18                     | 2.06           | 1.71   | 1.77         | 1.52 | 2.36            | 1.88 |
| 19                     | 2.07           | 1.71   | 1.78         | 1.52 | 2.37            | 1.88 |
| 20                     | 2.07           | 1.71   | 1.78         | 1.52 | 2.39            | 1.89 |
| 21                     | 2.07           | 1.71   | 1.78         | 1.52 | 2.39            | 1.89 |
| 22                     | 2.08           | 1.71   | 1.78         | 1.52 | 2.4             | 1.89 |
| 23                     | 2.08           | 1.71   | 1.78         | 1.53 | 2.41            | 1.9  |
| 24                     | 2.08           | 1.71   | 1.79         | 1.53 | 2.42            | 1.9  |
| 25                     | 2.08           | 1.71   | 1.79         | 1.53 | 2.42            | 1.9  |
| 26                     | 2.09           | 1.71   | 1.79         | 1.53 | 2.43            | 1.9  |
| 27                     | 2.09           | 171    | 1.79         | 1.53 | 2.44            | 1.91 |

\* s.l. : significance level

# Annex 3.- Robust Analysis: Estimation of robust average and standard deviation

The robust estimation of an average value,  $\bar{C}_i^*$ , and standard deviation, s\*, of p inter-laboratory measurements is derived from a convergence process of the following equation:

$$\bar{C}_i^* = \frac{\sum C_i^*}{p}$$

Eq.A-1

$$s^* = 1.134 \cdot \sqrt{\frac{\sum (C_i - \bar{C}_i^*)^2}{(p-1)}}$$

Eq. A-2

Where recurrent values are calculated from these equations:

$$C_i^* = \begin{cases} \bar{C}_i^* - 1.5 \cdot s^* & \text{if} \quad C_i < \bar{C}_i^* - 1.5 \cdot s^* \\ \bar{C}_i^* + 1.5 \cdot s^* & \text{if} \quad C_i > \bar{C}_i^* + 1.5 \cdot s^* \\ C_i & \text{otherwise} \end{cases}$$

Eq. A-3

The initial values are calculated as:

$$\bar{C}_i^* = \text{median of } C_i \ (i = 1, 2,...p)$$
  
 $s^* = 1.483 \cdot \text{median of } |C_i - \bar{C}_i^*| \ (i = 1, 2,...p)$ 

Eq. A-4

# Annex 4.- Repeatability, reproducibility and robustness: Previous comparison exercises:

|               | Repeatability, % | Reproducibility, % | Robustness (γ) |
|---------------|------------------|--------------------|----------------|
| Benzene       | 1.4              | 17.8               | 17.2           |
| Toluene       | 1.8              | 10.0               | 7.1            |
| Ethyl-benzene | 2.2              | 9.7                | 6.1            |
| m,p-Xylene    | 4.2              | 8.0                | 2.1            |
| o-Xylene      | 3.1              | 16.5               | 6.7            |

Table A 2.- Average repeatability, reproducibility and gamma values for the 2nd inter-laboratory exercise

(EUR 23792EN 2009)

#### Table A 3.- Average repeatability, reproducibility and gamma values for the 3rd inter-laboratory exercise

|               | Repeatability, % | Reproducibility, % | Robustness (γ) |
|---------------|------------------|--------------------|----------------|
| Benzene       | 4.7              | 7.9                | 1.7            |
| Toluene       | 4.2              | 15.1               | 3.6            |
| Ethyl-benzene | 9.4              | 20.0               | 2.2            |
| m,p-Xylene    | 9.3              | 26.6               | 2.8            |
| o-Xylene      | 9.7              | 17.7               | 1.8            |

(EUR 27012EN 2014)

Table A 4.- Average repeatability, reproducibility and gamma values for the 4th inter-laboratory exercise

|               | Repeatability, % | Reproducibility, % | Robustness (γ) |
|---------------|------------------|--------------------|----------------|
| Benzene       | 4.26             | 8.38               | 2.05           |
| Toluene       | 3.97             | 9.15               | 2.36           |
| Ethyl-benzene | 6.44             | 12.22              | 1.99           |
| m,p-Xylene    | 7.46             | 14.31              | 2.06           |
| o-Xylene      | 6.02             | 14.19              | 2.34           |

(EUR 28692 EN 2017).

#### Annex 5.- Conversion factors for data reporting

Table A 5.- .  $\mu g/m^3$  to ppb (v/v) conversion factors

|               | Conversion factor |
|---------------|-------------------|
|               | µg/m3 / ppb (v/v) |
|               |                   |
| Benzene       | 3.25              |
| Toluene       | 3.83              |
| Ethyl-benzene | 4.41              |
| Xylenes       | 4.41              |

ppb(m/m) to ppb(v/v) factors were not taken into account.
#### **Annex 6.- Scattering of Laboratory Results**

The scattering of results is represented in terms of biases with respect to the reference value or deviations of the reference value with respect to the reported laboratory value when this value is lower than the reference's one:

$$bias(\%) = deviation(\%),$$
  

$$bias(\%) = \frac{deviation(\%)}{100 + deviation(\%)} \cdot 100,$$

if laboratory value > reference value
if laboratory value < reference value</pre>



Figure A 1.- Results of the inter-laboratory comparison: Deviation (%)



#### Annex 7.- h and k statistic results of the inter-laboratory comparison



Figure A 2.- Benzene: initial and converged h and k statistics

Figure A 3.- Toluene: initial and converged h and k statistics





Figure A 4.-Ethyl-benzene: initial and converged h and k statistics

Figure A 5.- m,p-Xylene: initial and converged h and k statistics





Figure A 6.- o-Xylene: initial and converged h and k statistics

Figure A 7.- Percentage of outliers identified by laboratory and compound



Annex 8.- Analysers and method description from participating laboratories

| EKONERG     |  |
|-------------|--|
| ISPRA       |  |
| <u>DLI</u>  |  |
| GIOS        |  |
| VMM         |  |
| EPA         |  |
| REE         |  |
| LIKZ        |  |
| AAA         |  |
| DCMR        |  |
| ΑΡΡΑ        |  |
| <u>SHMU</u> |  |
| IPH_S       |  |
| JRC-ERLAP   |  |

| Participating Laboratory         | EKONERG           |             |              |                  |            |         |  |
|----------------------------------|-------------------|-------------|--------------|------------------|------------|---------|--|
| Acronym                          |                   |             |              |                  |            | EKONERG |  |
| Deven (a) er er allele           |                   |             |              |                  |            |         |  |
| Person(s) responsible            | F                 | reoragi     | hercog (A    | KA Jean-L        | uc Picard) |         |  |
| Contact e-mails:                 |                   |             | oregraginero | oglevekonerg.    | hr         |         |  |
| relephone contact:               |                   |             | DITE         |                  |            |         |  |
| C                                | haracteristi      | c of you    | IT BIEX (    | analyser         |            |         |  |
| I rademark                       |                   |             |              |                  |            |         |  |
| Model:                           |                   |             |              |                  |            |         |  |
| Version:                         |                   |             | Chromatot    | ec airmoVU       | C          |         |  |
| Year of manufacture: GC 866      |                   |             |              |                  |            |         |  |
|                                  | Helium            | Nitrogen    | Hudrogen     | Carbon dio       | a ĉir      |         |  |
| Carrier das:                     | rielian           | ratioger    | nac          | Carbonalo        |            |         |  |
| Other gases used:                |                   |             | 900          |                  |            |         |  |
| Other gases used.                | I                 |             |              |                  |            |         |  |
| Operating system:                |                   |             | Vista        | achrom           |            |         |  |
|                                  |                   |             |              |                  |            |         |  |
| Cycle time, min:                 |                   |             |              | 15               |            |         |  |
| Adsorbent material:              |                   |             | Carb         | opack B          |            |         |  |
| Sampling control                 |                   |             |              |                  |            |         |  |
| Sampling temperature, 'C         |                   |             |              |                  |            |         |  |
| Sample volume, ml                |                   |             |              |                  |            |         |  |
| Number of adsorbent tube         |                   |             |              |                  |            |         |  |
| Desorption temperature,          |                   |             |              |                  |            |         |  |
| Desorption time, sec             |                   |             |              |                  |            |         |  |
| Desorption flow, ml/min          |                   |             |              |                  | _          |         |  |
| Cryo-trap detail                 |                   |             |              |                  |            |         |  |
| Trapping temperature, 'C         | Ambient temp      | perature    |              |                  | -          |         |  |
| Desorption temperature, 'C       |                   | Desorpt     | ion time, si |                  | 4          |         |  |
| Desorption flow, milimin         |                   | split flow  | , ml/min     |                  |            |         |  |
| Stripper column                  |                   |             |              |                  |            |         |  |
| Analytical column                |                   |             |              |                  |            |         |  |
| phase:                           |                   |             |              |                  |            |         |  |
| length, m:                       |                   |             |              |                  |            |         |  |
| diameter (ID) mm:                |                   |             |              |                  |            |         |  |
| thickness (µm):                  |                   |             |              |                  |            |         |  |
| analytical conditions:           |                   |             |              |                  |            |         |  |
| Trac                             | eability of 🔅     | your ca     | libration    | ı Standari       | 1          |         |  |
| Certified reference material (CR |                   |             | C            | BM               |            |         |  |
| Certified by                     |                   | Hun         | igarian met  | eorology se      | rvice      |         |  |
| Certified number:                |                   |             | 128/2017     |                  |            |         |  |
| Compound                         | Concontration, pp | b (mal/mal) | ExpandedU    | Incortainty, app | b(mal/mal) |         |  |
| Benzene                          | 1380              |             |              | 75               |            |         |  |
| Toluene                          | 1319              |             |              | 72               |            |         |  |
| Ethyl-benzene                    | 1255              |             |              | 69               |            |         |  |
| m+p-Xylene                       | 2699              |             |              | 146              |            |         |  |
|                                  |                   |             |              |                  |            |         |  |
| o-Xylene                         | 1326              |             |              | 73               |            |         |  |
| Other methods                    |                   |             |              |                  |            |         |  |
| Dilution of CRM                  |                   | yes         | (dynymic di  | ilution wth M    | IFCs)      |         |  |
| Static Injection                 |                   |             |              |                  |            |         |  |
| Permeation                       |                   |             |              |                  |            |         |  |
|                                  |                   |             |              |                  |            |         |  |



EKONERG d.o.o. ◆ Odjel za mjerenja i analitiku Umjerni laboratorij, Koranska 5, HR-10000 Zagreb Tel: +385 (0)1 6000-111; Faks: +385 (0)1 6171-560



## POTVRDA O UMJERAVANJU

CALIBRATION CERTIFICATE

#### Br./No. 158/2019

| Radni nalog<br>Work order                     | I-02-3024/19                                                    |
|-----------------------------------------------|-----------------------------------------------------------------|
| Kupac<br>Customer                             | Ekonerg d.o.o.<br>Umjerni laboratorij                           |
| Adresa kupca<br>Customer address              | Koranska 5, HR-10000 Zagreb                                     |
| Naziv analizatora<br>Calibrated analyzer      | Analizator benzena                                              |
| Proizvođač<br>Manufacturer                    | CHROMATOTEC                                                     |
| Tip<br>Type                                   | airTOXIC GC 866                                                 |
| Serijski broj<br>Serial number                | 23140414                                                        |
| Veličina<br>Quantity                          | Koncentracija C <sub>6</sub> H <sub>6</sub> / µg/m <sup>3</sup> |
| Mjerno područje<br>Measurement range          | 0 – 50 µg/m <sup>3</sup> (0 – 15 nmol/mol)                      |
| Mjesto umjeravanja<br>Location of calibration | Umjerni laboratorij, Zagreb, Koranska 5                         |
| Datum primitka<br>Date of receipt             | 9.9.2019.                                                       |
| Datum umjeravanja<br>Date of calibration      | 12.9.2019.                                                      |
| Umjeravanje proveo<br>Calibration provided by | Predrag Hercog                                                  |
| Broj stranica<br>Number of pages              | 4                                                               |
| Datum izdanja<br>Date of issue                | 16.9.2019.                                                      |

Voditelj Umjernog laboratorija Head of Calibration Laboratory

Zlatko Grgić, dipl.ing.univ.spec.

Direktor Odjela za mjerenja i analitiku

Director of MA Department

Bojan Abramović, dipl.ing.

Potvrda o umjeravanju nije valjana bez potpisa. Umnožavanje je dopušteno samo u cijelosti. Calibration certificate without signatures is not valid. This certificate may not be reproduced other than in full.

#### 1. POSTUPAK UMJERAVANJA / CALIBRATION PROCEDURE

Umjeravanje je provedeno izravnom metodom umjeravanja u nekoliko točaka opisanom u protokolu eLAB imisijskih analizatora, izdanje 6, 2017-04-12, točka 3.5.5. Provjera funkcionalnosti provedena je sukladno istom Dodataka, odstupanja i izuzetaka od metode nema.

#### EKONERG

Calibration was performed by direct calibration procedure at several points as described in the protocol eLAB-PU-101, Calibration of imission analyzer, issue 6, 2017-04-12, clause 3.5.5. Functional tests are provided according to the same protocol, clause 3.4. There are no additions to, deviations, nor exclusions from the method.

#### 2. UMJERNA OPREMA / CALIBRATION EQUIPMENT

| Oprema ili materijal<br>Equipment or material            | Oznaka<br>Label | Namjena<br>Purpose                                                            | Proizvođač<br>Manufacturer |
|----------------------------------------------------------|-----------------|-------------------------------------------------------------------------------|----------------------------|
| Certificirani referentni plin<br>Certified reference gas | RPI-C6H6/1.5    | Izvor referentnog plina.<br>Source of the reference gas.                      | Messer                     |
| Sustav za dobivanje nultog zraka<br>Zero gas generator   | UM-GNZ1         | Izvor nultog plina.<br>Source of the zero gas.                                | Horiba                     |
| Referentni kalibrator<br>Reference dilution unit         | UM-KAL2         | Jedinica za miješanje plinova.<br>Gas dilution unit.                          | Horiba                     |
| Termohigrometar<br>Thermo-hygrometer                     | UM-THM1         | Mjerenje temperature i vlažnosti.<br>Measurement of temperature and humidity. | Rense                      |
| Tlakomjer<br>Pressure gauge                              | UM-TLK1         | Mjerenje tlaka.<br>Measurement of pressure.                                   | Wika                       |

#### 3. MJERNA SLJEDIVOST / MEASUREMENT TRACEABILITY

| Oprema ili materijal<br>Equipment or material            | Umjerni laboratorij<br>Calibration laboratory | Broj i datum certifikata<br>Number and date of the certificate                                                     |  |  |
|----------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|
| Certificirani referentni plin<br>Certified reference gas | Hungarian Meteorological<br>Service           | Calibration Certificate No.155/2019, 19.6.2019.                                                                    |  |  |
| Referentni kalibrator<br>Reference dilution unit         | Český metrologický institut                   | Certificate of Calibration 6013-KL-M0074-19, 30.1.2019.<br>Certificate of Calibration 6013-KL-M0075-19, 30.1.2019. |  |  |

#### 4. UVJETI OKOLIŠA I AMBIENT CONDITIONS

| Temperatura zraka / Air Temperature:                 | 23 ± 2 °C    |
|------------------------------------------------------|--------------|
| Relativna vlažnost zraka / Relative Humidity of Air: | 44 ± 5 %     |
| Tlak / Pressure:                                     | 1008 ± 5 hPa |

#### 5. BAZNA OSJETLJIVOST / BASE SENSITIVITY

|      | PRIJE UGAĐANJA /<br>BEFORE ADJUSTMENT | NAKON UGAĐANJA /<br>AFTER ADJUSTMENT |
|------|---------------------------------------|--------------------------------------|
| B.S. | 2517.00                               | 4716,55                              |

#### 6. UGAĐANJE/ ADJUSTMENT

Ugađanje analizatora provedeno je pri c( $C_6H_6$ )= 40,0 µg/m<sup>3</sup> (12,3 nmol/mol). Adjustment of the analyzer is provided at c( $C_6H_6$ )= 40,0 µg/m<sup>3</sup> (12,3 nmol/mol).

| eLAB-PU-100.Ob2/izd.1 | http://www.ekonerg-laboratorij.com/                              | stranica |
|-----------------------|------------------------------------------------------------------|----------|
| 1-02-3024/19          | Potvrda o umjeravanju br. / Calibration certificate no. 158/2019 | 2/4      |

#### 7. REZULTATI UMJERAVANJA/ CALIBRATION RESULTS

#### **EKONERG**

| c,ref / µg/m <sup>3</sup> | c,an / µg/m <sup>3</sup> | Δc,an / µg/m <sup>3</sup> | U,ref / µg/m <sup>3</sup> |     |  |
|---------------------------|--------------------------|---------------------------|---------------------------|-----|--|
| 0,0                       | 0,0                      | 0,0                       | 0,0                       | 0,2 |  |
| 5,0                       | 4,9                      | -0,1                      | 0,1                       | 0,1 |  |
| 30,0                      | 30,5                     | 0,5                       | 1,8                       | 1,8 |  |
| 40,0                      | 40,6                     | 0,6                       | 2,4                       | 2,4 |  |
| 48,1                      | 49,8                     | 1,7                       | 2,8                       | 2,9 |  |

crer - koncentracija referentnog plina / reference gas concentration

 $\Delta c_{av}$  – koncentracija reletentog prima rieneruce gas concentration indicated by analyzer  $\Delta c_{av}$  – koncentracija plina koju pokazuje analizator / gas concentration indicated by analyzer  $\Delta c_{av}$  – odstupanje analizatora / deviation of the analyzer  $U_{av}$  – proširena mjerna nesigumost umjeravanja referentnog plina / expanded measurement uncertainty of reference gas  $U_{av}$  – proširena mjerna nesigumost analizatora / expanded measurement uncertainty of analyzer

\*nmol/mol uz usvojenu pretpostavku idealnog plina odgovara ppbv

\*nmol/mol with the assumption of ideal gas corresponds to ppby

faktor pretvorbe/conversion factor: 1 ppb = 1 nmol/mol = 3,24 µg/m3

Rezultati se odnose samo na umjereni analizator. The results are related only to calibrated analyzer.

## 8. PROVJERA KARAKTERISTIKA / PERFORMANCE CHARACTERISTICS TESTS

| Broj prema<br>Tablici 1<br>norme HRN<br>EN 14662-3<br>Number<br>according to<br>Table 1 of the<br>EN 14662-3 | <b>Oznaka</b><br>Symbol | Karakteristika<br>Characteristic                                                              | Rezultat<br>provjere<br>(μm <sup>-3</sup> ili %)<br>Result of the<br>check<br>(μm <sup>-3</sup> or %) | Granice<br>prihvatljivosti<br>Acceptance<br>limits | Sukladnost<br>Compliance |
|--------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------|
| 1                                                                                                            | S <sub>77</sub>         | ponovljivost na 1/10 GV (0,5<br>µg/m <sup>3</sup> )<br>repeatability at 0,5 µg/m <sup>3</sup> | 0,02                                                                                                  | ≤ 0,20 µgm <sup>.s</sup>                           | Zadovoljava<br>Complies  |
| 2                                                                                                            | <b>S</b> r,ct           | ponovljivost na graničnoj<br>vrijednosti<br>repeatability at limit value                      | 0,05                                                                                                  | ≤ 0,25 µgm <sup>-3</sup>                           | Zadovoljava<br>Complies  |
| 3                                                                                                            | rmax                    | nelinearnost, najveće<br>odstupanje<br>lack of fit, largest residual                          | 1,0 %                                                                                                 | ≤ 5,0 %                                            | Zadovoljava              |
| formula<br>(3)                                                                                               | I <sub>det</sub>        | granica detekcije<br>detection limit                                                          | 0,06                                                                                                  | N/A                                                | New York                 |
| 11                                                                                                           | D <sub>s,s</sub>        | kratkotrajni odmak na<br>rasponu<br>short term drift at span value                            | 0,13                                                                                                  | ≤ 2,0 µgm <sup>-z</sup>                            | Zadovoljava<br>Complies  |

#### ZAKLJUČAK / CONCLUSION

Analizator zadovoljava granice prihvatljivosti definirane normom HRN EN 14662-3:2015. Analyzer complies with the acceptance limits according to EN 14662-3:2015.

| eLAB-PU-100.Ob2/izd.1 | http://www.ekonerg-laboratorij.com/                              | stranica |
|-----------------------|------------------------------------------------------------------|----------|
| 1-02-3024/19          | Potvrda o umjeravanju br. / Calibration certificate no. 158/2019 | 3/4      |

#### 9. ODZIV ANALIZATORA / ANALYZER RESPONSE



#### 10. MJERNA NESIGURNOST / MEASUREMENT UNCERTAINTY

Izražena proširena mjerna nesigurnost umjeravanja prikazana je kao umnožak sastavljene mjerne nesigurnosti i faktora pokrivanja k=2, koji u slučaju normalne razdiobe odgovara približno 95%-tnoj vjerojatnosti pokrivanja. Sastavljena mjerna nesigurnost određena je u skladu s EA-4/02.

The reported expanded measurement uncertainty is stated as combined standard uncertainty multiplied by coverage factor k=2 which for a normal distribution corresponds to a coverage probability of approximately 95%. The standard measurement uncertainty has been determinated in accordance with EA-4/02.

#### 11. NAPOMENA / NOTE

Korisnik analizatora odgovoran je umjeravati ga u prikladnim vremenskim razmacima. The user is obligated to have the analyzer recalibrated at appropriate intervals.

----- kraj potvrde o umjeravanju (end of calibration certificate) -----

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Istituto Superiore per la Protezione e Ricerca Ambientale    |                                  |                             |                       |                         |                     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------|-----------------------------|-----------------------|-------------------------|---------------------|--|
| Participating Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              |                                  |                             |                       |                         | ISPRA               |  |
| Acresym                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                  | 151                         | PRA                   |                         |                     |  |
| Person(s) responsible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              | dr. Damiano Centioli             |                             |                       |                         |                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | damiana.centia                                               | damiana.contiali@irorambionto.it |                             |                       |                         |                     |  |
| Contact e-mails:<br>Telephone contact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | fabia.cadani@irerambiente.it<br>+390650073214: +390650073227 |                                  |                             |                       |                         |                     |  |
| Cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Characteristic of your BTEX analyses                         |                                  |                             |                       |                         |                     |  |
| Trademark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OBION S.r.1./S                                               | SBI                              |                             | anaiyse               | •                       |                     |  |
| Model:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Orion BTX20                                                  | 00/SRI 86                        | 510C                        |                       |                         |                     |  |
| Version:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              |                                  |                             |                       |                         |                     |  |
| Year of manufacture:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2006                                                         |                                  |                             |                       |                         |                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                  |                             |                       |                         |                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Helium                                                       | Nitrogen                         | Hydrogen                    | Carbon diox           | Air                     |                     |  |
| Carrier gas:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              | Xyes                             |                             |                       |                         |                     |  |
| Uther gases used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |                                  |                             |                       | X yes                   |                     |  |
| Operating system:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |                                  |                             | dowe                  |                         |                     |  |
| operating system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |                                  | WIN                         | 100W5                 |                         |                     |  |
| Cycle time, min:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                  | 23 + 1 m                    | in standby            |                         |                     |  |
| Adsorbent material:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                                  | TEN                         | AX GR,                |                         |                     |  |
| Sampling control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                  | P                           | ump                   |                         |                     |  |
| Sampling temperature, 'C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ambie                                                        | nt                               |                             |                       |                         |                     |  |
| Sample volume, ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |                                  |                             |                       |                         |                     |  |
| Number of adsorbent tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                            |                                  |                             |                       |                         |                     |  |
| Desorption temperature,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                  |                             |                       |                         |                     |  |
| Desorption time, sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |                                  |                             |                       |                         |                     |  |
| Desorption How, mirmin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |                                  | J                           |                       |                         |                     |  |
| Trapping temperature 'C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35                                                           |                                  |                             |                       |                         |                     |  |
| Desorption temperature, 'C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200                                                          | Desorpti                         | ion time. se                | 210                   | 1                       |                     |  |
| Desorption flow, ml/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                                                           | split flov                       | v, ml/min                   |                       |                         |                     |  |
| Stripper column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                  |                             |                       |                         |                     |  |
| Analytical column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              | P3                               | acked REST                  | 'EK cat. <b>#</b> 801 | 29                      |                     |  |
| phase:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              | 5% RT120                         | 0/5% Bento                  | ne on 100/120         | ) Silcopor              | t                   |  |
| length, m:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                            |                                  |                             |                       |                         |                     |  |
| diameter (ID) mm:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                            | {                                |                             |                       |                         |                     |  |
| thickness (µm):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                  | T - 90'0 h                  |                       |                         |                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | abilita – f                                                  |                                  | i = ou C ha                 | na ror 23 mir         | and a                   |                     |  |
| Currific de circument de la companya | ability of y                                                 |                                  | andratio                    | alsoetto h            |                         | . 4                 |  |
| Certified by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ga:                                                          | DSp A -                          | vr accordine                | alibration lab        | NO LATA                 | 14.3                |  |
| Certified number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 010                                                          | G0355                            | 19 23/05                    | /2019                 |                         |                     |  |
| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oncontration. p                                              | pb (mal/ma                       | ExpandedU                   | ncortainty, spp       | b(mal/mal               |                     |  |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.98                                                         | 1                                |                             | 0.20                  |                         |                     |  |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.98                                                         | 1                                |                             | 0.2                   |                         |                     |  |
| Ethyl-benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.98                                                         | 1                                |                             | 0.28                  |                         |                     |  |
| m-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.01                                                        | 1                                |                             | 0.41                  |                         |                     |  |
| p-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.99                                                         | I                                |                             | 0.37                  |                         |                     |  |
| o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                           |                                  |                             | 0.38                  |                         |                     |  |
| Other methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |                                  |                             |                       |                         |                     |  |
| Dilution of CRM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RM" at nomi<br>dilutio                                       | inal concei<br>on system         | ntration 40<br>calibrated f | 0 ppb diluted         | l by ORIO<br>Isbin, LAT | N OGD2000<br>n. 159 |  |
| Static Injection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                                                        |                                  |                             | ,                     |                         |                     |  |
| Permeation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                              |                                  |                             |                       |                         |                     |  |
| Additional comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                                  |                             |                       |                         |                     |  |
| *RM by SIAD S.p.A. Certified number: 14474 (not accredited)<br>Concentration ppb: benzene 410 ±32, toluene 395 ±31, Ethyl-benzene 403±32, m-xylene 392±31,<br>p-xylene 391 ±31, o-xylene 395±31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                  |                             |                       |                         |                     |  |





Laboratorio di Metrologia. S.S. 525 del Brembo, 1 24040 Osio Sopra (BG) e-mail: ricerca@siad.eu http://www.siad.eu

### Centro di Taratura LAT Nº 143 Calibration Centre Laboratorio Accreditato di Taratura





Pagina 1 di 3 Page 1 di 3

#### CERTIFICATO DI TARATURA LAT 143 G035519 Certificate of Calibration

| - data di emissione<br>date of issue<br>- cliente<br>customer<br>- destinatario<br>receiver                                                                                                                                                                                    | 2019-05-23<br>ORION SRL<br>ISPRA IST.SUP.PROT.RIC.AM VIA CAS<br>00144 ROMA RM | Il presente certificato di taratura è emesso in<br>base all'accreditamento LAT N° 143 rilasciato in<br>accordo al decreti attuativi della legge n.<br>273/1991 che ha istituito il Sistema Nazionale di<br>Taratura (SNT). ACCREDIA attesta le capacità di                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - richiesta<br>application<br>- in data<br>date<br>Si riferisce a<br>referring to<br>- oggetto<br>utem                                                                                                                                                                         | RF 238902<br>2019-04-19<br>Miscela Gassosa: ISO 6142-1:2015<br>Classe 1       | misura e di taratura, le competenze metrologiche<br>del Centro e la riferibilità delle tarature eseguite ai<br>campioni nazionali e internazionali delle unità di<br>misura del Sistema Internazionale delle Unità (SI).<br>Questo certificato non può essere riprodotto in<br>modo parziale, salvo espressa autorizzazione<br>scritta da parte del Centro.                                                                                                                                                                                                                                                      |
| costruttore<br>manufacturer<br>modello<br>model<br>matricola<br>serial number<br>data di ricevimento oggetto<br>date di receipt of item<br>data delle misure<br>data delle misure<br>data delle misure<br>data delle misure<br>registro di laboratorio<br>faboratory reference | SIAD S.p.A Centro LAT N° 143<br>G-CGM<br>260420<br>-<br>2019-05-16<br>058     | This certificate of calibration is issued in compliance with<br>the accreditation LAT N* 143 granted according to<br>decrees connected with Italian law No. 273/1991 which<br>has astablished the National Calibration System.<br>ACCREDIA attests the calibration and measurement<br>capability, the metrological competence of the Centre and<br>the traceability of calibration results to the national and<br>international standards of the International System of<br>Units (SI). This certificate may not be partially<br>reproduced, except with the prior written permission of<br>the (result Canter). |

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure di taratura citate alla pagina seguente, dove sono specificati anche i campioni o gli strumenti che garantiscono la catena di riferibilità del Centro e i rispettivi certificati di taratura in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente specificato.

The measurement results reported in this Certificate were obtained following the Calibration procedures given in the following page, where the reference standards or instruments are indicated which guarantee the traceability chain of the laboratory, and the related calibration certificates in the course of validity are indicated as well. They rotate only to the calibrated item and they are valid for the time and conditions of utilitations. unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente alla Guida ISO/IEC 98 e al documento EA-4/02. Solitamente sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente ad un livello di fiducia di circa il 95%. Normalmente tale fattore k vale 2.

The measurement uncertainties stated in this document have been determined according to the ISO/IEC Guide 98 and to EA-4/02. Usually, they have been estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2.

> Direzione tecnica Approving Officer

gio Bjissolotti Ing

| Participating Laboratory        | Air Quality Section, Department of Labour Ins |                                                      |                                           |                           |             |                |  |
|---------------------------------|-----------------------------------------------|------------------------------------------------------|-------------------------------------------|---------------------------|-------------|----------------|--|
| Acronym                         | AQS DLI DLI                                   |                                                      |                                           |                           |             | DLI            |  |
| Person(s) responsible           | Christos Kizas & Christos Papadopoulos        |                                                      |                                           |                           |             |                |  |
| Contact e-mails:                | <u>okiza</u>                                  | ckizas@dli.mlsi.gov.cy.cpapadopoulos@dli.mlsi.gov.cy |                                           |                           |             |                |  |
| Telephone contact:              |                                               | 00357-22-405674, 00357-22-405683                     |                                           |                           |             |                |  |
| C                               | haracteristic of your BTEX analyser           |                                                      |                                           |                           |             |                |  |
| Trademark                       |                                               |                                                      | Chro                                      | matotec                   |             |                |  |
| Model:                          |                                               |                                                      | airmoV                                    | OC(BTEX)                  |             |                |  |
| Version:                        |                                               |                                                      |                                           |                           |             |                |  |
| Year of manufacture:            | 2018                                          | 2018                                                 |                                           |                           |             |                |  |
|                                 |                                               |                                                      |                                           |                           |             |                |  |
|                                 | Helium                                        | Nitrogen                                             | Hydrogen                                  | Carbon dioxi              | Air         |                |  |
| Carrier gas:                    |                                               |                                                      | yes                                       |                           |             |                |  |
| Other gases used:               |                                               |                                                      |                                           |                           | yes         |                |  |
|                                 |                                               |                                                      |                                           |                           |             |                |  |
| Operating system:               |                                               |                                                      | MS-V                                      | /indows                   |             |                |  |
| Cycle time, min:                |                                               |                                                      |                                           | 15                        |             |                |  |
| Adsorbent material:             | TENAX                                         | GR, Carbo                                            | pack B, CA                                | RBOPACK >                 | (, CARBO    | PACKIC         |  |
| Sampling control                |                                               |                                                      | critic                                    | al orifice                |             |                |  |
| Sampling temperature, "C        | ambie                                         | ambient                                              |                                           |                           |             |                |  |
| Sample volume, ml               | 482.3                                         | 482.35                                               |                                           |                           |             |                |  |
| Number of adsorbent tubes       | 1                                             | 1                                                    |                                           |                           |             |                |  |
| Desorption temperature, *0      | 380                                           |                                                      |                                           |                           |             |                |  |
| Desorption time, sec            | 120                                           |                                                      |                                           |                           |             |                |  |
| Desorption flow, ml/min         |                                               |                                                      |                                           |                           |             |                |  |
| Cryo-trap detail                | NłA                                           |                                                      |                                           |                           |             |                |  |
| Trapping temperature, 'C        |                                               |                                                      |                                           |                           | ,           |                |  |
| Desorption temperature, 'C      |                                               | Desorpti                                             | on time, sei                              |                           |             | -              |  |
| Desorption flow, ml/min         |                                               | split flow,                                          | ml/min                                    |                           |             |                |  |
| Stripper column                 |                                               |                                                      |                                           |                           |             |                |  |
| Analytical column               |                                               |                                                      | IMX                                       | 30 CE                     |             |                |  |
| pnase.                          | 20                                            |                                                      |                                           |                           |             |                |  |
| diameter (ID) mm:               | 0.28                                          |                                                      |                                           |                           |             |                |  |
| thickness (um):                 | 0.20                                          |                                                      |                                           |                           |             |                |  |
| anovness (prn).                 | Oven 40 - Ioc                                 | ) <del>С, 3-4 m</del>                                | IIII III III III IIII IIII IIII IIII IIII | (camer gas), <del>r</del> |             | 110/1101 F6 27 |  |
| analytical conditions:          |                                               |                                                      | m                                         | limin                     |             |                |  |
| Tra                             | ceability of                                  | your ca                                              | libration                                 | Standard                  |             |                |  |
| Certified reference material (C | VSLI                                          | Primary Re                                           | eference Ga                               | as Mixture (B1            | EX in nitro | ogen)          |  |
| Certified by                    |                                               | VS                                                   | L, Dutch M                                | etrology Instit           | ute         |                |  |
| Certified number:               |                                               | 0                                                    | 1336210,04                                |                           |             |                |  |
|                                 | Concentration, pp                             | ob (mol/mol                                          | Expanded L                                | Jncertainty, ±pp          | b(mol/mol)  | -              |  |
| Benzene                         | 681 x 10°° m                                  | ol/mol                                               | 20                                        | J x 10° mol/mo            |             |                |  |
| Toluene                         | 683 x 10°° п                                  | ol/mol                                               | 20                                        | 0 x 10° mol/ma            | bl          |                |  |
| Ethyl-benzene                   | 693 x 10° m                                   | ol/mol                                               | 2                                         | 1 x 10° mol/mo            | d .         |                |  |
| m-Xylene                        | 665 x 10°° m                                  | ol/mol                                               | 20                                        | ) x 10° mol/ma            | bl          |                |  |
| p-Xylene                        | 662 x 10° m                                   | ol/mol                                               | 20                                        | ) x 10° mol/ma            | bl          |                |  |
| o-Xylene                        | 686 x 10° m                                   | ol/mol                                               | 2                                         | 1 x 10° mol/ma            | )l          |                |  |
| Other methods                   |                                               |                                                      |                                           |                           |             |                |  |
| Dilution of CRM                 |                                               | Sa                                                   | ibio 4010, R                              | ange: ~ 1 - 20 p          | pb          |                |  |

|    | 1 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                 | DLI          |
|----|---|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|    |   | MAIN                    | CERTIFICA                                                                                                                                                                                                                                                                                                                                                                                                       | TE           |
| DM |   |                         | Number C1336210.0<br>Page 1 of 3                                                                                                                                                                                                                                                                                                                                                                                | 4            |
|    |   |                         | Reference material of BTEX in nitrogen                                                                                                                                                                                                                                                                                                                                                                          |              |
|    |   | Description             | Primary reference gas mixture (PRM), cylinder number APEX1223926.<br>The cylinder contains a mixture of BTEX in nitrogen.<br>The PRM is contained in a passivated aluminium cylinder. The cylinder has a<br>water volume of 5 L and is pressurized to 12.1 MPa.<br>Cylinder outlet conforms to DIN 1 specifications.                                                                                            |              |
| c  |   | Method of preparation   | Gravimetric preparation in accordance with ISO 6142-1:2015.                                                                                                                                                                                                                                                                                                                                                     |              |
|    |   | Result                  | The results are presented on page 2.                                                                                                                                                                                                                                                                                                                                                                            |              |
| R  |   |                         | The reported uncertainty of measurement is based on the standard uncertain<br>multiplied by a coverage factor $k = 2$ , which for a normal distribution<br>corresponds to a coverage probability of approximately 95 %. The standard<br>uncertainty of measurement has been determined in accordance with the G<br>'Evaluation of measurement data - Guide to the expression of uncertainty in<br>measurement'. | nty<br>UM    |
|    |   | Traceability            | The values on this certificate are traceable to VSL Primary Standards.                                                                                                                                                                                                                                                                                                                                          |              |
|    |   | Safety<br>information   | The cylinder should be handled with care and by experienced personnel in a<br>laboratory environment suitably equipped for the safe handling of gaseous<br>materials.                                                                                                                                                                                                                                           |              |
|    |   | Instructions for<br>use | The gas mixture can be used to validate and/or calibrate analytical methods<br>equipment.<br>Do not use the cylinder in case the cylinder pressure is below 1 MPa.<br>Further instructions regarding the handling of calibration gases can be foun<br>ISO 16664:2017.                                                                                                                                           | and<br>Id in |
|    |   | Expiry date             | This certificate is valid until 7 October 2020.                                                                                                                                                                                                                                                                                                                                                                 |              |
|    |   |                         | Delft, 27 November 2017<br>VSL B.V.<br>J.J.T. van Wijk<br>Senior Metrologist                                                                                                                                                                                                                                                                                                                                    |              |
|    |   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                 |              |

| VSL B.V.                          | This certificate is issued under the provision that no liability is  |
|-----------------------------------|----------------------------------------------------------------------|
| Thijsseweg 11, 2629 JA Delft (NL) | accepted and that the applicant gives warranty for each              |
| P.O. Box 654, 2600 AR Delft (NL)  | responsibility against third parties.                                |
| T +31 15 269 15 00                | Reproduction of the complete certificate is permitted. Parts of this |
| F +31 15 261 29 71                | certificate may only be reproduced after written permission.         |

#### Details on how you have calculated your analytical uncertainties from your calibration data

The uncertainties were calculated as follows:

- Using a home made software (excel worksheet) we calculated the uncertainty due to dilution. This includes the uncertainty of the gas standard, the uncertainty of the primary flow-meter used for the calibration of the Mass Flow Controllers of the Calibrator (Sabio 4010), the uncertainties of the MFCs etc.

- To calculate the final uncertainty we introduce the above uncertainty into a home made software (excel worksheet) prepared according to the requirements of the EN 14662-3: 2015.

| C                               | haracteristi              | c of you            | r BTEX a     | nalyser                        |            |             |
|---------------------------------|---------------------------|---------------------|--------------|--------------------------------|------------|-------------|
| Trademark                       |                           | Syntech Spectras    |              |                                |            |             |
| Model:                          |                           | GC955-601           |              |                                |            |             |
| Version:                        |                           |                     |              |                                |            |             |
| Year of manufacture:            | 2018                      |                     |              |                                |            |             |
|                                 |                           |                     |              |                                |            |             |
|                                 | Helium                    | Nitrogen            | Hydrogen     | Carbon dioxi                   | Air        |             |
| Carrier gas:                    | -                         | yes                 |              |                                |            |             |
| Other gases used:               |                           |                     |              |                                | yes        |             |
|                                 |                           |                     |              |                                |            |             |
| Uperating system:               | Operating system: Vindows |                     |              |                                |            |             |
| Cuele time, min:                |                           |                     | 15           | min                            |            |             |
| Adsorboot material:             |                           |                     |              |                                |            |             |
| Sampling control                |                           |                     | Pisto        |                                |            |             |
| Sampling temperature 10         | Ambient tem               | perature            | 113(0        | n panip                        |            |             |
| Sample volume. ml               | 35                        | Personal and        |              |                                |            |             |
| Number of adsorbent tubes       | 1                         |                     |              |                                |            |             |
| Desorption temperature,         | 180                       |                     |              |                                |            |             |
| Desorption time, sec            | 26                        |                     | 1            |                                |            |             |
| Desorption flow, ml/min         | 1.5                       |                     | 1            |                                |            |             |
| Cryo-trap detail                |                           |                     |              |                                | ]          |             |
| Trapping temperature, 'C        |                           |                     |              |                                | •          |             |
| Desorption temperature, 'C      |                           | Desorpti            | on time, see |                                | ]          |             |
| Desorption flow, ml/min         |                           | split flow,         | , ml/min     |                                | ]          |             |
| Stripper column                 |                           | SY-5                | 15m, 0.32 m  | n <mark>m ID, 1 μm filr</mark> | n, 2m,     |             |
| Analytical column               |                           |                     | Syr          | nspec                          |            |             |
| phase:                          |                           |                     |              |                                |            |             |
| length, m:                      | 12                        |                     |              |                                |            |             |
| diameter (ID) mm:               | 0.32                      |                     |              |                                |            |             |
| thickness (µm):                 | 1                         |                     |              |                                |            |             |
| analutical conditions:          | 50°C (1-3r                | nin), 10°C <i>h</i> | min. 70°C (5 | i-12min)8°C/r                  | nin.50°C(1 | (3.5-15min) |
| Тга                             | ceability of              | your ca             | libration    | Standard                       |            |             |
| Certified reference material (C |                           |                     | Airl         | iaude                          |            |             |
| Certified by                    |                           |                     | Airl         | Liaude                         |            |             |
| Certified number:               |                           |                     | 9512517018   | 1                              |            |             |
| Compound                        | Concentration, pr         | b (mol/mol          | Expanded L   | Incertainty, ±pp               | b(mol/mol  | 1           |
| Benzene                         | 1142.0                    | 0                   |              | 57.00                          |            | 1           |
| Toluene                         | 1184.0                    | 0                   |              | 118                            |            |             |
| Ethyl-benzene                   | 1274                      |                     |              | 127                            |            |             |
| m+p-Xylene                      | 1200                      |                     |              | 120.00                         |            |             |
|                                 | 1218                      |                     |              | 122                            |            |             |
| o-Xulene                        | 1232                      |                     |              | 123                            |            |             |
| Other methods                   | 1202                      |                     |              | 120                            |            | -           |
| Dilution of CRM                 |                           |                     | MCZ 0        | GM2000                         |            |             |
| Static Injection                |                           |                     |              |                                |            |             |

| IOI UDE |
|---------|
| GIOS    |
| 0105    |

### TEST REPORT

AIR LIQUIDE Deutschland GmbH Bataverstrasse 47 47809 KREFELD

| ORDER DATA                                    |                  |
|-----------------------------------------------|------------------|
| Determination of CeHs, CsHso, C2Hs,           | Certificate No.  |
| CsHso, CeHso and CeHso in AIR                 | 9512517018       |
| Customer :                                    | Date of receipt: |
| AIR LIQUIDE POLSKA SP ZOO                     | 31.07.2017       |
| Al.Pilsudskiego 92<br>41-308 DABROWA GORNICZA |                  |

Durch die DAkkS Deutsche Akkreditierungsstelle GmbH ( DAkks akkreditiertes Prüflaboratorium Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren

Deutsche Akkreditierungsstelle D-PL-14641-01-00

PAGE1 OF 2 Test Report No.: 9512517018 dated 11.08.2017 "No reproduction,except in full,without the written approval of the testing laboratory (AIR LIQUIDE Deutachland GmbH)

| Participating Laboratory        | Vlaamse Milieumaatschappij          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |            |                 |  |
|---------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|------------|-----------------|--|
| Acronym                         | VMM VMM                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |            |                 |  |
|                                 | La Batté Tra France                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |            |                 |  |
| Person(s) responsible           | Jan Petré, Tine Fierens             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |            |                 |  |
| Contact e-mails:                | j.petre@vmm.be.t.fierens@vmm.be     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |            |                 |  |
| Telephone contact:              | 003232166108                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |            |                 |  |
| C                               | haracteristic of your BTEX analyser |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |            |                 |  |
| Trademark                       | Chromatotec                         | Chromatotec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                   |            |                 |  |
| Model:                          | Airmo BTEX                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |            |                 |  |
| Version:                        | Mcerts-A2102                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                   |            |                 |  |
| Year of manufacture:            | 2018                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |            |                 |  |
|                                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |            |                 |  |
|                                 | Helium                              | Nitrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hydrogen              | Carbon dioxi      | Air        |                 |  |
| Carrier gas:                    | no                                  | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | yes                   | no                | yes        |                 |  |
| Other gases used:               |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |            |                 |  |
|                                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |            |                 |  |
| Uperating system:               |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Win 7 e               | mbedded           |            |                 |  |
|                                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |            |                 |  |
| Cycle time, min:                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                    |                   |            |                 |  |
| Adsorbent material:             |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 pha                 | ises L'6          | 70 -       |                 |  |
| Sampling control                |                                     | samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ling pump, «<br>I     | oritical orifice  | /6μΠ       |                 |  |
| Sampling temperature, L         | ambient t                           | emp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                   |            |                 |  |
| Sample volume, mi               | +/- 450                             | ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                   |            |                 |  |
| Number of adsorbent tubes       | 1                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |            |                 |  |
| Desorption temperature,         | 3801                                | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                   |            |                 |  |
| Desorption time, sec            | 120 se                              | ·C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                   |            |                 |  |
| Desorption flow, mirmin         | 3-4 mi/r                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   | 1          |                 |  |
| Cryo-trap detail                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |            |                 |  |
| Trapping temperature, C         |                                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                   | 1          |                 |  |
| Description temperature, C      |                                     | Desorption of the second secon | on time, sei<br>mumin |                   |            |                 |  |
| Stripper colump                 |                                     | I split now,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1111111111            |                   |            |                 |  |
| Appletical column               |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MTE                   | V 20 CE           |            |                 |  |
| nhaiyiicarcolumn<br>nhase       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14116                 | A JUCE            |            |                 |  |
| length m                        | 30 m                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |            |                 |  |
| diameter (ID) mm:               | 0.28 mm                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |            |                 |  |
| thickness (um):                 | 1400                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |            |                 |  |
| anera ress (prin).              | Int                                 | tal 43 C->+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | to C gradiel          | ncz rmin, auro    | ation 60 s | sec             |  |
| analytical conditions:          | Final                               | temp 45->                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 165°C, grad           | ient 157/min, de  | uration 48 | 0 sec           |  |
| Tra                             | ceability of                        | your ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | libration             | Standard          |            |                 |  |
| Certified reference material (C | system MFCai                        | r 10 sl/min,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MFCbtex 1             | 100 sml/min) fi   | om certifi | ied high concer |  |
| Certified by                    | V                                   | 'MM-lab: c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ertified stat         | ndard and dilu    | tion syste | m               |  |
| Certified number:               |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |            |                 |  |
| Compound                        | Concentration, pr                   | ob (mol/mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Expanded L            | Incertainty, ±ppl | b(mol/mol) |                 |  |
| Benzene                         | 4.89                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |            |                 |  |
| Toluene                         | 4.89                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |            |                 |  |
| Ethyl-benzene                   | 4.917                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |            |                 |  |
| m+p-Xylene                      | 4.846                               | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                   |            |                 |  |
|                                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |            |                 |  |
| o-Xulene                        | 4 917                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |            |                 |  |
| Other methods                   | 4.511                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |            | 1               |  |
| Dilution of CBM                 |                                     | AirC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | arate 400 p           | nh dilution sus   | tem        |                 |  |

| Measurement uncertaint<br>following items were in<br>- Uncertainty of refer<br>of calibration);<br>- Uncertainty of trave<br>- Uncertainty of BTEX<br>The expanded uncertain | ies were calculated ac<br>ncluded among other th<br>ence standards/primary<br>lling standard;<br>analyzer.<br>ty (U) equals two time                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cording to EN 14662-3. The<br>lings:<br>y gas mixture (see also contain<br>the combined uncertaint                                                                                                                                                                                                                                                                                                                                                                                                                               | VMM<br>ertificate                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|                                                                                                                                                                              | IATIONAL PHYS<br>Teddington Middlesex UK TW<br>Certificate C<br>NPL PRIMARY REFE<br>Cylinder Numl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ICAL LABORATORY<br>11 OLW Telephone +44 20 8977 3222<br>of Calibration<br>ERENCE MATERIAL<br>ber: D994146R                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                    |
| provides traceability of mea<br>or other recognised nation<br>approval of the issuing labo                                                                                   | isurement to the SI system of units and<br>al metrology institutes. This cortificate r<br>ratory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | for to units of measurement realised at the Ne<br>may not be reproduced other than in full, exc                                                                                                                                                                                                                                                                                                                                                                                                                                  | itional Physical Laboratory<br>apt with the prior written                          |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    |
| CUSTOMER:                                                                                                                                                                    | Flanders Environ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ment Agency (VMM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |
| ADDRESS:                                                                                                                                                                     | Vlaamse Milieuma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | atschappij, Afdeling Lucht, Milieu en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Communicatie,                                                                      |
|                                                                                                                                                                              | Kronenburgstraat 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15 bus B3, 2000 Antwerpen, Belgium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                    |
| CALIBRATION D                                                                                                                                                                | ATE: 11 January 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    |
| AMOUNT FRACT                                                                                                                                                                 | TIONS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    |
| AMOUNT FRACT                                                                                                                                                                 | Component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Amount fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    |
| AMOUNT FRACT                                                                                                                                                                 | Component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Amount fraction<br>/ (nmol/mol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    |
| AMOUNT FRACT                                                                                                                                                                 | Component<br>Benzene<br>Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Amount fraction<br>/(nmol/mol)<br>205.7 ± 4.2<br>206 ± 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |
| AMOUNT FRACT                                                                                                                                                                 | Component<br>Benzene<br>Toluene<br>Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Amount fraction<br>/ (nmol/mol)<br>205.7 ± 4.2<br>206 ± 6<br>207 ± 6                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                    |
| AMOUNT FRACT                                                                                                                                                                 | Component<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-xylene + p-xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Amount fraction<br>/ (nmol/mol)<br>205.7 ± 4.2<br>206 ± 6<br>207 ± 6<br>204 ± 7                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    |
| AMOUNT FRACT                                                                                                                                                                 | TIONS:<br>Component<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-xylene + p-xylene<br>o-xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Amount fraction<br>/ (nmol/mol)<br>205.7 ± 4.2<br>206 ± 6<br>207 ± 6<br>204 ± 7<br>207 ± 6                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                    |
| AMOUNT FRACT                                                                                                                                                                 | TIONS:<br>Component<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-xylene + p-xylene<br>o-xylene<br>1,2-dichloroethane<br>Nitrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Amount fraction<br>/(nmol/mol)<br>205.7 ± 4.2<br>206 ± 6<br>207 ± 6<br>204 ± 7<br>207 ± 6<br>200 ± 10<br>Balance                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    |
| AMOUNT FRACT                                                                                                                                                                 | TIONS:<br>Component<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-xylene + p-xylene<br>o-xylene<br>1,2-dichloroethane<br>Nitrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Amount fraction<br>/ (nmol/mol)<br>205.7 ± 4.2<br>206 ± 6<br>207 ± 6<br>204 ± 7<br>207 ± 6<br>200 ± 10<br>Balance                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |
| AMOUNT FRACT                                                                                                                                                                 | TIONS:<br>Component<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-xylene + p-xylene<br>o-xylene<br>1,2-dichloroethane<br>Nitrogen<br>d uncertainties are based on standard ur<br>of approximately 95 %. The uncertainty<br>require                                                                                                                                                                                                                                                                                                                                                                             | Amount fraction<br>/(nmol/mol)<br>205.7 ± 4.2<br>206 ± 6<br>207 ± 6<br>204 ± 7<br>207 ± 6<br>200 ± 10<br>Balance<br>recrtainties multiplied by a coverage factor k-<br>y evaluation has been carried out in accordance<br>ments.                                                                                                                                                                                                                                                                                                 | <ul> <li>- 2, providing a<br/>ce with UKAS</li> </ul>                              |
| AMOUNT FRACT                                                                                                                                                                 | TIONS:<br>Component<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-xylene + p-xylene<br>o-xylene<br>1,2-dichloroethane<br>Nitrogen<br>d uncertainties are based on standard ur<br>of approximately 95 %. The uncertainty<br>require<br>Preparation: gravimetry; Anal                                                                                                                                                                                                                                                                                                                                            | Amount fraction         / (nmol/mol)         205.7 ± 4.2         206 ± 6         207 ± 6         207 ± 6         200 ± 10         Balance                                                                                                                                                                                                                                                                                                                                                                                        | ~ 2, providing a<br>æ with UKAS<br>)                                               |
| AMOUNT FRACT                                                                                                                                                                 | TIONS:<br>Component<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-xylene + p-xylene<br>o-xylene<br>1,2-dichloroethane<br>Nitrogen<br>d uncertainties are based on standard ur<br>of approximately 95 %. The uncertainty<br>require<br>Preparation: gravimetry; Anal<br>The values on this certificate a                                                                                                                                                                                                                                                                                                        | Amount fraction         205.7 ± 4.2         206 ± 6         207 ± 6         207 ± 6         200 ± 10         Balance                                                                                                                                                                                                                                                                                                                                                                                                             | - 2, providing a<br>ce with UKAS<br>)                                              |
| AMOUNT FRACT                                                                                                                                                                 | TIONS:<br>Component<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-xylene + p-xylene<br>o-xylene<br>1,2-dichloroethane<br>Nitrogen<br>st uncertainties are based on standard ur<br>of approximately 95 %. The uncertainty<br>require<br>Preparation: gravimetry; Anal<br>The values on this certificate a<br>Certificate valid for 2 years fr                                                                                                                                                                                                                                                                   | Amount fraction         205.7 ± 4.2         206 ± 6         207 ± 6         207 ± 6         200 ± 10         Balance                                                                                                                                                                                                                                                                                                                                                                                                             | - 2, providing a<br>ce with UKAS                                                   |
| AMOUNT FRACT                                                                                                                                                                 | TIONS:<br>Component<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-xylene + p-xylene<br>o-xylene<br>1,2-dichloroethane<br>Nitrogen<br>st uncertainties are based on standard ur<br>of approximately 95 %. The uncertainty<br>require<br>Preparation: gravimetry; Anal<br>The values on this certificate a<br>Certificate valid for 2 years fr<br>NBL cornect orgenerates the state                                                                                                                                                                                                                              | Amount fraction         205.7 ± 4.2         206 ± 6         207 ± 6         204 ± 7         207 ± 6         200 ± 10         Balance         recrtainties multiplied by a coverage factor k-         y evaluation has been carried out in accordance         ysis: gas chromatography (FID and MS re traceable to NPL Primary Standards to me the date of issue         billity of 1.2, dickloperations                                                                                                                          | = 2, providing a<br>ce with UKAS<br>)                                              |
| AMOUNT FRACT                                                                                                                                                                 | TIONS:<br>Component<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-xylene + p-xylene<br>o-xylene<br>1,2-dichloroethane<br>Nitrogen<br>d uncertainties are based on standard ur<br>of approximately 95 %. The uncertainty<br>require<br>Preparation: gravimetry; Anal<br>The values on this certificate a<br>Certificate valid for 2 years fr<br>NPL cannot guarantee the stal                                                                                                                                                                                                                                   | Amount fraction         / (nmol/mol)         205.7 ± 4.2         206 ± 6         207 ± 6         204 ± 7         207 ± 6         200 ± 10         Balance    recrtainties multiplied by a coverage factor k-relation was been carried out in accordance ments. lysis: gas chromatography (FID and MS re traceable to NPL Primary Standards on the date of issue bility of 1,2-dichloroethane 101                                                                                                                                 | - 2, providing a<br>æ with UKAS<br>)                                               |
| AMOUNT FRACT                                                                                                                                                                 | TIONS:<br>Component<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-xylene + p-xylene<br>o-xylene<br>1,2-dichloroethane<br>Nitrogen<br>d uncertainties are based on standard ur<br>of approximately 95 %. The uncertainty<br>require<br>Preparation: gravimetry; Anal<br>The values on this certificate a<br>Certificate valid for 2 years fr<br>NPL cannot guarantee the stal<br>Fill pressure: 100 bar; Minimu                                                                                                                                                                                                 | Amount fraction         / (nmol/mol)         205.7 ± 4.2         206 ± 6         207 ± 6         207 ± 6         200 ± 10         Balance         Decentainties multiplied by a coverage factor k-         y evaluation has been carried out in accordanements.         lysis: gas chromatography (FID and MS re traceable to NPL Primary Standards com the date of issue         bility of 1,2-dichloroethane         m utilisation pressure: 10 bar                                                                            | - 2, providing a<br>ce with UKAS<br>)                                              |
| AMOUNT FRACT                                                                                                                                                                 | TIONS:<br>Component<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-xylene + p-xylene<br>o-xylene<br>1,2-dichloroethane<br>Nitrogen<br>ed uncertainties are based on standard ur<br>of approximately 95 %. The uncertainty<br>require<br>Preparation: gravimetry; Anal<br>The values on this certificate a<br>Certificate valid for 2 years fr<br>NPL cannot guarantee the stal<br>Fill pressure: 100 bar; Minimu<br>No special precautions are reco                                                                                                                                                             | Amount fraction         205.7 ± 4.2         206 ± 6         207 ± 6         207 ± 6         200 ± 10         Balance                                                                                                                                                                                                                                                                                                                                                                                                             | - 2, providing a<br>ce with UKAS                                                   |
| AMOUNT FRACT                                                                                                                                                                 | TIONS:<br>Component<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-xylene + p-xylene<br>o-xylene<br>1,2-dichloroethane<br>Nitrogen<br>d uncertainties are based on standard ur<br>of approximately 95 %. The uncertainty<br>require<br>Preparation: gravimetry; Anal<br>The values on this certificate a<br>Certificate valid for 2 years fr<br>NPL cannot guarantee the stal<br>Fill pressure: 100 bar; Minimu<br>No special precautions are rec<br>Refer to ISO 16664                                                                                                                                         | Amount fraction $205.7 \pm 4.2$ $206 \pm 6$ $207 \pm 6$ $200 \pm 10$ Balance    recretainties multiplied by a coverage factor k-is y evaluation has been carried out in accordance ments. lysis: gas chromatography (FID and MS re traceable to NPL Primary Standards om the date of issue bility of 1,2-dichloroethane mutilisation pressure: 10 bar guired                                                                                                                                                                     | - 2, providing a<br>ce with UKAS<br>)                                              |
| AMOUNT FRACT                                                                                                                                                                 | TIONS:<br>Component<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-xylene + p-xylene<br>o-xylene<br>1,2-dichloroethane<br>Nitrogen<br>ad uncertainties are based on standard ur<br>of approximately 95 %. The uncertainty<br>require<br>Preparation: gravimetry; Anal<br>The values on this certificate a<br>Certificate valid for 2 years fr<br>NPL cannot guarantee the stal<br>Fill pressure: 100 bar; Minimu<br>No special precautions are rec<br>Refer to ISO 16664<br>DIN 477 No. 1 valve                                                                                                                 | Amount fraction<br>/(nmol/mol)         205.7 ± 4.2         206 ± 6         207 ± 6         204 ± 7         207 ± 6         200 ± 10         Balance         recrtainties multiplied by a coverage factor k-9         vevaluation has been carried out in accordance         wiss: gas chromatography (FID and MS)         re traceable to NPL Primary Standards         om the date of issue         bility of 1,2-dichloroethane         mutilisation pressure: 10 bar         quired                                           | = 2, providing a<br>ce with UKAS<br>)                                              |
| AMOUNT FRACT                                                                                                                                                                 | TIONS:<br>Component<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-xylene + p-xylene<br>o-xylene<br>1,2-dichloroethane<br>Nitrogen<br>d uncertainties are based on standard ur<br>of approximately 95 %. The uncertainty<br>require<br>Preparation: gravimetry; Anal<br>The values on this certificate a<br>Certificate valid for 2 years fr<br>NPL cannot guarantee the stal<br>Fill pressure: 100 bar; Minimu<br>No special precautions are rec<br>Refer to ISO 16664<br>DIN 477 No. 1 valve<br>Calibration standard                                                                                          | Amount fraction         205.7 ± 4.2         206 ± 6         207 ± 6         200 ± 10         Balance                                                                                                                                                                                                                                                                                                                                                                                                                             | - 2, providing a<br>ce with UKAS<br>)                                              |
| AMOUNT FRACT                                                                                                                                                                 | TIONS:<br>Component<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-xylene + p-xylene<br>o-xylene<br>1,2-dichloroethane<br>Nitrogen<br>d uncertainties are based on standard ur<br>of approximately 95 %. The uncertainty<br>require<br>Preparation: gravimetry; Anal<br>The values on this certificate a<br>Certificate valid for 2 years fr<br>NPL cannot guarantee the stal<br>Fill pressure: 100 bar; Minimu<br>No special precautions are rea<br>Refer to ISO 16664<br>DIN 477 No. 1 valve<br>Calibration standard                                                                                          | Amount fraction<br>/(nmol/mol)         205.7 ± 4.2         206 ± 6         207 ± 6         200 ± 10         Balance         recrtainties multiplied by a coverage factor k-y evaluation has been carried out in accordance         ysis: gas chromatography (FID and MS re traceable to NPL Primary Standards om the date of issue         bility of 1,2-dichloroethane         mutilisation pressure: 10 bar         quired                                                                                                     | - 2, providing a<br>ce with UKAS<br>)                                              |
| AMOUNT FRACT                                                                                                                                                                 | TIONS:<br>Component<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-xylene + p-xylene<br>o-xylene<br>1,2-dichloroethane<br>Nitrogen<br>d uncertainties are based on standard ur<br>of approximately 95 %. The uncertainty<br>require<br>Preparation: gravimetry; Anal<br>The values on this certificate a<br>Certificate valid for 2 years fr<br>NPL cannot guarantee the stal<br>Fill pressure: 100 bar; Minimu<br>No special precautions are rec<br>Refer to ISO 16664<br>DIN 477 No. 1 valve<br>Calibration standard                                                                                          | Amount fraction<br>/(nmol/mol)         205.7 ± 4.2         206 ± 6         207 ± 6         200 ± 10         Balance         recrtainties multiplied by a coverage factor k-1         y evaluation has been carried out in accordance         meets:         ysis: gas chromatography (FID and MS)         re traceable to NPL Primary Standards         om the date of issue         bility of 1,2-dichloroethane         m utilisation pressure: 10 bar         guired                                                          | - 2, providing a<br>ce with UKAS<br>)<br>)<br>January 2018                         |
| AMOUNT FRACT                                                                                                                                                                 | Component         Benzene<br>Toluene         Ethylbenzene         m-xylene + p-xylene         o-xylene         1,2-dichloroethane<br>Nitrogen         ad uncertainties are based on standard ur<br>of approximately 95 %. The uncertainty<br>require         Preparation: gravimetry; Anal<br>The values on this certificate a<br>Certificate valid for 2 years fr<br>NPL cannot guarantee the stal<br>Fill pressure: 100 bar; Minimu<br>No special precautions are red<br>Refer to ISO 16664<br>DIN 477 No. 1 valve<br>Calibration standard         D17090132         (Authorised Signat<br>ref) Brewer    | Amount fraction<br>/(nmol/mol)         205.7 ± 4.2         206 ± 6         207 ± 6         200 ± 10         Balance         recrtainties multiplied by a coverage factor k-9         evaluation has been carried out in accordance         wiss: gas chromatography (FID and MS)         re traceable to NPL Primary Standards         om the date of issue         bility of 1,2-dichloroethane         mutilisation pressure: 10 bar         guired         Date of issue: 17         tory)         ML)                        | <ul> <li>2, providing a ce with UKAS</li> <li>)</li> <li>7 January 2018</li> </ul> |
| AMOUNT FRACT                                                                                                                                                                 | Component         Benzene<br>Toluene<br>Ethylbenzene<br>m-xylene + p-xylene<br>o-xylene         1,2-dichloroethane<br>Nitrogen         d uncertainties are based on standard ur<br>of approximately 95 %. The uncertainty<br>require         Preparation: gravimetry; Anal<br>The values on this certificate a<br>Certificate valid for 2 years fr<br>NPL cannot guarantee the stal<br>Fill pressure: 100 bar; Minimu<br>No special precautions are red<br>Refer to ISO 16664<br>DIN 477 No. 1 valve<br>Calibration standard         017090132         (Authorised Signar<br>ref) Brewer (on behalf of NPLL | Amount fraction<br>/(nmol/mol)         205.7 ± 4.2         206 ± 6         207 ± 6         204 ± 7         207 ± 6         200 ± 10         Balance         recrtainties multiplied by a coverage factor k-         y evaluation has been carried out in accordant ments.         lysis: gas chromatography (FID and MS re traceable to NPL Primary Standards on the date of issue         bility of 1,2-dichloroethane mutilisation pressure: 10 bar         quired         Date of issue: 17         tory) <ml)< td=""></ml)<> | - 2, providing a<br>ce with UKAS<br>)<br>)<br>? January 2018<br>Page 1 of 1        |

| Participating Laboratory        | EPA Ireland                          |                 |                            |                                |         |                   |  |
|---------------------------------|--------------------------------------|-----------------|----------------------------|--------------------------------|---------|-------------------|--|
| Acronym                         | EPA                                  |                 |                            |                                |         | EPA               |  |
| Devees (a) as an article        | Kauin Balanau Joa Baillu             |                 |                            |                                |         |                   |  |
| Person(s) responsible           | Kevin Delaney, Joe Helliy            |                 |                            |                                |         |                   |  |
| Telephone contact:              | K.delaneyi@epa.led.burkei@epa.le     |                 |                            |                                |         |                   |  |
|                                 | Characteristic of your BTEX analyzer |                 |                            |                                |         |                   |  |
| <br>Taadamada                   | Sustach                              |                 |                            |                                |         |                   |  |
| Madak<br>Madak                  |                                      |                 | Synteon<br>Sustaals C      | COFE                           |         |                   |  |
| Model:<br>Versien:              |                                      |                 | Synteon G                  | 200                            |         |                   |  |
| Version:<br>Version             | 500                                  |                 |                            |                                |         |                   |  |
| rear or manuracture.            | 2008                                 |                 |                            |                                |         |                   |  |
|                                 | Halium                               | Nitrogen        | Hudrogen                   | Carbon diovi                   | ð ir    |                   |  |
| Carrier das:                    | rieligiti                            | naciogen<br>nes | rigarogen                  | Carbon dioxi                   | ~"      | _                 |  |
| Other gass.                     |                                      | yes             |                            |                                |         | -                 |  |
| Other gases used.               |                                      |                 |                            |                                |         |                   |  |
| Operating system:               |                                      |                 | Wind                       | ows XP                         |         |                   |  |
|                                 |                                      |                 |                            |                                |         |                   |  |
| Cycle time, min:                |                                      |                 | 15                         | i min                          |         |                   |  |
| Adsorbent material:             |                                      |                 | Tenax                      | GR 35/60                       |         |                   |  |
| Sampling control                |                                      | s               | ample pum                  | p/piston pumj                  | Р       |                   |  |
| Sampling temperature, "C        | Ambie                                | Ambient         |                            |                                |         |                   |  |
| Sample volume, ml               | 210                                  | 210             |                            |                                |         |                   |  |
| Number of adsorbent tubes       | 1                                    | 1               |                            |                                |         |                   |  |
| Desorption temperature, `       | 180                                  | 180             |                            |                                |         |                   |  |
| Desorption time, sec            | 60                                   |                 |                            |                                |         |                   |  |
| Desorption flow, ml/min         | 1.5                                  | 1.5             |                            |                                |         |                   |  |
| Cryo-trap detail                | na                                   |                 |                            |                                |         |                   |  |
| Trapping temperature, 'C        |                                      |                 |                            |                                | 1       |                   |  |
| Desorption temperature, 'C      |                                      | Desorptie       | on time, sei               |                                |         |                   |  |
| Desorption flow, mil/min        |                                      | split flow,     | mirmin                     |                                |         |                   |  |
| Or alutical actume              |                                      | Length 2        | m. Same as<br>Albeels - el | s the analytical               | I COIUN | nn.               |  |
| Mhaiyticar column               |                                      | (5•/ P          | Alteon - pr                | n:13710, A1-5<br>Motkulpolucik |         |                   |  |
| priase.                         | 12                                   | [074F           | nengij-30%                 | Methylpolysii                  | oxane   |                   |  |
| diameter (ID) mm:               | 0.32                                 |                 |                            |                                |         |                   |  |
| thickness (um):                 | 10                                   |                 |                            |                                |         |                   |  |
| dilotti coo (prii).             |                                      |                 |                            |                                |         |                   |  |
|                                 | Initial Temp of                      | 45°C, hole      | d for 4 mins               | : Ramp to 801                  | Clover  | the next 6.5mins. |  |
| analytical conditions:          |                                      | Hold a          | it 80°C for 1              | min. Return to                 | 5 45°C. |                   |  |
| Tra                             | ceability of                         | your cal        | libration                  | Standard                       |         |                   |  |
| Certified reference material (C |                                      |                 | Gas                        | Misture                        |         |                   |  |
| Certified by                    |                                      |                 | N                          | JPL                            |         |                   |  |
| Certified number:               |                                      | :               | 2019010381                 |                                |         |                   |  |
| Compound                        | Concentration, pp                    | ob (mol/mol     | Expanded L                 | Incertainty, ±ppl              | b(mol/r | nol)              |  |
| Benzene                         | 9.88                                 |                 |                            | 0.20                           |         |                   |  |
| Toluene                         | 9.61                                 |                 |                            | 0.25                           |         |                   |  |
| Ethyl-benzene                   | 10.39                                |                 |                            | 0.26                           |         | _                 |  |
| m+p-Xylene                      | 20.2                                 |                 |                            | 0.60                           |         | _                 |  |
|                                 |                                      |                 |                            |                                |         |                   |  |
| o-Xylene                        | 9.94                                 |                 |                            | 0.25                           |         |                   |  |
| Other methods                   |                                      |                 |                            |                                |         |                   |  |
| Dilution of CRM                 |                                      |                 |                            | na                             |         |                   |  |



Teddington Middlesex UK TW11 0LW Telephone +44 20 8977 3222



## Certificate of Calibration



NPL PRIMARY REFERENCE MATERIAL

#### Cylinder Number: D386627R

This certificate is issued in accordance with the laboratory acceptitation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national methoday methodae. This certificate may not be reproduced when then in Kull, except with the prior written approval of the assung laboratory.

#### CUSTOMER:

#### Environmental Protection Agency

ADDRESS: Seville Lodge, Callan Road, Kilkenny, Ireland

CALIBRATION DATE: 21 May 2019

AMOUNT FRACTIONS:

| Component           | Amount fraction<br>/ (nmol/mol) |   |      |  |  |
|---------------------|---------------------------------|---|------|--|--|
| Benzene             | 9.88                            | ± | 0.20 |  |  |
| Toluene             | 9.61                            | ± | 0.25 |  |  |
| Ethylbenzene        | 10.39                           | + | 0.26 |  |  |
| m-xylene + p-xylene | 20.2                            | ± | 0.6  |  |  |
| o-xylene            | 9.94                            | * | 0.25 |  |  |
| Nitrogen            | Balance                         |   |      |  |  |

The reported expanded uncertainties are based on standard uncertainties multiplied by a coverage factor k = 2, providing a coverage probability of approximately 95 %. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

METHODS: Preparation: gravimetry; Analysis: gas chromatography (FID)

TRACEABILITY: The values on this certificate are traceable to NPL Primary Standards

EXPIRY: Certificate valid for 2 years from the date of issue

PRESSURE: Fill pressure: 115 bar; Minimum utilisation pressure: 10 bar

- STORAGE: No special precautions are required
- HANDLING: Refer to ISO 16664

OUTLET: DIN 477 No. 1 valve

INTENDED USE: Calibration standard



| Participating Laboratory          | Ricardo Energy & Environment         |             |              |                    |           |     |  |  |  |
|-----------------------------------|--------------------------------------|-------------|--------------|--------------------|-----------|-----|--|--|--|
| Acronem                           |                                      |             | F            | REF                |           | REE |  |  |  |
| Aviolijii                         |                                      |             |              |                    |           |     |  |  |  |
| Person(s) responsible             |                                      | Jai         | mes Dernie   | + Luke Dom         | an        |     |  |  |  |
| Contact e-mails:                  |                                      |             | james.dernie | e@ricardo.com      |           |     |  |  |  |
| Telephone contact:                |                                      |             | 01235        | 753643             |           |     |  |  |  |
|                                   | Characteristic of your BTEX analyser |             |              |                    |           |     |  |  |  |
| Trademark                         |                                      | · · · · ·   |              |                    |           |     |  |  |  |
| Model:                            |                                      | Environn    | ement VOC    | 71M                |           |     |  |  |  |
| Version:                          |                                      | NA          |              |                    |           |     |  |  |  |
| Year of manufacture:              | 2005                                 |             |              |                    |           |     |  |  |  |
|                                   |                                      |             |              |                    |           |     |  |  |  |
|                                   | Helium                               | Nitrogen    | Hydrogen     | Carbon dioxi       | Air       |     |  |  |  |
| Carrier gas:                      |                                      | yes         |              |                    |           | ]   |  |  |  |
| Other gases used:                 |                                      |             |              |                    |           | ]   |  |  |  |
|                                   |                                      |             |              |                    |           |     |  |  |  |
| Operating system:                 |                                      |             | Win          | ndows              |           |     |  |  |  |
|                                   |                                      |             |              |                    |           |     |  |  |  |
| Cycle time, min:                  |                                      |             |              | 15                 |           |     |  |  |  |
| Adsorbent material:               |                                      | Trap - Car  | rbotrap, Foc | using tube - Car   | bopack B  |     |  |  |  |
| Sampling control                  |                                      | Int         | ernal trap w | ith critical orifi | ce        |     |  |  |  |
| Sampling temperature, °C          | Ambie                                | nt          |              |                    |           |     |  |  |  |
| Sample volume, ml                 | 1050                                 |             |              |                    |           |     |  |  |  |
| Number of adsorbent tubes         | 2                                    |             |              |                    |           |     |  |  |  |
| Desorption temperature, `         | 350                                  |             |              |                    |           |     |  |  |  |
| Desorption time, sec              | 180                                  |             |              |                    |           |     |  |  |  |
| Desorption flow, ml/min           | 1                                    |             |              |                    |           |     |  |  |  |
| Cryo-trap detail                  | CarboPack X                          |             |              |                    |           |     |  |  |  |
| Trapping temperature, 'C          | 32                                   |             |              |                    |           |     |  |  |  |
| Desorption temperature, 'C        | 350                                  | Desorptio   | on time, sec | 3                  |           |     |  |  |  |
| Desorption flow, ml/min           | 1                                    | split flow, | ml/min       |                    |           |     |  |  |  |
| Stripper column                   |                                      |             |              |                    |           |     |  |  |  |
| Analytical column                 |                                      |             | Supalco      | SPB 624            |           |     |  |  |  |
| phase:                            |                                      |             | Propriet     | ry, bonded         |           |     |  |  |  |
| length, m:                        | 13                                   |             |              |                    |           |     |  |  |  |
| diameter (ID) mm:                 | 0.32                                 |             |              |                    |           |     |  |  |  |
| thickness (µm):                   | 1.8                                  |             |              |                    |           |     |  |  |  |
| analytical conditions:            |                                      |             |              |                    |           |     |  |  |  |
|                                   |                                      | YOUR CO     | libration    | breheet2           |           |     |  |  |  |
| Certified reference material (CRI | accaning of                          | your ca     | Intanton N   | IDI                |           |     |  |  |  |
| Certified by                      |                                      |             | N            | IPI                |           |     |  |  |  |
| Certified number:                 |                                      |             |              |                    |           |     |  |  |  |
| Compound                          | Concentration or                     | h (mal/mal) | Evenedad     | Incortainty analy  | (mal/mal) | -   |  |  |  |
| Benzone                           | 2 00 Centration, pp<br>4 00          | e (monmol)  | Expanded     |                    | (non mor) | 1   |  |  |  |
| Tohene                            | 4.00                                 |             | 0.08         |                    |           | 1   |  |  |  |
| Fthul-henzene                     | 4.00                                 |             |              | 0.00               |           | 1   |  |  |  |
| m+n-Yulono                        | 4.00                                 |             |              | 0.00               |           | 1   |  |  |  |
| m. p-mytene                       | 0.00                                 |             |              | 0.10               |           | 1   |  |  |  |
|                                   |                                      |             |              |                    |           | 4   |  |  |  |
| o-Xylene                          | 4.00                                 |             | 0.08         |                    |           |     |  |  |  |



## Teddington Middlesex UK TW11 0LW Telephone +44 20 8977 3222

Certificate of Calibration



#### NPL PRIMARY REFERENCE MATERIAL

#### Cylinder Number: D035753R

This carbilitate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accorditation Service. It provides transmitted of measurement to the SF system of units and/or to units of measurement realised at the National Physical Laboratory or other micognound national matrology institutes. This certificate may not de reproduced other then in Aul, except with the prior written approval of the issuing laboratory.

#### CUSTOMER:

#### ADDRESS:

Ricardo - AEA Ltd

United Kingdom

The Gemini Building, Fermi Avenue, Harwell, Oxfordshire, OX11 OQR,

CALIBRATION DATE:

08 March 2019

#### AMOUNT FRACTIONS:

| Component        | Amour<br>/(ne | nt fra<br>nol/m | ection<br>rol) | Component              | Amount fraction<br>/ (nmol/mol) |     |      |
|------------------|---------------|-----------------|----------------|------------------------|---------------------------------|-----|------|
| Ethana           | 4.00          | 00 ± 0          |                | 2-methylpentane        | 4.14                            |     | 0.51 |
| Ethope           | 3.92          | ±               | 0.10           | Heune                  | 4.14                            |     | 0,11 |
| Propanel         | 3.94          | ±               | 0.08           | Isoprene               | 4.13                            | *   | 0.09 |
| Propene          | 3.92          | ±               | 0.10           | Heptane                | 4.15                            | *   | 0,09 |
| 2-methylpropane  | 4,02          | ±               | 0.11           | Benzene                | 3.92                            | *   | 0.10 |
| Butane           | 3.98          | ±               | 0.05           | 2,2,4-trimethylpentane | 3.90                            | * . | 0.08 |
| Ethyne +         | 4.13          | +               | 0.21           | Octune                 | 3.91                            | +   | 0.08 |
| traves-but-2-one | 4.00          | ±               | 0.08           | Toluene                | 3.81                            | *   | 0,10 |
| But-1-me         | 3.97          | ±               | 0.16           | Ethylbenzene           | 4.12                            | +   | 0.11 |
| cis-but-2-one    | 3.99          | ±               | 0.08           | m-xylene + p-xylene    | 8.01                            | +   | 0.21 |
| 2-methylbutane   | 3.93          | ±               | 0.08           | o-xylene               | 3.94                            | *   | 0.30 |
| Pentanc          | 3.95          | *               | 0.08           | 1,3,5-trimethylbenzene | 3.76                            | ÷.  | 0.10 |
| 1.3-butadiene    | 4.03          | +               | 0.09           | 1,2,4-trimethylbenzene | 3.98                            | ±   | 0.10 |
| mans-pent-2-end  | 3.97          | =               | 0.08           | 1,2,3-trimethylbenzene | 3.78                            | *   | 0.10 |
| Pent-1-ene       | 4.03          |                 | 0.09           | Nitrogen               | Balance                         |     | ė.   |

The reported expanded uncertainties are based on standard uncertainties multiplied by a coverage factor k = 2, providing a coverage probability of approximately 95 %. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

| METHODS:      | Preparation: gravimetry; Analysis: gas chromatography (FID)           |
|---------------|-----------------------------------------------------------------------|
| TRACEABILITY: | The values on this certificate are traceable to NPL Primary Standards |
| EXPIRY:       | Certificate valid for 2 years from the date of issue                  |
| PRESSURE:     | Fill pressure: 120 bar, Minimum utilisation pressure: 10 bar          |
| STORAGE:      | No special precautions are required                                   |
| HANDLING:     | Refer to ISO 16664                                                    |
| OUTLET:       | DIN 477 No. 1 valve                                                   |
| INTENDED USE: | Calibration standard                                                  |

Reference: 2018070344-2 Signed: Dr P J Between Checked by: N. Alle

(Authorised Signatory) (on behalf of NPLML) Date of issue: 15 March 2019

Page 1 of 1



This partificate is consistent with the capabilities that are included in Appendix C of the MRA down up by the CPM, Under the MRA, all pericipaling institutes recignise the weldly of each other's calibration and realizionant carbicates for the quantities, ranges and measurement uncertainties specified in Appendix C for details see http://www.bpm.orgl.

| Participating Laboratory          | Ambient air testing laboratory, Croatian hydromete |                                                                                                                |             |                  |                 |                   |  |
|-----------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------|------------------|-----------------|-------------------|--|
| Acronym                           |                                                    |                                                                                                                | L           | IKZ              |                 | LIKZ              |  |
| Person(s) responsible             | Lovro Hrust                                        |                                                                                                                |             |                  |                 |                   |  |
| Contact e-mails:                  |                                                    |                                                                                                                | hrust@c     | eirus.dhz.hr     |                 |                   |  |
| Telephone contact:                |                                                    |                                                                                                                | +3859       | 14565685         |                 |                   |  |
| Ch                                | aracterietic                                       | ofvour                                                                                                         | BTFY an     | alwer            |                 |                   |  |
| Tradomark                         | Chromatotec                                        | JUJUU                                                                                                          | DILLI       | ai you           |                 |                   |  |
| Model                             | GC 966 EID sir                                     | moVOC                                                                                                          |             |                  |                 |                   |  |
| Versien:                          | GC 000 FID all                                     | movoc                                                                                                          | DTEVINA     | -dal 621022)     |                 |                   |  |
| Version.                          | 0010                                               |                                                                                                                | DIENĮM      | 00el A21022)     |                 |                   |  |
| rear or manuracture:              | 2013                                               |                                                                                                                |             |                  |                 |                   |  |
|                                   | 1.1                                                | B. P                                                                                                           | Lindersee   | Quebee d'est     | A.1.            |                   |  |
| Continuou au at                   | Helium                                             | Nitrogen                                                                                                       | Hyarogen    | Carbon dioxi     | Air             | -                 |  |
| Carrier gas:                      |                                                    |                                                                                                                | <u>^</u>    |                  | 0               | 4 -               |  |
| Other gases used:                 |                                                    |                                                                                                                |             |                  | ۸<br>           |                   |  |
| Operating system:                 |                                                    |                                                                                                                | Min         | dows 7           |                 |                   |  |
| operating system.                 |                                                    |                                                                                                                | WID         | uows r           |                 |                   |  |
| Cueletime min:                    |                                                    |                                                                                                                |             | 15               |                 |                   |  |
| Adsorbent material:               |                                                    |                                                                                                                | CARE        |                  |                 |                   |  |
| Sampling control                  | ntrol unit (same                                   | ale uolume                                                                                                     | calculated  | ) with one crit  | ical orifice    | linked to a sa    |  |
| Sampling control                  | ambiei                                             | nt of the second se |             | j and one one    |                 | , inited to a sai |  |
| Sample volume, ml                 | calculated an                                      | ov 425ml                                                                                                       |             |                  |                 |                   |  |
| Number of adsorbent tubes         | calculated, ap                                     | DA. TEOITI                                                                                                     |             |                  |                 |                   |  |
| Resorption temperature            | 350.0                                              |                                                                                                                |             |                  |                 |                   |  |
| Description time, sec             | 180                                                | ·                                                                                                              |             |                  |                 |                   |  |
| Description flow, ml/min          |                                                    |                                                                                                                |             |                  |                 |                   |  |
| Cruo-trap detail                  |                                                    |                                                                                                                | 1           |                  |                 |                   |  |
| Trapping temperature 'C           | _                                                  |                                                                                                                |             |                  |                 |                   |  |
| Description temperature 10        | _                                                  | Desoratio                                                                                                      | on time ser | _                | 1               |                   |  |
| Description flow, mil/min         | _                                                  | split flow                                                                                                     | ml/min      | _                | 1               |                   |  |
| Stripper colump                   |                                                    | opiction,                                                                                                      |             | _                |                 |                   |  |
| Analytical column                 |                                                    |                                                                                                                | MX1         | 1 30 XE          |                 |                   |  |
| phase:                            |                                                    |                                                                                                                | s           | olid             |                 |                   |  |
| length.m:                         | 30                                                 |                                                                                                                |             |                  |                 |                   |  |
| diameter (ID) mm:                 | 0.28                                               |                                                                                                                |             |                  |                 |                   |  |
| thickness (um):                   | 1                                                  |                                                                                                                |             |                  |                 |                   |  |
| analytical conditions:            |                                                    |                                                                                                                |             | _                |                 |                   |  |
| Тгас                              | eshility of y                                      | our cali                                                                                                       | hration S   | brehretč         |                 |                   |  |
| Certified reference material (CPA |                                                    | vui vuii                                                                                                       | Gae         | oulinder         |                 |                   |  |
| Certified bu                      |                                                    | Nati                                                                                                           | onal Physic | val laboratoru   | 1112            |                   |  |
| Certified number:                 |                                                    | ruau                                                                                                           |             | anaboratory,     | , O.K.          |                   |  |
| Compound                          |                                                    | h (mal/mal                                                                                                     | Evenedad II | neortaintu annt  | -<br>(amal/mal/ |                   |  |
| Benzene                           | 12 19                                              | on fuoruoi                                                                                                     | Expanded O  | ncertainty, ±ppt | ofumorumor      | 1 I               |  |
| Toluene                           | 11.85                                              |                                                                                                                |             | 0.20             |                 |                   |  |
| Ethul-benzene                     | 12.81                                              |                                                                                                                |             | 0.33             |                 |                   |  |
| m-Xylene                          | 12.01                                              |                                                                                                                |             | 0.00             |                 |                   |  |
| n-Yulone                          | 24.90                                              | 1                                                                                                              |             | 0.70             |                 |                   |  |
| p-Agiene                          |                                                    |                                                                                                                |             |                  |                 |                   |  |
| o-Xylene                          | 12.26                                              |                                                                                                                |             | 0.31             |                 | ]                 |  |
| Uther methods                     |                                                    |                                                                                                                |             |                  |                 |                   |  |
| Dilution of CRM                   |                                                    |                                                                                                                |             | -                |                 |                   |  |
| Static Injection                  |                                                    |                                                                                                                |             | -                |                 |                   |  |
| Permeation                        |                                                    |                                                                                                                |             | -                |                 |                   |  |

#### LIKZ Uncertainties were estimated based on previous research of instru characteristics and using literature data from type approval of t instrument. For some values such as repeatability and linearity, it was concluded that it is best to use linear equation to describe particular partial uncertainty, i.e. there is a part not dependent on measured concentration and dependent on measured concentration. All estimated contributions due to various effects were added by using rule for combining measurement uncertainties. Final combined measurement uncertainty was reported, together with expanded uncertainty. For expanded uncertainty it was assumed coverage factor of k=2, based on normal distribution and coverage of 95% of probability of a result being in reported interval one

Details on how you have calculated your analytical uncertainties from your calibration data



Cylinder Number: D600074



This cartificate is issued in accordance with the leboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measure nt realwed at the National Physical Laboratory or other recognised netional metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Industrijska 1, HR - 10290 Zaprešic, Croatia

#### CUSTOMER: ADDRESS:

#### Messer Croatia Plin d.o.o.

CALIBRATION DATE:

26 June 2018

AMOUNT FRACTIONS:

| Component           | Amount fraction<br>/ (nmol/mol) |      |  |  |  |
|---------------------|---------------------------------|------|--|--|--|
| Benzene             | 12.18 ±                         | 0.25 |  |  |  |
| Toluene             | 11.85 ±                         | 0.30 |  |  |  |
| Ethylbenzene        | 12.81 ±                         | 0.33 |  |  |  |
| m-xylene + p-xylene | 24.9 ±                          | 0.7  |  |  |  |
| o-xylene            | 12.26 ±                         | 0.31 |  |  |  |
| Nitrogen            | Balance                         |      |  |  |  |

The reported expanded uncertainties are based on standard uncertainties multiplied by a coverage factor k = 2, providing a coverage probability of approximately 95 %. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

| METHODS:      | Preparation: gravimetry; Analysis: gas chromatography (FID)           |
|---------------|-----------------------------------------------------------------------|
| TRACEABILITY: | The values on this certificate are traceable to NPL Primary Standards |
| EXPIRY:       | Certificate valid for 2 years from the date of issue                  |
| PRESSURE:     | Fill pressure: 100 bar; Minimum utilisation pressure: 10 bar          |
| STORAGE:      | No special precautions are required                                   |
| HANDLING:     | Refer to ISO 16664                                                    |
| OUTLET:       | DIN 477 No. 1 valve                                                   |
| INTENDED USE: | Calibration standard                                                  |





te is consistent with the capabilities that are included in Appendix C of the MRA drawn up by the CIFM. Under the MRA, all participating institutes recognise the velicity of each other's calibration and measurement certificates for the quantities, ranges and measurement uncertainties specified in Appendix C (for details see http://www.bjpm.orgi

| Participating Laboratory        | Environmental protection Agency |                   |                       |                  |                 |             |
|---------------------------------|---------------------------------|-------------------|-----------------------|------------------|-----------------|-------------|
| Acronym                         |                                 |                   | A                     | AA               |                 | AAA         |
|                                 |                                 |                   |                       |                  |                 |             |
| Person(s) responsible           |                                 |                   | J. Molis, P           | R. Kybartas      |                 |             |
| Contact e-mails:                | ui,                             | <u>nolis@aa</u> ; | <u>a.am.lt . rola</u> | indas.kybarta:   | <u>s@aaa.an</u> | <u>n.lt</u> |
| Telephone contact:              |                                 | +;                | 3706861750            | 1,+370686175     | J4              |             |
| C                               | haracteristi                    | c of you          | r BTEX a              | nalyser          |                 |             |
| Trademark                       | AMA Instrume                    | ents              |                       |                  |                 |             |
| Model:                          | GC 5000                         |                   |                       |                  |                 |             |
| Version:                        |                                 |                   | E                     | 3TX              |                 |             |
| Year of manufacture:            | 2017                            |                   |                       |                  |                 |             |
|                                 |                                 |                   |                       |                  |                 |             |
|                                 | Helium                          | Nitrogen          | Hydrogen              | Carbon dioxi     | Air             |             |
| Carrier gas:                    |                                 | X                 |                       |                  |                 |             |
| Other gases used:               |                                 |                   | X                     |                  | X               |             |
| 0                               |                                 |                   |                       |                  |                 |             |
| Operating system:               |                                 |                   | Win                   | dows 7           |                 |             |
| Cuole time mint                 |                                 |                   |                       | 20               |                 |             |
| Cycle time, min:                |                                 |                   |                       | 30               |                 |             |
| Sampling control                |                                 |                   | Lar<br>Dum            |                  |                 |             |
| Sampling control                | 20                              |                   | Fum                   | priviec          |                 |             |
| Sample volume imi               | 300                             |                   |                       |                  |                 |             |
| Number of adsorbent tubes       | 1                               |                   |                       |                  |                 | -           |
| Description temperature         | 230                             |                   |                       |                  |                 |             |
| Description time, sec           | 180                             |                   |                       |                  |                 | -           |
| Description flow, ml/min        | 100                             |                   |                       |                  |                 |             |
| Crvo-trap detail                |                                 |                   | 1                     |                  |                 |             |
| Trapping temperature, 'C        |                                 |                   |                       |                  |                 | -           |
| Desorption temperature, C       |                                 | Desorpti          | on time, see          |                  |                 |             |
| Desorption flow, ml/min         |                                 | split flow,       | ml/min                |                  |                 |             |
| Stripper column                 |                                 |                   |                       |                  |                 |             |
| Analytical column               |                                 |                   | AM                    | Asep 1           |                 |             |
| phase:                          |                                 |                   |                       |                  |                 |             |
| length, m:                      | 30                              |                   |                       |                  |                 |             |
| diameter (ID) mm:               | 0.32                            |                   |                       |                  |                 |             |
| thickness (μm):                 | 1.5                             |                   |                       |                  |                 |             |
| analytical conditions:          | 501                             | C hold 3m         | in., ramp 50          | °С - 130°С 15 п  | hin.,hold 5     | min.        |
| Tra                             | ceability of                    | your cal          | libration             | Standard         |                 |             |
| Certified reference material (C |                                 |                   | Ν                     | JPL              |                 |             |
| Certified by                    |                                 |                   | N                     | JPL              |                 |             |
| Certified number:               |                                 |                   | 121444SG              |                  |                 |             |
| Compound                        | Concentration, pp               | ob (mol/mol       | Expanded L            | Incertainty, ±pp | b(mol/mol)      |             |
| Benzene                         | 4830                            |                   |                       | 130              |                 |             |
| Toluene                         | 4670                            |                   |                       | 120              |                 |             |
| Ethyl-benzene                   |                                 |                   |                       |                  |                 |             |
| m-Xylene                        |                                 |                   |                       |                  |                 |             |
| p-Xylene                        |                                 |                   |                       |                  |                 |             |
| o-Xvlene                        |                                 |                   |                       |                  |                 |             |
| Other methods                   |                                 |                   |                       |                  |                 |             |
| Dilution of CBM                 | Umu                             | elttechnik        | MCZ Gmbl              | H Dilution       | 35,12670        | times       |

| Details on how you have calcul                                                                                                                         | ated your analytical ur                                                                             | ncertainties from your calibra                                                                                                       | ti                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Un= √(((Cnn,0-30 - Cavrg.)<br>+ 4 (un,0-30^2 + un,30-6)<br>Un - expanded for stage.                                                                    | )^2 + (Cn,30-60 - C<br>D^2 + un,60-90^2 )                                                           | avrg.)^2 + (Cn,0-30 - Ca<br>/3)                                                                                                      | v <b>AAA</b>                                                                         |
| u for concetration C inco                                                                                                                              | prporates :                                                                                         |                                                                                                                                      |                                                                                      |
| Min reading /2<br>Zero reading<br>calibration gas: u% calga<br>largest residual from line                                                              | s/100 x C<br>ear regresion: Lres                                                                    | .%/100 x C/SQRT 3                                                                                                                    |                                                                                      |
| Cert                                                                                                                                                   | Middlesex UK TW11                                                                                   | AL LABORATOR)<br>OLW Telephone (44 20 167/ 3222<br>f Calibration                                                                     |                                                                                      |
|                                                                                                                                                        | NPL CALIBRATEI                                                                                      | O GAS MIXTURE                                                                                                                        | UN AS                                                                                |
|                                                                                                                                                        | Cylinder Numh                                                                                       | er: 121444SG                                                                                                                         |                                                                                      |
| This careficate is issued in a<br>provides resenability of measurement i<br>or other seconced national metrolog<br>approval of the issuing laboratory. | e with the laboratory accrack<br>o the SI cystem of units and/o<br>y institutes. This contribute my | tenion requirantions of the United Knydog<br>fo units of messarement numbers of the N<br>ty not be reprodused other than in full, an | n Accordiation Services is<br>showed Psychial Indensity<br>appl with the pair weeken |
|                                                                                                                                                        | POCIM                                                                                               |                                                                                                                                      |                                                                                      |
| CUSTOMER:                                                                                                                                              | The Drivetley C                                                                                     | ontro The Course Day 1 a                                                                                                             | ·                                                                                    |
| ADDRESS:                                                                                                                                               | The Priestley C                                                                                     | entre, The Surrey Research Par                                                                                                       | k, Guildford,                                                                        |
|                                                                                                                                                        | GU2 7XY, Uni                                                                                        | ted Kingdom                                                                                                                          |                                                                                      |
| CALIBRATION DA'                                                                                                                                        | TE: 06 February 20                                                                                  | 19                                                                                                                                   |                                                                                      |
|                                                                                                                                                        | NT EDACTIONS:                                                                                       |                                                                                                                                      |                                                                                      |
| CERTIFIED AMOU                                                                                                                                         | NT FRACTIONS:                                                                                       | Amount fraction                                                                                                                      |                                                                                      |
|                                                                                                                                                        | Component                                                                                           | / (µmol/mol)                                                                                                                         |                                                                                      |
|                                                                                                                                                        | Benzene                                                                                             | 4.83 ± 0.13                                                                                                                          |                                                                                      |
|                                                                                                                                                        | Nitrogen                                                                                            | Balance                                                                                                                              |                                                                                      |
| The reported expanded<br>factor $k = 2$ , providing<br>has                                                                                             | d uncertainties are based o<br>a coverage probability of<br>been carried out in accord              | n standard uncertainties multiplied to<br>approximately 95 %. The uncertain<br>ance with UKAS requirements.                          | y a coverige<br>ty evaluation                                                        |
| METHOD:                                                                                                                                                | Analysis: gas chromatos                                                                             | graphy (FID)                                                                                                                         |                                                                                      |
| TRACEABILITY:                                                                                                                                          | The values on this certifi                                                                          | cate are traceable to NPL Primar                                                                                                     | y Standards                                                                          |
| EXPIRY:                                                                                                                                                | NPL cannot guarantee t                                                                              | he stability of this mixture                                                                                                         |                                                                                      |
| PRESSURE:                                                                                                                                              | Minimum utilisation pro                                                                             | ssure: 10 bar                                                                                                                        |                                                                                      |
| STORAGE:                                                                                                                                               | No special precautions                                                                              | are required                                                                                                                         |                                                                                      |
| HANDLING:                                                                                                                                              | Refer to ISO 16664                                                                                  |                                                                                                                                      |                                                                                      |
| OUTLET:                                                                                                                                                | DIN 477 No. 1 unive                                                                                 |                                                                                                                                      |                                                                                      |
| INTENDED USE:                                                                                                                                          | Calibration standard                                                                                |                                                                                                                                      |                                                                                      |
|                                                                                                                                                        | Contending Manuard                                                                                  | 8                                                                                                                                    |                                                                                      |
|                                                                                                                                                        |                                                                                                     |                                                                                                                                      | abruary 2019                                                                         |
| Reference: 2018                                                                                                                                        | 0802.63                                                                                             | Date of issue: 08 1                                                                                                                  |                                                                                      |
| Signed:                                                                                                                                                | C (Andh                                                                                             | prised Signatory)                                                                                                                    |                                                                                      |
| Name: Dr P                                                                                                                                             | TBREWAY (or he                                                                                      | half of NPLML)                                                                                                                       | Page 1 of 1                                                                          |
| Checked by: N.40                                                                                                                                       | Contraction (on be                                                                                  |                                                                                                                                      |                                                                                      |
| 407                                                                                                                                                    |                                                                                                     |                                                                                                                                      | 21                                                                                   |

| Participating Laboratory          | DCMR Milieudienst Rijnmond                                                                                                                     |                 |             |                  |            |      |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|------------------|------------|------|--|
| Acronym                           | DCMR                                                                                                                                           |                 |             |                  |            | DCMR |  |
| Person(s) responsible             |                                                                                                                                                | Ed van der Gaag |             |                  |            |      |  |
| Contact e-mails:                  | <u>ed.vandergaag@dcmr.nl</u>                                                                                                                   |                 |             |                  |            |      |  |
| Telephone contact:                |                                                                                                                                                |                 | 0031(0)     | 102468679        |            |      |  |
| Cl                                | naracteristic                                                                                                                                  | of your         | BTEX ar     | nalyser          |            |      |  |
| Trademark                         | Environnemen                                                                                                                                   | it SA (EN∖      | /EA)        |                  |            |      |  |
| Model:                            | VOC72M                                                                                                                                         |                 |             |                  |            |      |  |
| Version:                          | PID                                                                                                                                            |                 |             |                  |            |      |  |
| Year of manufacture:              | 2017                                                                                                                                           |                 |             |                  |            |      |  |
|                                   |                                                                                                                                                |                 |             |                  |            |      |  |
|                                   | Helium                                                                                                                                         | Nitrogen        | Hydrogen    | Carbon dioxi     | Air        |      |  |
| Carrier gas:                      | no                                                                                                                                             | yes             | no          | no               | no         |      |  |
| Other gases used:                 |                                                                                                                                                |                 |             |                  |            | ]    |  |
|                                   |                                                                                                                                                |                 |             |                  |            |      |  |
| Operating system:                 |                                                                                                                                                |                 | an          | droid            |            |      |  |
| -                                 |                                                                                                                                                |                 |             |                  |            |      |  |
| Cycle time, min:                  |                                                                                                                                                |                 |             | 20               |            |      |  |
| Adsorbent material:               |                                                                                                                                                |                 | CARE        | BOPACK           |            |      |  |
| Sampling control                  |                                                                                                                                                |                 | pump, micro | o capillary tube | e          |      |  |
| Sampling temperature, 'C          | 25                                                                                                                                             |                 |             |                  |            |      |  |
| Sample volume, mi                 | 220                                                                                                                                            |                 |             |                  |            |      |  |
| Number of adsorbent tubes         | 1                                                                                                                                              |                 |             |                  |            |      |  |
| Description temperature,          | 380                                                                                                                                            | -               |             |                  |            |      |  |
| Description time, sec             | <ul> <li><ul> <li><ul> <li><ul> <li><ul> <li><ul> <li><ul> <li><ul></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul> | с               |             |                  |            |      |  |
| Crue-trap detail                  |                                                                                                                                                |                 |             |                  | 1          |      |  |
| Trapping temperature 10           |                                                                                                                                                |                 |             |                  | 1          |      |  |
| Description temperature 10        |                                                                                                                                                | Desorati        | on time ser |                  | 1          |      |  |
| Description flow, mil/min         |                                                                                                                                                | split flow      | ml/min      |                  |            |      |  |
| Stripper colump                   |                                                                                                                                                | pin now,        |             |                  |            |      |  |
| Analytical column                 |                                                                                                                                                |                 |             |                  |            |      |  |
| phase:                            |                                                                                                                                                |                 | a-i         | polar            |            |      |  |
| length, m:                        | 15                                                                                                                                             |                 |             |                  |            |      |  |
| diameter (ID) mm:                 | 0.25                                                                                                                                           | 1               |             |                  |            |      |  |
| thickness (μm):                   | 1                                                                                                                                              | 1               |             |                  |            |      |  |
|                                   |                                                                                                                                                |                 |             |                  |            |      |  |
| analytical conditions:            | 1.11. 0                                                                                                                                        |                 | 20          | 1-170            |            |      |  |
| Irac                              | eability of y                                                                                                                                  | your cali       | bration     | Standard         |            |      |  |
| Certified reference material (CRI |                                                                                                                                                |                 | YES         | PBM              |            |      |  |
| Certified by                      |                                                                                                                                                |                 | 1           | /SL              |            |      |  |
| Certified number:                 |                                                                                                                                                |                 | C1303010    |                  |            |      |  |
| Compound                          | Concentration, pp                                                                                                                              | ob (mol/mol     | Expanded L  | Incertainty, ±pp | b(mol/mol) |      |  |
| Benzene                           | 12.00                                                                                                                                          |                 |             | 0.50             |            | •    |  |
| Toluene                           | 12.00                                                                                                                                          |                 | 0.5         |                  |            | -    |  |
| Ethyl-benzene                     | 12.1                                                                                                                                           |                 |             | 0.5              |            | -    |  |
| m+p-Aylene                        | 24                                                                                                                                             |                 |             | 0.50             |            | 1    |  |
|                                   |                                                                                                                                                |                 |             |                  |            |      |  |
| o-Xylene                          | 11.8                                                                                                                                           |                 | 0.5         |                  |            |      |  |

| Participating Laboratory    | DCMR Milieudienst Rijnmond |            |              |                 |            |       |  |  |
|-----------------------------|----------------------------|------------|--------------|-----------------|------------|-------|--|--|
| Acronym                     |                            |            | D            | CMR             |            | DCMR2 |  |  |
| Deverse (a) as an aible     |                            |            |              |                 |            |       |  |  |
| Contact a maile:            |                            |            | Colvan       | oer Gaag        |            |       |  |  |
| Telephone contact:          |                            |            | 0021(0)      | 102469679       |            |       |  |  |
| relephone contact.          |                            | 6          | DTEV -       | 102400013       |            |       |  |  |
| C.                          |                            | c or you   | I DIEA a     | nalyser         |            |       |  |  |
| Irademark                   | AMA instrume               | ents Gimbl | 1            |                 |            |       |  |  |
| Model:                      | GC 5000 BTX                |            |              |                 |            |       |  |  |
| Version:                    | FID                        |            |              |                 |            |       |  |  |
| Year of manufacture:        | 2017                       |            |              |                 |            |       |  |  |
|                             |                            |            |              |                 |            |       |  |  |
| _                           | Helium                     | Nitrogen   | Hydrogen     | Carbon dioxi    | Air        |       |  |  |
| Carrier gas:                |                            |            | Х            |                 |            |       |  |  |
| Other gases used:           |                            |            | Х            |                 | Х          |       |  |  |
| On eventing any starting    |                            |            |              | 7 (10)          |            |       |  |  |
| Uperating system:           |                            |            | windo        | ws / (10)       |            |       |  |  |
| Cuele time, min:            |                            |            |              | 20              |            |       |  |  |
| Odserbent material:         |                            |            |              | 20              |            |       |  |  |
| Sampling control            |                            |            | 0            |                 |            |       |  |  |
| Sampling control            | 20                         |            | pang         | D, MIEC         |            |       |  |  |
| Sample volume, ml           | 200                        |            |              |                 |            |       |  |  |
| Number of adcerbent tuber   | 300                        |            |              |                 |            |       |  |  |
| Description temporature     | 250                        |            |              |                 |            |       |  |  |
| Description time, sec       | /950                       | <u></u>    |              |                 |            |       |  |  |
| Description flow, ml/min    | (056)                      | ·          |              |                 |            |       |  |  |
| Cruo-tran detail            |                            |            |              |                 |            |       |  |  |
| Tranning temperature 10     |                            |            |              |                 | I          |       |  |  |
| Desorption temperature, 'C  |                            | Desorpti   | on time, se  |                 |            |       |  |  |
| Desorption flow, ml/min     |                            | split flow | ml/min       |                 |            |       |  |  |
| Stripper column             |                            |            |              |                 |            |       |  |  |
| Analytical column           |                            | AMA        | Asep 1 - FUS | ED silica cap   | illaru     |       |  |  |
| phase:                      |                            |            |              |                 |            |       |  |  |
| length, m:                  | 30                         |            |              |                 |            |       |  |  |
| diameter (ID) mm:           | 0.32                       |            |              |                 |            |       |  |  |
| thickness (µm):             | 1.5                        |            |              |                 |            |       |  |  |
| analutical conditions:      |                            |            | 20           | 1.210           |            |       |  |  |
| анауксансонаконз.<br>Тта    | reshility of               | VOUT CO    | libration    | Standard        |            |       |  |  |
| Currie destaura estado (CDM | caning or                  | ,001 01    | VEC          | DDM             |            |       |  |  |
| Certified by                |                            |            | 160          | , E DIMI<br>/91 |            |       |  |  |
| Certified pumber:           |                            |            | C1202010     | - DL            |            | r i   |  |  |
| Compound                    | Concentration or           | b (mol/mo  | Expanded U   | ncertainty ena  | b(mol/mol) |       |  |  |
| Benzene                     | 12 00                      | o (monimo  | Expanded 0   | 0.50            | etmonymol  |       |  |  |
| Toluene                     | 12.00                      |            |              | 0.50            |            |       |  |  |
| Ethul-benzene               | 12.00                      |            | 0.5          |                 |            |       |  |  |
| m+n-Xulene                  | 24                         |            |              | 0.50            |            |       |  |  |
| in provene                  | 24                         |            |              | 0.00            |            |       |  |  |
| o-Xulopo                    | 11.0                       |            |              | 0.5             |            |       |  |  |
| o-Aylene                    | 11.8                       |            |              | 0.0             |            |       |  |  |



## CERTIFIC

DCMR

0, 6 pp

Number C1303010 Page 1 of 2

#### Reference material of BTEX in nitrogen

Description Primary reference gas mixture (PRM), cylinder number APEX1170581. The cylinder contains a mixture of BTEX in nitrogen. The PRM is contained in a passivated aluminium cylinder. The cylinder has a water volume of 5 L and is pressurized to 11.6 MPa. Cylinder outlet conforms to DIN 1 specifications. re Gravimetric preparation in accordance with ISO 6142-1:2015.

Method of preparation

Result

| Component    | Amount fraction<br>[mol/mol] | Uncertainty<br>[mol/mol] |           |
|--------------|------------------------------|--------------------------|-----------|
| Benzene      | 12.0 × 10 <sup>-9</sup>      | 0.5 × 10 <sup>-9</sup>   | 2 5% when |
| Toluene      | 12.0 × 10 <sup>.9</sup>      | 0.5 × 10 <sup>.9</sup>   | 12.00     |
| o-xylene     | 11.8 × 10 <sup>.9</sup>      | 0.5 × 10 <sup>.9</sup>   | O,SPPB-   |
| ethylbenzene | 12.1 × 10 <sup>.9</sup>      | 0.5 × 10 <sup>.9</sup>   | gear      |
| m-xylene     | 11.9 × 10 <sup>.9</sup>      | 0.5 × 10 <sup>.9</sup>   | 10-       |
| p-xylene     | 12.1 × 10 <sup>.9</sup>      | 0.5 × 10 <sup>-9</sup>   |           |

The reported uncertainty of measurement is based on the standard uncertainty multiplied by a coverage factor k = 2, which for a normal distribution corresponds to a coverage probability of approximately 95%. The standard uncertainty has been determined in accordance with the GUM 'Evaluation of measurement data - Guide to the Expression of Uncertainty in Measurement'.

Traceability Safety information Instructions

The cylinder should be handled with care and by experienced personnel in a laboratory environment suitably equipped for the safe handling of gaseous materials.

The values on this certificate are traceable to VSL Primary Standards.

The gas mixture can be used to validate and/or calibrate analytical methods and equipment. for use

Do not use the cylinder in case the cylinder pressure is below 1 MPa. Further instructions regarding the handling of calibration gases can be found in ISO 16664:2017.-111200

Expiry date

This certificate is valid until 11 July 2020. Delft, 12 September 2017 VSL B.V. ĩ. J.I.T. van Wijk Dutch

Senior Metrologi Metrology Institute

H. Scar 19-9-2017

| Participating Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Agenzia provinciale per l'ambiente e la tutela de |             |              |                  |             |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------|--------------|------------------|-------------|------------|
| Acronem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   |             | API          | PABZ             |             | ΔΡΡΔ       |
| , in the second s |                                                   |             |              |                  |             |            |
| Person(s) responsible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |             | Osw          | ald Vigl         |             |            |
| Contact e-mails:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |             | oswald.vigl  | @provinz.bz.it   |             |            |
| Telephone contact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   | -           | 338-         | 1610525          |             |            |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | haracteristi                                      | c of you    | r BTEX a     | nalyser          |             |            |
| Trademark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Syntech Spect                                     | iras        |              |                  |             |            |
| Model:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GC 955 - 600                                      |             |              |                  |             |            |
| Version:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Version 2                                         |             |              |                  |             |            |
| Year of manufacture:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2008                                              |             |              |                  |             |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |             |              |                  |             |            |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Helium                                            | Nitrogen    | Hydrogen     | Carbon dioxi     | Air         |            |
| Carrier gas:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   | ×           |              |                  |             |            |
| Uther gases used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |             |              |                  |             |            |
| Operating system:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |             | Winde        | ows Xpe          |             |            |
| Cucle time, min:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |             |              | 30               |             |            |
| Adsorbent material:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   | TE          | NAX GB 3     | 5-60 mesh 8-     | cm          |            |
| Sampling control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |             | Pump M       | IEC Piston       |             |            |
| Sampling temperature, 'C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50                                                |             | - unp, re    |                  |             |            |
| Sample volume, ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.3                                               |             | 1            |                  |             |            |
| Number of adsorbent tubes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                 |             | 1            |                  |             |            |
| Desorption temperature,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 175                                               |             | 1            |                  |             |            |
| Desorption time, sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5                                               |             | 1            |                  |             |            |
| Desorption flow, ml/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   |             | 1            |                  |             |            |
| Cryo-trap detail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |             |              |                  |             |            |
| Trapping temperature, 'C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |             |              |                  |             |            |
| Desorption temperature, 'C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                   | Desorpti    | on time, se  |                  |             |            |
| Desorption flow, ml/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   | split flow, | , ml/min     |                  |             |            |
| Stripper column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |             |              | 2 m              |             |            |
| Analytical column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   | Capillar    | column AT    | 5; ID 0,32 mm;   | film 1µm    |            |
| phase:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95                                                | % dimethy   | Ipolysiloxar | ie; 5% dipheny   | Ipolysiloxa | ine        |
| length, m:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13 m                                              | 4           |              |                  |             |            |
| diameter (ID) mm:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.32                                              | {           |              |                  |             |            |
| thickness (µm):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                 |             |              |                  |             |            |
| analytical conditions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |             | 50,          | 70,50            |             |            |
| Tra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ceability of                                      | your ca     | libration    | Standard         |             |            |
| Certified reference material (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SIAD                                              |             |              |                  |             |            |
| Certified by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ACCREDIA                                          |             |              |                  |             |            |
| Certified number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G085017                                           |             |              |                  |             |            |
| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Concentration, pp                                 | ob (mol/mol | Expanded L   | Incertainty, ±pp | b(mol/mol)  |            |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 189.8                                             |             |              | 3.8              |             |            |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 189.7                                             |             |              | 3.8              |             |            |
| Ethyl-benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 190.1                                             |             |              | 5.9              |             |            |
| m-Xylene<br>Oshoo - sho Jo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190.7                                             |             |              | 4.2              |             |            |
| Dilution of CDM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |             |              |                  |             |            |
| Static Injection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |             |              |                  |             |            |
| Bermastics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Horiba 200 De                                     | Incohing    | Suctor       |                  |             | •          |
| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dura store                                        | meation:    | ogstern      | Dilution Flor    |             | Ques Terra |
| Baaraaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Permeation rat                                    | es ngrmin   |              | Lilution Flow    |             | Eoro       |
| Denzene<br>Talvara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.7                                              |             |              | 1,0 R/min        |             | 50 C       |
| Toluene<br>Eduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18.5                                              |             |              | 1,0 lt/min       |             | 5010       |
| Ethyl-benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33.4                                              |             |              | 1,0 lt/min       |             | 50°C       |
| m-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40.0                                              |             |              | 1,0 lt/min       |             | 50°C       |
| p-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.7                                              |             |              | 1,0 lt/min       |             | 50°C       |
| o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.8                                              |             | 1,0 lt/min   |                  |             | 50°C       |





APPA

# Calibration Certificate

This is to certify that the permeation tube code STD50 serial n. A147 has the parameters recorded below:

- chemical fill: Ethylbenzene
- calibration temperature: 50,0 °C
- permeation rate: 19 ±2 ng/min
- average useful life expected at 19 ng/min: 3 years

Calibration has been performed, using the method described in the protocol U.S. EPA-600/R-97/121, Section 3, procedure P3, by keeping the permeation tube in a constant temperature chamber purged by a zero gas weighing periodically until a stable weight loss per unit of time has been achieved. Temperature is measured with a SIT-traceable thermoresistance (certificate n. 23868 by Gefran S.p.A., Italy) and controlled with ±0.05 °C accuracy. The weight loss is determined on a semi-micro analytical balance accurate to ±0.01 mg (Sartorius BP210D s/n 70505503) and calibrated using SIT-traceable masses reference standards (certificates n. 543/07, n. 544/07, n. 545/07 by CIBE S.r.I., Italy). Gravimetric permeation rate determinations are continued until the standard error reaches 95% confidence level.

Following graphic shows weight loss versus time, the slope of the best fitting straight line gives the permeation rate.



Calibration Certificate

This is to certify that the permeation tube code STD40 serial n. A141 has the parameters recorded below:

- chemical fill: m-Xilene
- calibration temperature: 50,0 °C
- permeation rate: 29 ±2 ng/min
- average useful life expected at 29 ng/min: 3 years

Calibration has been performed, using the method described in the protocol U.S. EPA-600/R-97/121, Section 3, procedure P3, by keeping the permeation tube in a constant temperature chamber purged by a zero gas weighing periodically until a stable weight loss per unit of time has been achieved. Temperature is measured with a SIT-traceable thermoresistance (certificate n. 23868 by Gefran S.p.A., Italy) and controlled with ±0.05 °C accuracy. The weight loss is determined on a semi-micro analytical balance accurate to ±0.01 mg (Sartorius BP210D s/n 70505503) and calibrated using SIT-traceable masses reference standards (certificates n. 543/07, n. 544/07, n. 545/07 by CIBE S.r.I., Italy). Gravimetric permeation rate determinations are continued until the standard error reaches 95% confidence level.

Following graphic shows weight loss versus time, the slope of the best fitting straight line gives the permeation rate.


APPA



This is to certify that the permeation tube code STD35 serial n. A145 has the parameters recorded below:

- chemical fill: p-Xilene
- calibration temperature: 50,0 °C
- permeation rate: 39 ±2 ng/min
- average useful life expected at 39 ng/min: 3 years

Calibration has been performed, using the method described in the protocol U.S. EPA-600/R-97/121, Section 3, procedure P3, by keeping the permeation tube in a constant temperature chamber purged by a zero gas weighing periodically until a stable weight loss per unit of time has been achieved. Temperature is measured with a SIT-traceable thermoresistance (certificate n. 23868 by Gefran S.p.A., Italy) and controlled with ±0.05 °C accuracy. The weight loss is determined on a semi-micro analytical balance accurate to ±0.01 mg (Sartorius BP210D s/n 70505503) and calibrated using SIT-traceable masses reference standards (certificates n. 543/07, n. 544/07, n. 545/07 by CIBE S.r.I., Italy). Gravimetric permeation rate determinations are continued until the standard error reaches 95% confidence level.

Following graphic shows weight loss versus time, the slope of the best fitting straight line gives the permeation rate.



APPA



## **Calibration** Certificate

This is to certify that the permeation tube code STD70 serial n. A143 has the parameters recorded below:

- chemical fill: o-Xilene
- calibration temperature: 50,0 °C
- permeation rate: 32 ±2 ng/min
- average useful life expected at 32 ng/min: 3 years

Calibration has been performed, using the method described in the protocol U.S. EPA-600/R-97/121, Section 3, procedure P3, by keeping the permeation tube in a constant temperature chamber purged by a zero gas weighing periodically until a stable weight loss per unit of time has been achieved. Temperature is measured with a SIT-traceable thermoresistance (certificate n. 23868 by Gefran S.p.A., Italy) and controlled with  $\pm 0.05$  °C accuracy. The weight loss is determined on a semi-micro analytical balance accurate to  $\pm 0.01$  mg (Sartorius BP210D s/n 70505503) and calibrated using SIT-traceable masses reference standards (certificates n. 543/07, n. 544/07, n. 545/07 by CIBE S.r.l., Italy). Gravimetric permeation rate determinations are continued until the standard error reaches 95% confidence level.

Following graphic shows weight loss versus time, the slope of the best fitting straight line gives the permeation rate.



| Participating Laboratory        |                                                                 | Sloval                | Hydromet        | eorological In | stitut      |               |
|---------------------------------|-----------------------------------------------------------------|-----------------------|-----------------|----------------|-------------|---------------|
| Acronym                         | SHMU                                                            |                       |                 |                |             | SHMU          |
| Person(s) responsible           | Peter Holoman                                                   |                       |                 |                |             |               |
| Contact e-mails:                |                                                                 | peter.holoman@shmu.sk |                 |                |             |               |
| Telephone contact:              | +421-2-5941 5364                                                |                       |                 |                |             |               |
| C                               | haracteristi                                                    | c of you              | r BTEX a        | nalvser        |             |               |
| Trademark                       | Syntech Spect                                                   | ras                   |                 |                |             |               |
| Model:                          | GC955                                                           |                       |                 |                |             |               |
| Version:                        | Model 601                                                       |                       |                 |                |             |               |
| Year of manufacture:            | 2015                                                            |                       |                 |                |             |               |
|                                 | 2010                                                            | 1                     |                 |                |             |               |
|                                 | Helium                                                          | Nitrogen              | Hudrogen        | Carbon dioxi   | Air         |               |
| Carrier das:                    | -                                                               | lies                  | - igorogen      | -              |             |               |
| Other gases used:               |                                                                 |                       | -               | -              |             |               |
| Caller gabes abed.              |                                                                 |                       |                 |                |             |               |
| Operating system:               |                                                                 |                       | Vir             | idows          |             |               |
|                                 |                                                                 |                       |                 |                |             |               |
| Cycle time, min:                |                                                                 |                       |                 | 15             |             |               |
| Adsorbent material:             |                                                                 |                       | TEN             | AX GR.         |             |               |
| Sampling control                |                                                                 |                       | Pisto           | n - pump       |             |               |
| Sampling temperature, "C        | 25                                                              |                       |                 | - · ·          |             |               |
| Sample volume, ml               |                                                                 |                       |                 |                |             |               |
| Number of adsorbent tubes       | 3                                                               |                       |                 |                |             |               |
| Desorption temperature,         | 180                                                             |                       |                 |                |             |               |
| Desorption time, sec            |                                                                 |                       |                 |                |             |               |
| Desorption flow , ml/min        |                                                                 |                       |                 |                |             |               |
| Cryo-trap detail                |                                                                 |                       |                 |                | 1           |               |
| Trapping temperature, 'C        |                                                                 |                       |                 |                | ,           |               |
| Desorption temperature, 'C      |                                                                 | Desorptio             | on time, see    |                | 1           |               |
| Desorption flow, ml/min         |                                                                 | split flow,           | ml/min          |                | 1           |               |
| Stripper column                 |                                                                 | · · · · ·             | ca              | pillar         |             |               |
| Analytical column               |                                                                 |                       | capillar, S     | unspec SY-1    |             |               |
| phase:                          |                                                                 |                       |                 | 3Y-1           |             |               |
| length, m:                      | 15                                                              |                       |                 |                |             |               |
| diameter (ID) mm:               | 0.32                                                            |                       |                 |                |             |               |
| thickness (μm):                 | 1                                                               | 1                     |                 |                |             |               |
|                                 | SUIC (U-3min.                                                   | )-> 70 C (3           | s - omin. j, 70 | JC (5 - 12min) | -> 50 C [12 | -14min), 50 C |
| analytical conditions:          |                                                                 |                       | [14-1           | 15min)         |             |               |
| Tra                             | ceability of                                                    | your ca               | libration       | Standard       |             |               |
| Certified reference material (C |                                                                 | NPI                   | . Primary R     | leference Mat  | erial       |               |
| Certified by                    |                                                                 |                       | NE              | PLUK           |             |               |
| Certified number:               |                                                                 | 20170904              | 29-1; 201709    | 0429-2;        |             |               |
| Compound                        | Concentration, ppb (mol/mol Expanded Uncertainty, ±ppb(mol/mol) |                       |                 |                |             |               |
| Benzene                         | 1; 5; (10); 0.021; 0.10; (-)                                    |                       |                 |                |             |               |
| Toluene                         |                                                                 |                       |                 |                |             |               |
| Ethyl-benzene                   |                                                                 |                       |                 |                |             |               |
| m+p-Xylene                      |                                                                 |                       |                 |                |             |               |
|                                 |                                                                 |                       |                 |                |             |               |
| o-Xylene                        |                                                                 |                       |                 |                |             |               |



### NPL PRIMARY REFERENCE MATERIAL

### Cylinder Number: D517549

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

### CUSTOMER:

### Messer Tatragas spol. s.r.o

ADDRESS:

Vlcie hrdlo 1, 824 11 Bratislava 23, Slovakia

CALIBRATION DATE: 21 November 2017

### AMOUNT FRACTION:

| Component | Amount fraction<br>/ (nmol/mol) |
|-----------|---------------------------------|
| Benzene   | $5.00 \pm 0.10$                 |
| Nitrogen  | Balance                         |

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor *k* = 2, providing a coverage probability of approximately 95 %. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

METHODS: Preparation: gravimetry; Analysis: gas chromatography (FID)

TRACEABILITY: The values on this certificate are traceable to NPL Primary Standards

EXPIRY: Certificate valid for 2 years from the date of issue

PRESSURE: Fill pressure: 100 bar; Minimum utilisation pressure: 10 bar

STORAGE: No special precautions are required

HANDLING: Refer to ISO 16664

OUTLET: DIN 477 No. 1 valve

INTENDED USE: Calibration standard

| Reference:  | 2017090429-2                                          | (Authorized Simuton)                                                                                                                                                                                                                                                                     |
|-------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Signed:     | Sangus .                                              | (Autorised Signatory)                                                                                                                                                                                                                                                                    |
| Name:       | Dr PJ Brewer                                          | (on behalf of NPLML)                                                                                                                                                                                                                                                                     |
| Checked by: | N. Allen                                              | Page 1 of 1                                                                                                                                                                                                                                                                              |
|             | This certificate<br>the CIPM. Under<br>measurement of | s consistent with the capabilities that are included in Appendix C of the MRA drawn up b<br>ar the MRA, all participating institutes recognise the validity of each other's calibration an<br>while the first the cumulities, ranges and measurement uncertainties specified in Appendix |

| Acronym     IPH       Person(s) responsible     Andrej Sostaric       Contact e-mails:     andrej sostaric@zdravlje.org.rs.       Telephone contact:     3811113 94 185, 381 1120 78 792       Characteristic of your BTEX analyser       Trademark     SYNTECH SPECTRAS       Model:     GC 955       Version:     601       Year of manufacture:     2009         | 1_S        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Person(s) responsible       Andrej Sostaric         Contact e-mails:       andrej.sostaric@zdravlje.org.rs.         Telephone contact:       38111 13 94 185, 381 11 20 78 792         Characteristic of your BTEX analyser         Trademark       SYNTECH SPECTRAS         Model:       GC 955         Version:       601         Year of manufacture:       2009 |            |
| Contact e-mails:       andrei sostaric@zdravlje.org.rs.         Telephone contact:       381 11 394 185, 381 11 20 78 792         Characteristic of your BTEX analyser         Trademark       SYNTECH SPECTRAS         Model:       GC 955         Version:       601         Year of manufacture:       2009                                                      |            |
| Telephone contact:     381 11 13 94 185, 381 11 20 78 792       Characteristic of your BTEX analyser       Trademark     SYNTECH SPECTRAS       Model:     GC 955       Version:     601       Year of manufacture:     2009                                                                                                                                        |            |
| Characteristic of your BTEX analyser           Trademark         SYNTECH SPECTRAS           Model:         GC 955           Version:         601           Year of manufacture:         2009                                                                                                                                                                        |            |
| Trademark     SYNTECH SPECTRAS       Model:     GC 955       Version:     601       Year of manufacture:     2009                                                                                                                                                                                                                                                   |            |
| Model:         GC 955           Version:         601           Year of manufacture:         2009                                                                                                                                                                                                                                                                    |            |
| Version: 601 Year of manufacture: 2009                                                                                                                                                                                                                                                                                                                              |            |
| Year of manufacture: 2009                                                                                                                                                                                                                                                                                                                                           |            |
| Tear or manufacture: 2003                                                                                                                                                                                                                                                                                                                                           |            |
|                                                                                                                                                                                                                                                                                                                                                                     |            |
| Halium Alizanaa Hudraaan Cashaa diayi Air                                                                                                                                                                                                                                                                                                                           |            |
| Carrier app:                                                                                                                                                                                                                                                                                                                                                        |            |
|                                                                                                                                                                                                                                                                                                                                                                     |            |
| Orner gases used.                                                                                                                                                                                                                                                                                                                                                   |            |
| Operating system: Windows XP                                                                                                                                                                                                                                                                                                                                        |            |
| operating system.                                                                                                                                                                                                                                                                                                                                                   |            |
| Cycle time, min: 15 min                                                                                                                                                                                                                                                                                                                                             |            |
| Adsorbent material: Tenax GR                                                                                                                                                                                                                                                                                                                                        |            |
| Sampling control piston pump + MFC                                                                                                                                                                                                                                                                                                                                  |            |
| Sampling temperature, C Ambient                                                                                                                                                                                                                                                                                                                                     |            |
| Sample volume, ml 210                                                                                                                                                                                                                                                                                                                                               |            |
| Number of adsorbent tubes one                                                                                                                                                                                                                                                                                                                                       |            |
| Desorption temperature, 180 C                                                                                                                                                                                                                                                                                                                                       |            |
| Desorption time, sec 60                                                                                                                                                                                                                                                                                                                                             |            |
| Descrption flow, ml/min 1.5                                                                                                                                                                                                                                                                                                                                         |            |
| Cryo-trap detail                                                                                                                                                                                                                                                                                                                                                    |            |
| Trapping temperature, 'C                                                                                                                                                                                                                                                                                                                                            |            |
| Desorption temperature, 'C Desorption time, see                                                                                                                                                                                                                                                                                                                     |            |
| Desorption flow, ml/min split flow, ml/min                                                                                                                                                                                                                                                                                                                          |            |
| Stripper column identical with analytical column, 2m lenght                                                                                                                                                                                                                                                                                                         |            |
| Analytical column AT624                                                                                                                                                                                                                                                                                                                                             |            |
| phase: (6% Cyanopropylphenyl)-94% methylpolysiloxane                                                                                                                                                                                                                                                                                                                |            |
| length, m: 15                                                                                                                                                                                                                                                                                                                                                       |            |
| diameter (ID) mm: 0.32                                                                                                                                                                                                                                                                                                                                              |            |
| thickness (µm): 1                                                                                                                                                                                                                                                                                                                                                   |            |
| analytical conditions: D C (3 min),50-70 C .10C/min, 70C (5-12 min), 70-50 C .10C/min, 50C                                                                                                                                                                                                                                                                          | : (14-15 m |
| Traceability of your calibration Standard                                                                                                                                                                                                                                                                                                                           |            |
| Cartiliad reference material (C                                                                                                                                                                                                                                                                                                                                     |            |
| Certified by                                                                                                                                                                                                                                                                                                                                                        |            |
| Certified pumber:                                                                                                                                                                                                                                                                                                                                                   |            |
| Compound Concentration ppb (mol/mol Expanded Uncertainty +ppb(mol/mol/mol)                                                                                                                                                                                                                                                                                          |            |
| Benzene                                                                                                                                                                                                                                                                                                                                                             |            |
| Toluene                                                                                                                                                                                                                                                                                                                                                             |            |
| Ethyl-benzene                                                                                                                                                                                                                                                                                                                                                       |            |
| m-Xylene                                                                                                                                                                                                                                                                                                                                                            |            |
| n-Xulene                                                                                                                                                                                                                                                                                                                                                            |            |
| o-Xulene                                                                                                                                                                                                                                                                                                                                                            |            |
| Other methods                                                                                                                                                                                                                                                                                                                                                       |            |
| Dilution of CRM vontaining 2nnm of RTEX is diluted by dinamic dilution system AS                                                                                                                                                                                                                                                                                    |            |

Uncertainties were calculated in accordance with EN 14662-3:2015.

|                                                                                |                       |                                                        | N                                       | ÍES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SER                                       | Ð         |
|--------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------|
| MESSER AUTRICHE                                                                |                       | N°. lot :<br>N° LC<br>N° de produit<br>N° locuteille : |                                         | 18-1<br>6001<br>8961<br>5154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13-1048<br>6001020108<br>8960<br>51544246 |           |
| 1                                                                              | TRA                   | at 180 M                                               | 141)<br>mayo a pros                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |           |
|                                                                                |                       | CON                                                    | POSITIC                                 | DIN .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Incer                                     | titude    |
| COMPOSANT                                                                      | 5                     | " ankur<br>Barnar dekk                                 | Tene at obtenue                         | Unité                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rel-                                      | Abs.      |
| Benzène                                                                        | CGH6                  | 2                                                      | 1,84                                    | 22%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10%                                       | +/-0.19   |
| Ethylbonzène                                                                   | C6H5C2H               | 2                                                      | 1,51                                    | 8779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10%                                       | 41-0,19   |
| Toluène                                                                        | C7HB                  | 2                                                      | 1,56                                    | 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10%                                       | +60,3     |
| m-xylène                                                                       | M-C8H10               | 2                                                      | 1,73                                    | 3411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10%                                       | +1-0,17   |
| o-xylène                                                                       | 0-C8H10               | 2                                                      | 1,24                                    | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10%                                       | 4/-0 18   |
| p-xylène                                                                       | P-C8H10               | 2                                                      | 1,73                                    | son                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10%                                       | +1-0.17   |
| Azo4e                                                                          | 142                   | Reste                                                  | _                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                         | -         |
| Qualito des matières premièr<br>C8H8 C8H<br>D-C8H10 P.C8                       | 08 :<br>50217<br>H110 | C7H8<br>-N2 2                                          | D                                       | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I-C8H10                                   |           |
| Méthore central des contrals<br>Analise Contomatography                        | EEC.                  | Date                                                   | E with                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22/06/20/                                 |           |
| l'empérature de sales "é"                                                      | TAL CLIENT            | Centra                                                 | iremplice :                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22/06/20                                  | 9         |
| Voevale                                                                        | DIN 14                | Cer st                                                 | coord :                                 | 00614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N 6/a 40 x 1                              | .5        |
| Press, complisence (15°C);                                                     | teo BAR               | Pajute                                                 | vin yil ;                               | Quinto.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a BAR                                     |           |
| Commentaires :                                                                 | A                     | gense aan                                              | merciale :                              | F921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |           |
| V de client : AT0625                                                           | N                     | * comments                                             | e client :                              | 45016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 77760                                     |           |
| Fabricant :<br>MESSER France SAS<br>32. rue Donis Papin<br>21. rue Donis Papin |                       |                                                        | Agupari<br>M. SNU<br>Date do<br>2209558 | Sebier<br>Rélifs<br>dition du<br>919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | continues.                                | 1.1032412 |
| a.t. miner warmannes                                                           |                       | states of the second states in the second states in    | other states and the state of the       | and the second sec |                                           | CC.       |
| " Eight in a                                                                   | official fallstee     | es fe farmiet op                                       | a, valable so                           | ea whillan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B                                         | Like.     |

| Acronum                           |                  |              | EF                                     | RLAP             |            |       |   |
|-----------------------------------|------------------|--------------|----------------------------------------|------------------|------------|-------|---|
| ·····                             | FR               |              |                                        |                  | FRIAP      |       |   |
| Person(s) responsible             |                  | A. E         | lau' ,Pascu                            | ial Perez Ball   | esta       |       |   |
| Contact e-mails:                  | pase             | oual.ballest | a@ec.europ                             | a.eu. andrea.bai | u@ec.euro  | oa.eu | _ |
| Telephone contact:                |                  |              | +39033278                              | 3-(5322) (535    | 3)         |       | _ |
|                                   | Characteristi    | ic of yow    | r BTEX a                               | nalyser          |            |       |   |
| Trademark                         | Agilent + Perki  | in-Elmer     |                                        |                  |            |       |   |
| Model:                            | Agilent 6890 +   | ATD-50       | PE                                     |                  |            |       |   |
| Version:                          |                  |              |                                        |                  |            |       |   |
| Year of manufacture:              | 2005             |              |                                        |                  |            |       |   |
|                                   |                  |              |                                        |                  |            |       | _ |
|                                   | Helium           | Nitrogen     | Hydrogen                               | Carbon dioxi     | Air        | -     |   |
| Carrier gas:                      | yes              | yes          | yes                                    |                  | yes        | -     |   |
| Other gases used:                 |                  |              |                                        |                  |            | J     |   |
| On constitute constructions       |                  |              | U:                                     | J                |            |       | _ |
| Operating system:                 |                  |              | WING                                   |                  |            |       | _ |
| Circle time min:                  |                  |              | 20                                     | lmin             |            |       | - |
| Adsorbent material:               | TENIA            |              | onack P. C/                            |                  | CARROR     | ACKC  | - |
| Sampling control                  | TENA             | n an, carb   | Due                                    | NDOFACKA,        | CANBUP     | ACKE  | - |
| Sampling tomporature "C           | Ambia            | ot           | Fun                                    | ipinii C         |            |       | - |
| Sample volume ml                  | 200ml (20-       | 800 MU       |                                        |                  |            |       |   |
| Number of adsorbent tubes         | 1                | 000142)      |                                        |                  |            |       |   |
| Desorption temperature            | 300              |              |                                        |                  |            |       |   |
| Desorption time sec               | 180              |              |                                        |                  |            |       |   |
| Desorption flow, ml/min           | 20               |              |                                        |                  |            |       |   |
| Crvo-trap detail                  | Perkin Elmer     | Air Toxics   | i<br>s. special pi                     | reperation       | 1          |       |   |
| Trapping temperature, 'C          | -25              |              | ., special p.                          |                  | 1          |       |   |
| Desorption temperature, C         | 300              | Desorptio    | on time, sec                           | 300              | 1          |       |   |
| Desorption flow, ml/min           | 50               | split flow,  | ml/min                                 |                  | 1          |       |   |
| Stripper column                   |                  |              |                                        |                  |            |       |   |
| Analytical column                 |                  | DB1 and      | HAI2O3 KC                              | l dean-switc     | h system   |       |   |
| phase:                            |                  |              |                                        |                  |            |       |   |
| length, m:                        | 50               |              |                                        |                  |            |       |   |
| diameter (ID) mm:                 | 0.32             |              |                                        |                  |            |       |   |
| thickness (µm):                   | 1.2              |              |                                        |                  |            |       |   |
|                                   |                  |              |                                        |                  |            |       |   |
| analytical conditions:            |                  |              | Smin 6°Ch                              | nin to 200°CI    | hold 15mir |       |   |
| analytical continiors.            |                  | 40 C Nola    | 30000000000000000000000000000000000000 | Carriera de car  |            |       |   |
| Cartified reference material (CDM | aceaniny of      | your ca      | manon Defer                            | stantiarti       |            |       | - |
| Certified by                      |                  | FII          | mary herefe                            | JPI              | are        |       | - |
| Certified number:                 |                  | Culinder     | Number D'                              | 386674           |            |       | - |
| Compound                          | Concentration on | b (mol/mol)  | Expanded                               | Uncertaintu enak | (mol/mol)  |       |   |
| Benzene                           | 3.99             | le (monimol) | Expanded                               | ±0.08            | (mon mor)  |       |   |
| Tohene                            | 3.99             |              |                                        | ±0.10            |            |       |   |
| Ethyl-benzene                     | 3.99             |              | +0.10                                  |                  | 1          |       |   |
| m+p-Xylene                        | 7.98             |              |                                        | ±0.20            |            | 1     |   |
|                                   |                  |              |                                        |                  |            | 1     |   |
| o Yulono                          | 2.07             |              |                                        | +0.10            |            |       |   |
| Other methods                     | 3.37             |              |                                        | ±0.10            |            | J     |   |
| Dilution of CPM                   |                  |              |                                        |                  |            |       | - |
| Static Injection                  |                  |              |                                        |                  |            |       |   |
| Permeation                        |                  |              |                                        |                  |            |       |   |
| Additional comments               |                  |              |                                        |                  |            |       | - |
| sampling volume during the ex     | kercise 300 ml.  |              |                                        |                  |            |       |   |
| multipoint calibration with volu  | imes ranged fro  | m 20 to 80   | 0 ml                                   |                  |            |       |   |
|                                   |                  |              |                                        |                  |            |       | - |



### Cylinder Number: D38 6674

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

### CUSTOMER:

### European Commission - Joint Research Centre

ADDRESS:

Institute for Environment and Sustainability, Via E. Fermi, 1, I-21020 Ispra (VA), Italy

CALIBRATION DATE:

29 June 2016

AMOUNT FRACTIONS:

| Component           | Amount fraction<br>/(nmol/mcl) |   |      |  |
|---------------------|--------------------------------|---|------|--|
| Benzene             | 3.99                           | ± | 0.08 |  |
| Toluene             | 3.99                           | ± | 0.10 |  |
| Ethylbenzene        | 3.99                           | ± | 0.10 |  |
| m-xylene + p-xylene | 7.98                           | ± | 0.20 |  |
| o-xylene            | 3.97                           | ± | 0.10 |  |
| Nitrogen            | Balance                        |   |      |  |

The reported expanded uncertainties are based on standard uncertainties multiplied by a coverage factor k=2, providing a coverage probability of approximately 95 %. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

| METHODS:      | Preparation: gravimetry; Analysis: gas chromatography (FID)           |   |
|---------------|-----------------------------------------------------------------------|---|
| TRACEABILITY: | The values on this certificate are traceable to NPL Primary Standards |   |
| EXPIRY:       | Certificate valid for 2 years from the date of issue                  | ÷ |
| PRESSURE:     | Fill pressure: 100 bar; Minimum utilisation pressure: 10 bar          |   |
| STORAGE:      | No special precautions are required                                   |   |
| HANDLING:     | Refer to ISO 16664                                                    |   |
| OUTLET:       | DIN 477 No. 1 valve                                                   |   |
| INTENDED USE: | Calibration standard                                                  | 1 |

| Reference:  | 2016040285                                                                                                                     | Date of issue: 1 July 2016                                                                                                                                                                                                                                 |
|-------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Signed:     | Burger .                                                                                                                       | (Authorised Signatory)                                                                                                                                                                                                                                     |
| Name:       | Dr Pd Brewer                                                                                                                   | (on behalf of NPLML)                                                                                                                                                                                                                                       |
| Checked by: | an                                                                                                                             | Page 1 of 1                                                                                                                                                                                                                                                |
|             | This certificate is consistent<br>the CIPM. Under the MRA,<br>measurement certificates for<br>first details see http://www.bir | with the capabilities that are included in Appendix C of the MRA drawn up b<br>all participating institutes recognise the validity of each other's calibration an<br>the quantities, ranges and measurement uncertainties specified in Appendix<br>in ordi |

### List of abbreviations and definitions

| AAA        | Environmental Protection Agency (Lithuania)                                           |
|------------|---------------------------------------------------------------------------------------|
| APPA       | Agenzia Provinciale Per l'Ambiente e la Tutela del Clima                              |
| AQUILA     | Air quality reference laboratories                                                    |
| BTEX       | Benzene, toluene, ethyl-benzene, xylene                                               |
| CG         | Gas chromatograph                                                                     |
| DCMR       | DCMR Milieudienst Rijnmond                                                            |
| Conc.      | Concentration                                                                         |
| D.D.       | Dynamic Dilution                                                                      |
| DLI        | Department of Labour Inspection. Ministry of Labour and Social Insurance (Cyprus)     |
| EC         | European Commission                                                                   |
| EKONERG    | Energy and Environmental Protection Institute (Croatia)                               |
| EPA        | Environmental Protection Agency (Ireland)                                             |
| ERLAP      | European Reference Laboratory of Air Pollution                                        |
| EU         | European Union                                                                        |
| U %        | Relative Expanded Uncertainty                                                         |
| FID        | Flame ionization detector                                                             |
| GIOS       | Chief Inspectorate of Environmental Protection (Poland)                               |
| H.C.       | Hydrocarbons                                                                          |
| i.d.       | Internal diameter                                                                     |
| IPH_S      | Institute of Public Health of Belgrade (Serbia)                                       |
| ISO        | International Standard Organisation                                                   |
| ISPRA      | Istituto Superiore per la Protezione e Ricerca Ambientale - Area Metropologia (Italy) |
| JRC        | Joint Research Centre                                                                 |
| LIKZ       | Laboratory Croatian Hydrological and Laboratory Service (Croatia)                     |
| l.s.       | level of significance                                                                 |
| LV         | Limit value                                                                           |
| QAQC       | Quality assurance quality control                                                     |
| n.a.       | Not available                                                                         |
| NPL        | National Physical Laboratory (United Kingdom)                                         |
| NRL        | National Reference Laboratory                                                         |
| PID        | Photo ionization detector                                                             |
| ppb (m/m   | ) Concentration part per billion, molar fraction                                      |
| Press. Cyl | Pressurised cylinder                                                                  |
| P.T.       | Permeation tubes                                                                      |
| REE        | Agency Ricardo Energy and Environment (United Kingdom)                                |
| RSD        | Relative standard deviation, %                                                        |
|            |                                                                                       |

SHMU Slovak Hydrometeorological Institute (Slovakia)

| stdev                     | standard deviation                                                                                                                                                               |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tr. Std.                  | Travelling standard                                                                                                                                                              |
| U                         | Expanded Uncertainty                                                                                                                                                             |
| VMM                       | Vlaamse Milieumaatschappij, (Belgium)                                                                                                                                            |
| VSL                       | National Metrology Institute. (The Netherlands)                                                                                                                                  |
|                           |                                                                                                                                                                                  |
| $\overline{C}$            | Average concentration value                                                                                                                                                      |
| $\overline{C}_i$          | Average concentration value of I measurements                                                                                                                                    |
| $\overline{\overline{C}}$ | Inter-laboratory average concentration                                                                                                                                           |
| $\overline{C}_i^*$        | Robust average value                                                                                                                                                             |
| Cref                      | Reference concentration value                                                                                                                                                    |
| C8                        | refers to hydrocarbons with 8 atoms of carbon                                                                                                                                    |
| En                        | $E_n = rac{C_{lab} - C_{ref}}{\sqrt{U_{lab}^2 + U_{ref}^2}}$                                                                                                                    |
| <b>k</b> i                | Mandel-k value for laboratory i                                                                                                                                                  |
| n                         | Number of replicated analysis                                                                                                                                                    |
| р                         | Number of participating laboratories                                                                                                                                             |
| P(Z)                      | Probability function of the random variable Z.                                                                                                                                   |
| R <sub>c</sub>            | Residuals of the linear regression $\overline{C}_i$ vs $\mathcal{C}_{ref}$ at the evaluated concentration level, C                                                               |
| ∑ Resıd                   | $\overline{uals } = \sum_{i}^{Levels} (\overline{ bias _{i}} \cdot C_{ref_{i}}/100)$ : sum of average absolute residuals                                                         |
| s*                        | Standard deviation of the robust average value $\overline{C}_i^*$                                                                                                                |
| <b>S</b> bias             | Standard deviation of the bias, $\overline{m{C}}_i^*-m{C}_{r\!e\!f}$                                                                                                             |
| ${m S}_{\overline{c}_i}$  | Standard deviation of the average inter-laboratory value                                                                                                                         |
| Si                        | Standard deviation of the sample i.                                                                                                                                              |
| <b>S</b> L <sup>2</sup>   | Inter-laboratory variance or between-laboratory variance                                                                                                                         |
| Sln37                     | $s_{L_{N37}} = \sqrt{\hat{\sigma}_{N37}^2 - \frac{s_r^2}{n}}$ : between laboratory standard deviation from the prescript conditions of proficiency assessment of AQUILA network. |
| Sr <sup>2</sup>           | Repeatability variance or intra-laboratory variance                                                                                                                              |
| Sr <sup>2</sup>           | Reproducibility variance                                                                                                                                                         |
| и                         | Uncertainty of the method                                                                                                                                                        |

*u*<sub>Cref</sub> Uncertainty associated with the reference concentration value C<sub>ref</sub>

 $u_{
ho t}$  Standard uncertainty of the robust value of the proficiency test

Z 
$$\frac{C_{lab}-C_{ref}}{\hat{\sigma}_m}$$
: Z-scores statistic

### $\mu g/m^3$ Micrograms per cubic meter

- α Level of significance
- $\gamma \qquad \gamma = s_R/s_r$ , gamma value
- $\sigma$  Standard deviation
- $\hat{\sigma}$  Standard deviation for proficiency assessment

 $\hat{\sigma}_m \qquad \hat{\sigma}_m = \sqrt{(\mathbf{0}.\mathbf{5}\cdot\mathbf{s}_L)^2 + \frac{s_r^2}{n}}$ : minimum standard deviation of proficiency assessment coherent with method reproducibility

- $\hat{\sigma}_{\rm N37}$  Standard deviation for proficiency assessment prescript by AQUILA network
- (1- $\alpha$ ) Confidence level

### List of figures

| Figure 1 Time versus concentration steps along the exercise                                                            |                         |
|------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Figure 2. Repeatability standard deviation: Performance criteria (EN 14662-3)                                          | 10                      |
| Figure 3 number of non-linear cases per adsorbent or detector                                                          | 12                      |
| Figure 4. Reported blank levels                                                                                        | 16                      |
| Figure 5. Repeatability and reproducibility of the inter-laboratory exercise                                           | 17                      |
| Figure 6. Robustness of the inter-laboratory exercise                                                                  | 18                      |
| Figure 7. Minimum standard deviation compatible with reproducibility of the tests and stand proficiency assessment N37 | ard deviation for<br>19 |
| Figure 8. Repeatability-scores (N37) for the inter-laboratory comparison exercise                                      | 20                      |
| Figure 9 Z-scores ( $\sigma_m$ ) for the inter-laboratory comparison exercise $\ldots$                                 | 21                      |
| Figure 10 En scores for the inter-laboratory comparison exercise                                                       | 22                      |
| Figure 11 Comparison of proficiency test exercises 2016 and 2019                                                       | 28                      |
| Figure A 1 Results of the inter-laboratory comparison: Deviation (%)                                                   | 34                      |
| Figure A 2 Benzene: initial and converged h and k statistics                                                           | 36                      |
| Figure A 3 Toluene: initial and converged h and k statistics                                                           | 36                      |
| Figure A 4Ethyl-benzene: initial and converged h and k statistics                                                      | 37                      |
| Figure A 5 m,p-Xylene: initial and converged h and k statistics                                                        | 37                      |
| Figure A 6 o-Xylene: initial and converged h and k statistics                                                          |                         |
| Figure A 7 Percentage of outliers identified by laboratory and compound                                                |                         |

### List of tables

| Table 1. List of participating laboratories    5                                                                   |
|--------------------------------------------------------------------------------------------------------------------|
| Table 2. Instrumentation used by the participants during the inter-laboratory comparison exercise                  |
| Table 3. Reference material used by the participating laboratories    7                                            |
| Table 4. Reference values and associated uncertainties of the exercise         8                                   |
| Table 5. Linearity tests for benzene and toluene    13                                                             |
| Table 6. Linearity test for ethyl-benzene and m,p-xylene       14                                                  |
| Table 7. Linearity test for o-xylene    15                                                                         |
| Table 8. Average repeatability, reproducibility and $\gamma$ values of the inter-laboratory exercise               |
| Table 9 En score, bias and reported expanded uncertainty of the participants: benzene                              |
| Table 10 $E_n$ scores, bias and reported expanded uncertainty of the participants: toluene24                       |
| Table 11 $E_n$ scores, bias and reported expanded uncertainty of the participants: ethyl-benzene25                 |
| Table 12 $E_n$ scores, bias and reported expanded uncertainty of the participants: m,p-xylene26                    |
| Table 13 $E_n$ scores, bias and reported expanded uncertainty of the participants: o-xylene27                      |
| Table A 1 k and h values                                                                                           |
| Table A 2 Average repeatability, reproducibility and gamma values for the 2nd inter-laboratory exercise33          |
| Table A 3 Average repeatability, reproducibility and gamma values for the 3rd inter-laboratory exercise $\dots 33$ |
| Table A 4 Average repeatability, reproducibility and gamma values for the 4th inter-laboratory exercise $\dots 33$ |
| Table A 5 $\mu g/m^3$ to ppb (v/v) conversion factors                                                              |

### GETTING IN TOUCH WITH THE EU

#### In person

All over the European Union there are hundreds of Europe Direct information centres. You can find the address of the centre nearest you at: <u>https://europa.eu/european-union/contact\_en</u>

### On the phone or by email

Europe Direct is a service that answers your questions about the European Union. You can contact this service:

- by freephone: 00 800 6 7 8 9 10 11 (certain operators may charge for these calls),
- at the following standard number: +32 22999696, or
- by electronic mail via: https://europa.eu/european-union/contact\_en

### FINDING INFORMATION ABOUT THE EU

#### Online

Information about the European Union in all the official languages of the EU is available on the Europa website at: <a href="https://europa.eu/european-union/index\_en">https://europa.eu/european-union/index\_en</a>

### **EU publications**

You can download or order free and priced EU publications from EU Bookshop at: <u>https://publications.europa.eu/en/publications</u>. Multiple copies of free publications may be obtained by contacting Europe Direct or your local information centre (see <u>https://europa.eu/european-union/contact\_en</u>).

# The European Commission's science and knowledge service

Joint Research Centre

### **JRC Mission**

As the science and knowledge service of the European Commission, the Joint Research Centre's mission is to support EU policies with independent evidence throughout the whole policy cycle.



EU Science Hub ec.europa.eu/jrc

@EU\_ScienceHub

**f** EU Science Hub - Joint Research Centre

in EU Science, Research and Innovation

EU Science Hub



doi:10.2760/70810 ISBN 978-92-76-19198-8